

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Flexural Behavior of Rolled Steel I Beam with Different Stiffener Position

Prabha.G¹*, Emilreyan.R²,

¹Assistant Professor, Easwari Engineering College ² P.G student, Easwari Engineering College *Corresponding author E-mail: prabhagandhi1985@gmail.com

Abstract

Economy, ease and speed of construction are the main factors for using steel as a building material. In this paper conventional hot rolled steel I-beam sections are considered as the main flexural member of industrial buildings. The main goal is to increase the load carrying capacity of the beam with inverted w shape stiffener condition at centre. The initiative was to identify the maximum load behaviour and deflection of steel beams with stiffener in the web. The performance of such beams has been considered only for vertical loads. Hot rolled steel beam of ISMB 100 with stiffener were tested to failure experimentally. The beams were simply supported at the ends and subjected to a 2 equal concentrated load applied at one third of span from both ends. The deflection at centre of beam and various failure patterns are studied. All the beams were analyzed by the finite element method by using general finite element analysis software ANSYS and the results were compared with those obtained experimentally. The finite element results for deformation and ultimate strength shows good agreement with the corresponding values observed in the experiments. At last, a comparative study was carried out using finite element method to examine that which type of beam gives best performance during loading. The numerical results indicate that the use of hot rolled I section with stiffener is an economical and advantageous choice.

Keywords: Horizontal and vertical stiffener, Rolled steel section, Inclined stiffener, Flexural strength, etc..

1. Introduction

Laterally stable steel beams can fail only by (a) flexure (b) shear (c) bearing, assuming the local buckling of slender components does not occur. These three conditions are the criteria for limit state design of steel beams. Steel beams would also become unserviceable due to excessive deflection and it is classified as a limit state of serviceability.the factored design moment m at any section, in a beam due to external actions shall satisfy

> $M \le md$ Where md = design bending strength of the section

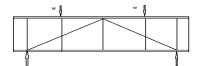
Members subjected to predominant bending shall have adequate design strength to resist concentrated force, shear force and bending moment imposed upon and their combinations Further, the members shall satisfy the deflection limitation presented as serviceability criteria. Member subjected to other forces in addition to bending or biaxial bending shall be designed. The effective span of a beam shall be taken as the distance between the centre to centre of supports, except where the point of application of the reaction is taken as eccentric at the support. It shall be permissible

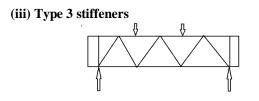
to take the effective span as the length between the assumed lines of the reactions.Lateral-torsional buckling is a limit-state of structural usefulness where the deformation of a beam changes from predominantly in-plane deflection to a combination of lateral deflection and twisting while the load capacity remains first constant, before dropping off due to large deflections. The analytical aspects of determining the lateral-torsional buckling strength are quite complex, and close form solutions exist only for the simplest cases.

2. Objective

(i)The effect of intermediate and inclined lateral stiffeners on load carrying capacity of simply supported hot rolled steel I-beam under various load combinations.

(ii) Load carrying capacity of beam, maximum deflection, stressstrain behavior, curvature behavior, maximum stresses in beam and stiffener have to be analyzed.


(iii) A series of beams modeled using 3d-finite element software like ansys is used to analyze the behavior of beam.

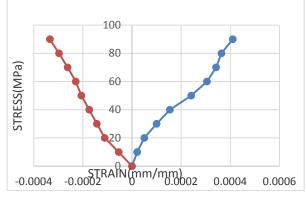

(iv) A theoretical design results, analytic results along with experimental results have been compared and final results are arrived.

