

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Some Difference Double Sequences Spaces with Respect to Double Orlicz Function

Ali Hussain Battor^{1*}, Dhuha Abdulameer Kadhim², Zainab Hayder Hasan³

¹Department of Mathematic, College of Education for Girls, Iraq. ²Department of Mathematic, College of Education for Girls, Iraq. ³Researcher in Mathematics, Iraq.

Abstract

This work concerned with studying of new difference double sequence spaces concerning with lacunary sequences with respect to double Orlicz function. Moreover, from this work we proved some inclusion relations involving these spaces.

1. Introduction and Preliminaries

The Banach spaces of real bounded and convergent double sequences $(u, v) = (u_{n,m}, v_{n,m})$ are denoted by $2\ell_{\infty}$, and 2c, respectively. Which defined the normed by $||u, v|| = \sup_{n,m}\{|u_{n,m}|, |v_{n,m}|\}$ where $||u|| = \sup_{n,m}\{|u_{n,m}|\}, ||v|| = \sup_{n,m}\{|v_{n,m}|\}$

In 1994, Parashar and Choudhary [9] have been constructed asequence spaces defined by Orlicz functions. The idea of double sequence spaces has been introduced in 1999 by M. Basarir and O. Sonalcan [3], also by [1,6,11] and other authors have been studied anewdifference double sequence spaces. The notion of double sequence spaces defined by Orlicz function was structured by [2],[10],[12] and [13], et al.

Definition 1.1

A double sequence of positive integers $2\vartheta = (\mathcal{K}_{r,s})$ is called lacunary if $\mathcal{K}_0 = 0, \ 0 < \mathcal{K}_{r,s} < \mathcal{K}_{r+1,s+1}$ and $\mathcal{M}_{r,s} = \mathcal{K}_{r,s} - \mathcal{K}_{r-1,s-1} \to \infty$ as $r,s \to \infty$. The intervals determined by 29will be denoted by $\mathbbm{I}_{r,s} = (\mathcal{K}_{r-1,s-1}, \mathcal{K}_{r,s})$ and $\mathbbm{z}_{r,s} = \mathcal{K}_{r,s}/\mathcal{K}_{r-1,s-1}$. According to Freedman et al [5], we can define the space of lacunary strongly convergent double sequence $2\mathcal{N}_{\vartheta}$ by

$$2\mathcal{N}_{\boldsymbol{\theta}} = \{(u, v): \lim_{r, s \to \infty} \hbar_{r, s}^{-1} \sum_{n \in \mathbb{I}_{r, s}} \sum_{m \in \mathbb{I}_{r, s}} \left[\left| u_{n, m} - t \right| \vee \left| v_{n, m} - t \right| \right] \text{ for some } t \}$$

Definition 1.2: [4]

A double Orlicz function is a function $\mathcal{F}:[0,\infty) \times [0,\infty) \rightarrow [0,\infty) \times [0,\infty)$ defined by $\mathcal{F}(u,v) = (\mathcal{F}_1(u),\mathcal{F}_2(v))$ such that $\mathcal{F}_1:[0,\infty) \rightarrow [0,\infty) \& \mathcal{F}_2:[0,\infty) \rightarrow [0,\infty)$ are Orliczfunctions which are continuous, non-decreasing, even, convex and satisfies the following conditions:

i) $\mathcal{F}_{1}(0) = 0$, $\mathcal{F}_{2}(0) = 0$ implies that $\mathcal{F}(0,0) = (\mathcal{F}_{1}(0), \mathcal{F}_{2}(0)) = (0,0)$ ii) $\mathcal{F}_{1}(u) > 0$, $\mathcal{F}_{2}(v) > 0$ implies

(i) $\mathcal{F}_1(u) > 0, \mathcal{F}_2(v) > 0$ implies that $\mathcal{F}(u, v) = (\mathcal{F}_1(u), \mathcal{F}_2(v)) > (0,0)$ for u > 0, v > 0, we mean by $\mathcal{F}(u, v) > (0,0)$ that $\mathcal{F}_1(u) > 0, \mathcal{F}_2(v) > 0$ iii) $\mathcal{F}_1(u) \to \infty, \mathcal{F}_2(v) \to \infty$ as $u \to \infty, v \to \infty$, then $\mathcal{F}(u, v) \to (\infty, \infty)$.