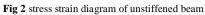
3. Stiffener Outline

(I) Type 1 Stiffener

(Ii) Type 2 Stiffeners

4. Theoretical Report


Designation	Values			
code	Is800:2007			
Section type	Girder beam			
Loading type	Udl			
Span	20m			
Dead load	20KN/m			
Live load	250KN/m			
Self weight	18KN/m			
Ultimate load	432KN/m			
Maximum BM	21.6E9Nmm			
Maximum SF	4320KN			
Overall depth	2500mm			
Depth of web	2400mm			
Thickness of web	12mm			
Thickness of flange	50mm			
Breadth of flange	500mm			
Outstand of flange	244mm			
B/t _f	4.88			
Classification	Plastic			
Plastic section modulus	78.53E6 cu.mm			
Designation	Values			
Elastic section modulus	70.4E6 cu.mm			
Moment of inertia(elastic)	88E9 mm ⁴			
Plastic moment capacity	27.85E9 nmm			
d/t _w	206			
Spacing of stiffener	3000mm			
C/d	1.25			
K _v	11.6			
Poisson ration	0.3			
Young modulus	2E5 MPa			
Elastic critical shear stress	52.42MPa			
Non dimensional slenderness ratio	1.65			
Shear stress(nominal)	53.01MPa			
Critical force	1526KN			
Margin of unsafety	2794KN			
Designation	Values			
Limited moment of resistance	4.09E9 Nmm			
Moment in tension field	991.6E6 Nmm			
Force in tension field	4.156E6 N			
Additional force due to moment in	330KN			
tension field				
Total design force	4650KN			
Longitudinal shear	2100KN			
Design load on EBS(end bearing	4650KN			
stiffener)				
Breadth of stiffener	200mm			
Thickness of stiffener	25mm			
Area of stiffener	10000 sq mm			
Web crippling	340KN			
T 1 1' 4 '1 4'				
Load distribution	1V:2.5H			
Total bearing strength	1V:2.5H 4960KN			


MOI of axis level	291.42E6 mm4		
Radius of gyration	112.85mm		
Slenderness ratio	14.8		
Designation	Values		
Buckling class	С		
Direct compression	225.5 MPa		
Compression load	5159 KN		
Design load on its	3024KN		
Minimum MOI	3.98E6 mm4		
Stiffener force due to external load	2540KN		
Direct compression	224.5MPa		
Compression load	3538KN		
Minimum MOI	20.76E6 mm4		
Stiffener requirements	Satisfied limit conditions as per		
	code		
Connection (EBS and web)	Provide 40mm weld @150mm c/c		
Connection (HS and web)	Provide 40mm weld @300mm c/c		
Deflection	78.23mm		

5. Experimental Report (1:20)

(I) Steel Beam without Stiffener

(Ii) Stiffener Beam 1

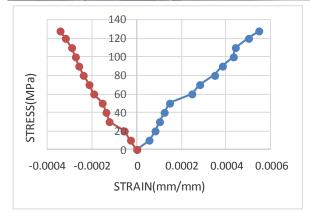


Fig 3 stress strain diagram for stiffened beam 1 $\,$

(Iii) Stiffened Beam 2



Fig 4 stress strain diagram for stiffened beam 2

(Iv)Stiffener Beam 3

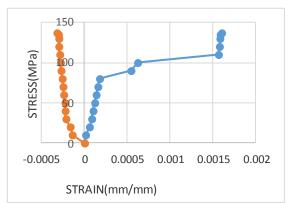
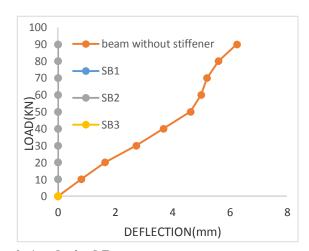
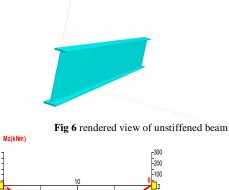



Fig 5 stress strain diagram for stiffened beam 3

(V) Deflection Comparison

6. Analytical Report

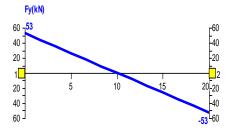
300 ·


200

100

1<mark>_</mark> 100

200 -300 -


(i) Unstiffened Beam (Using STADDPRO)

15

-265

E100 E200 E300

Fig 6: BM and SF diagram of unstiffened beam

File	Edit	View	Tools Sel	ect Results	Report Mod	le Window	Help	
ê 🖻	6	, Ba	8 e ×	Ω±Ω±	ni 🖬 🖬 🗡	> 🛛 🖨 🖸) 🛍 🕮 🗔	h 🚭 🚺
70	Ø	9 Ø 1	🕫 🟉 🕂	$\phi \phi \phi$	> @ ♠	E Q, 4	R @ @ 0	R, CC Q
<u>/</u> 4 15	916 I		* 🗇 🖩	£ & ₹ +	4 G 🏼 🗡	S ↓ Fg + Fg ↑	$\rightarrow_{F_2} \oplus \mathbb{Z}$	S 9 9
h 1ă								
=		-					1	
, <u>M</u>	odelir	Ig Pos	tprocessi	ng Steel De	esign Conc	rete Desigi	n Foundat	tion Desig
° —	1	IG Pos		Relative Disp	_		_	
Node	1	Beam		-	_		_	
° 📃	1	बन	▶ ► All	Relative Disp Dist m	blacement /	Max Relat	ive Displac z	ements / Resultan
 Node 		Beam	▶ ▶ All	Relative Disp Dist m	blacement / x mm	(Max Relat	ive Displac z mm	ements / Resultan mm
am & Node	Displacement	Beam	▶ ▶ All	Relative Disp Dist m G 0.000	blacement / x mm 0.000	Max Relat y mm 0.000	ive Displac z mm 0.000	ements / Resultan mm 0.00 0.71
am & Node		Beam	▶ ▶ All	Relative Disp Dist m G 0.000 5.000	0lacement / x mm 0.000 -0.000	(Max Relat y mm 0.000 -0.716	ive Displac z mm 0.000 0.000	ements / Resultan mm 0.00
* Node	Displacement	Beam	▶ ▶ All	Relative Disp Dist m G 0.000 5.000 10.000	Diacement / x mm 0.000 -0.000 -0.000	Max Relat y mm 0.000 -0.716 -1.006	ive Displac z 0.000 0.000 0.000	ements / Resultan mm 0.00 0.71 1.00
1 Beam & Node	Displacement	Beam	▶ ▶ All	Relative Disp Dist m G 0.000 5.000 10.000 15.000 20.000	blacement / x 0.000 -0.000 -0.000 -0.000	(Max Relat y 0.000 -0.716 -1.006 -0.716	ive Displac z mm 0.000 0.000 0.000 0.000	ements / Resultan mm 0.00 0.71 1.00 0.71
1 Beam * Node	Displacement	Beam	All L/C 1 SELF WE	Relative Disp Dist m G 0.000 5.000 10.000 15.000 20.000	blacement / x 0.000 -0.000 -0.000 -0.000 0.000	(Max Relat y 0.000 -0.716 -1.006 -0.716 0.000	ive Displac z mm 0.000 0.000 0.000 0.000 0.000	ements / Resultan mm 0.00 0.71 1.00 0.71 0.00 0.00
1 Beam * Node	Displacement	Beam	All L/C 1 SELF WE	Relative Disp Dist m G 0.000 5.000 10.000 15.000 20.000 D 0.000	blacement / x mm 0.000 -0.000 -0.000 -0.000 0.000 0.000	Max Relat y mm 0.000 -0.716 -1.006 -0.716 0.000 0.000	ive Displac z mm 0.000 0.000 0.000 0.000 0.000 0.000	ements / Resultan mm 0.000 0.71 1.000 0.71 0.000 0.000 67.58
Beam & Node	Displacement	Beam	All L/C 1 SELF WE	Relative Disp Dist m G 0.000 10.000 15.000 20.000 D 0.000 5.000	Diacement / mm 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000	Max Relat y mm 0.000 -0.716 -1.006 -0.716 0.000 0.000 -67.582	ive Displac mm 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ements / Resultan mm 0.00 0.71 1.00 0.71 0.00

(Ii) Stiffened Beams (ANSYS)

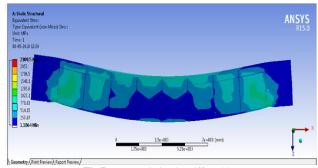


Fig 7 stress variation in stiffened beam

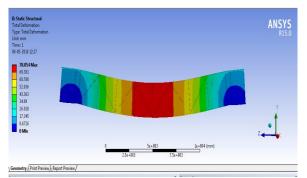


Fig 8 deflection in stiffened beam

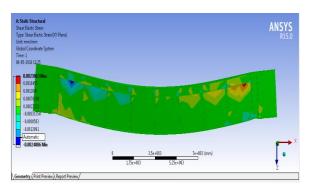


Fig 9 strain variation in stiffened beam

7. Result and Discussion

(i) Load carrying capacity of beam

- (a) Without stiffener =90 KN(b) Type 1 stiffener =102KN
- (c) Type 2 stiffener =128KN
- (d) Type 3 stiffener =137KN

(ii) Comparative results

AD	AS	ED	ES
(mm)		(mm)	
94.88	0.00186	125	0.00041
91.66	0.00191	85.66	0.00085
85.26	0.00193	81.23	0.0012
78.66	0.00203	76.25	0.0019
	(mm) 94.88 91.66 85.26	(mm) 94.88 0.00186 91.66 0.00191 85.26 0.00193	(mm) (mm) 94.88 0.00186 125 91.66 0.00191 85.66 85.26 0.00193 81.23

Note:

Ad=analytic deflection As=analytic strain Ed=experimental deflection(1:20) Es=experimental strain(1:20) (iii) Estimation of material cost(as per field application)

(a) Beam with no stiffener

Volume of beam =1.576 cubic metre Unit weight of steel =7850kg/cub m Weight of beam = 12371.6 kg Cost of steel per kg =rs.60 Total cost = 7.42 lakhs