Definition1.3:[4]

Let 2w be the spaces of all real or complex double sequence $(u, v) = (u_{nm}, v_{nm})$.

We can define a double Orlicz function on double sequence spaces by means of Lindenstrauss and Tzafriri [8]

$$2\ell_{\mathcal{F}} = \{(u, v): \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[\mathcal{F}_1\left(\frac{|u_{n,m}|}{\varrho}\right) \vee \mathcal{F}_2\left(\frac{|v_{n,m}|}{\varrho}\right) \right] < \infty, \varrho > 0\}$$

which is called a double Orlicz double sequences spaces $2\ell_{\mathcal{F}}$ is a Banach space with a norm:

 $\begin{aligned} \|(u,v)\| &= \inf\{\varrho > 0: \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[\mathcal{F}_1\left(\frac{|u_{n,m}|}{\varrho}\right) \vee \mathcal{F}_2\left(\frac{|v_{n,m}|}{\varrho}\right) \right] \le 1 \} \\ \text{According to Kizmaz [6], we define a double sequence spaces as} \\ 2\ell_{\infty}(\Delta) &= \{(u,v) = (u_{n,m}, v_{n,m}): \sup[|\Delta u_{n,m}|, |v_{n,m}|] < \infty \} \\ 2c(\Delta) &= \{(u,v) = (u_{n,m}, v_{n,m}): \lim_{n,m} \left[\left[|\Delta u_{n,m} - t| \vee |v_{n,m} - t| \right] \right] = 0, \text{ for some } t \} \\ 2c_0(\Delta) &= \{(u,v) = (u_{n,m}, v_{n,m}): \lim_{n,m} \left[\left[|\Delta u_{n,m}| \vee |v_{n,m}| \right] \right] = 0 \} \\ \text{where} \left(\Delta u_{n,m}, \Delta v_{n,m} \right) = (u_{n,m} - u_{n+1,m+1}, v_{n,m} - v_{n+1,m+1}) \end{aligned}$

2. Main Results

In this part, we introduce a double sequence spaces and construct inclusion relations between double sequence spaces.

Definition 2.1

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function and $\mathbb{P} = \mathbb{P}_{n,m}$ be any bounded double sequence of strictly positive real numbers. Then

$$\begin{split} 2w_0^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta} &= \{(u, v) \colon \lim_{r, s \to \infty} \mathcal{H}_{r, s}^{-1} \sum_{n \in \mathbb{I}_{r, s}} \sum_{m \in \mathbb{I}_{r, s}} \left| \mathcal{F}_1\left(\frac{|\Delta u_{n, m}|}{\varrho}\right)^{r \cdot n \cdot m} \\ & \vee \mathcal{F}_2\left(\frac{|\Delta v_{n, m}|}{\varrho}\right)^{\mathbb{P}_{n, m}} \right] = 0, \varrho > 0 \} \\ 2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta} &= \{(u, v) \colon \lim_{r, s \to \infty} \mathcal{H}_{r, s}^{-1} \sum_{n \in \mathbb{I}_{r, s}} \sum_{m \in \mathbb{I}_{r, s}} \left| \mathcal{F}_1\left(\frac{|\Delta u_{n, m} - t|}{\varrho}\right)^{\mathbb{P}_{n, m}} \\ & \vee \mathcal{F}_2\left(\frac{|\Delta v_{n, m} - t|}{\varrho}\right)^{\mathbb{P}_{n, m}} \right] = 0, \text{ for some } t, \varrho > 0 \} \end{split}$$

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$\begin{split} 2 \mathbb{W}_{\infty}^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta} &= \{(u, v) \colon \sup_{n, m} h_{r, s}^{-1} \sum_{n \in \mathbb{I}_{r, s}} \sum_{m \in \mathbb{I}_{r, s}} \left[\mathcal{F}_{1}\left(\frac{\left|\Delta u_{n, m}\right|}{\varrho}\right)^{\mathbb{P}^{n, m}} \\ & \vee \mathcal{F}_{2}\left(\frac{\left|\Delta v_{n, m}\right|}{\varrho}\right)^{\mathbb{P}^{n, m}} \right] < \infty, \varrho > 0 \rbrace \end{split}$$