(b) Beam with type 1 stiffener

Volume of beam =1.824 cubic metre Unit weight of steel =7850 kg/cub m Weight of beam =14318.4 kg Cost of steel per kg =rs.60 Total cost =8.6 lakh

(c) Beam with type 2 stiffener

Volume of beam =1.856 cubic metre Unit weight of steel =7850 kg/cub m Weight of beam =14569.6 kg Cost of steel per kg =rs.60 Total cost =8.74 lakh

(d) Beam with type 3 stiffener

Volume of beam =1.923cubic metre Unit weight of steel =7850kg/ cub m Weight of beam =15095.5 kg Cost of steel per kg =rs.60 Total cost =9.5 lakh

8. Conclusion

(i) The load carrying behaviour of type 3 stiffener beam is 20% higher than type 1 stiffener, 10% higher than type 2 stiffener and 41% higher than beam with no stiffener.

(ii) The deflection behaviour of type 3 stiffener beam is5% higher than type 2 stiffener and 10% higher than type 1 stiffener and 15% higher than beam with no stiffener.

(iii) For higher strength purpose, type 3 stiffener beam is preferable but for both economical and strength purpose, type 2 stiffener beam is preferable.

(iv) The above results should be completely compared and concluded theoretically, analytically and experimentally (1:20).

References

- Dewolf tj, pekoz t, winter g. Local and overall buckling of coldformed members. Journal of structural engineering, asce, no. 10, 100(1974) 2017-36.
- [2] Beshara b, lawson tj. Built-up girder screw connection variation flexural tests, dietrich design group internal report, april, 2002.
- [3] Yu c, schafer bw, local buckling tests on cold-formed steel beams, journal of structural engineering, asce, 129(2003) 1596-606.
- [4] Serrette rl, performance of edge-loaded cold formed steel built-up box beams, journal of structural engineering, asce, no. 3, 9(2004) 170-4.
- [5] Ren w, fang s, young b, finite-element simulation and design of cold-formed steel channels subjected to web crippling, journal of structural engineering, asce, no. 12, 132(2006) 1967-75.
- [6] Akay, h.v., johnson c.p. And will k.m. (1977), lateral and local buckling of beams and frames, journal of structural engineering, asce, vol. 103, no. St9, sept., pp. 1821-1832.
- [7] Avery p. (1994) lateral distortional buckling behaviour of hollow flange beams with web stiffeners, beng thesis, queensland university of technology, australia.
- [8] Avery p. And mahendran, m. (1996), finite element analysis of hollow flange beams with web stiffeners, research report, queensland university of technology.
- [9] Bradford, m.a. And trahair, n.s. (1981), distortional buckling of ibeams, journal of structural engineering, asce, vol. 107, no. St2, pp. 355-370.
- [10] dempsey, r.i. (1991), hollow flange beams: the new alternative, technical presentation, aisc.june.
- [11] dempsey r.i. (1990), structural behaviour and design of hollow flange beams, proc. Of the second national structural engineering conference
- [12] Richard redwood and sevak demirdjian "castellated beam web buckling in shear" journal of structural engineering 1 october 1998/1207
- [13] Redwood, r. & demirdjian, s. (1998). Castellated beam web buckling in shear. Journal of structural engineering (asce), vol. 124, 10, pp. 1202-1207.
- [14] Sweedan m. I. (2011). Elastic lateral stability of i-shaped cellular steel beams. Journal of constructional steel research, vol. 67, no. 2, pp. 151-163.
- [15] Konstantinos, t. D. & mello, c. (2011). Web buckling study of the behavior and strength of perforated steel beam with different novel web opening shapes. Journal of constructional steel research, vol. 67, pp. 1605- 1620 6
- [16] Luis laim, joao paulo c rodrigues, luis s silva, "flexural behaviour of cold formed steel beams", dfe 2013- international conference on design, fabrication and economy of metal structures, (isbn: 978-3-642-36690-19), hungary
- [17] Jia-hui zhang, ben young, "compression test of cold- formed steel ishaped open sections with edge and web stiffeners", thinwalled structures 52 (2012) 1-11
- [18] Rajesh kumar b, anil kumar patidar and helen santhi. M, "finite element analysis of concrete filled cold formed steel sections using ansys", ijace, vol no: 1, 2013, pp. 11-18
- [19] Sudha.k , sukumar.s , behaviour of cold-formed steel builtup i section under bending , international journal of engineering and technology (ijet) vol no: 5, 2013 pp 4622-4631
- [20] IS 800-2007 code of practice for general construction in steel.