If $(u, v) \in 2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$, we say that (u, v) is lacunary convergence to t with respect to the double Orlicz function $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$. When $\mathcal{F}(u, v) = (\mathcal{F}_1(u), \mathcal{F}_2(v)) = (u, v)$, then we write $2w_0^{2\theta}(\mathbb{p})_{\Delta}$, $2w^{2\theta}(\mathbb{p})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathbb{p})_{\Delta}$ for the spaces $2w_0^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$, $2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$, respectively. If $\mathbb{p}_{n,m} = 1$ for all n, m, then $2w_0^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$, $2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ reduce to $2w_0^{2\theta}(\mathcal{F})_{\Delta}$, $2w^{2\theta}(\mathcal{F})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathcal{F})_{\Delta}$, respectively.

We need the following inequality in this paper,

Where $e_{n,m}$ and $d_{n,m}$ are complex numbers, $C = \max(1, 2^{\mathcal{H}-1})$ and $\mathcal{H} = \sup \mathbb{p}_{n,m} < \infty$

Theorem 2.2

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function and $\mathbb{p} = \mathbb{p}_{n,m}$ be a bounded double sequence of strictly positive real numbers. Then $2w_0^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}, 2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ are vector spaces over the set of complex numbers.

Proof

Let
$$(u, v)$$
, $(p, q) \in 2w_0^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$ and let $\alpha, \beta \in \mathbb{C}$. Then

$$\lim_{r,s\to\infty} \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}}|}{\varrho_1}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2\left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}}|}{\varrho_1}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right]$$

$$= 0, \varrho_1 > 0$$

and

$$\lim_{r,s\to\infty} \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{|\Delta \mathcal{P}_{\mathbf{n},\mathbf{m}}|}{\varrho_2}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2\left(\frac{|\Delta \mathcal{Q}_{\mathbf{n},\mathbf{m}}|}{\varrho_2}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] = 0, \varrho_2 > 0$$

Take $\varrho = \max\{2|\alpha|\varrho_1, 2|\beta|\varrho_2\}$. We have

$$\begin{split} \lim_{r,s\to\infty} & \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} \left| \mathcal{F}_1 \left(\frac{|\alpha\Delta u_{\mathbf{n},\mathbf{m}} + \beta\Delta \mathcal{P}_{\mathbf{n},\mathbf{m}}|}{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right| \\ & \vee \mathcal{F}_2 \left(\frac{|\alpha\Delta v_{\mathbf{n},\mathbf{m}} + \beta\Delta \mathcal{Q}_{\mathbf{n},\mathbf{m}}|}{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \leq \\ & \leq \lim_{r,s\to\infty} & \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}}|}{\varrho_1} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}}|}{\varrho_1} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] + \\ & + \lim_{r,s\to\infty} & \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta \mathcal{P}_{\mathbf{n},\mathbf{m}}|}{\varrho_2} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] + \\ & \mathcal{F}_2 \left(\frac{|\Delta \mathcal{Q}_{\mathbf{n},\mathbf{m}}|}{\varrho_2} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} = 0. \end{split}$$

So, $\alpha(u, v) + \beta(p, q) \in 2w_0^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$. Therefore $2w_0^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$ is a vector space.

Similarly, we can prove the other spaces.

Theorem 2.3

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function. If $\sup_{n,m}(\mathcal{F}_1(u), \mathcal{F}_2(v))^{\mathbb{p}_{n,m}} < \infty$ for all u > 0, v > 0, then $2w^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta} \subset 2w^{2\vartheta}_{\infty}(\mathcal{F}, \mathbb{p})_{\Delta}$

Proof

Let $(u, v) \in 2w^{2\theta}(\mathcal{F}, \mathbb{p})_{\Delta}$. There exists some positive ϱ_1, ϱ_2 such that

$$\lim_{r,s\to\infty} \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{\left|\Delta u_{\mathbf{n},\mathbf{m}-}t\right|}{\varrho_1}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2\left(\frac{\left|\Delta v_{\mathbf{n},\mathbf{m}}-t\right|}{\varrho_2}\right)^{\mathbb{Q}_{\mathbf{n},\mathbf{m}}} \right] = 0$$

Set $\varrho = (2\varrho_1, 2\varrho_2)$. Since $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ is non-decreasing and convex , by using (1.1), we have

$$\begin{split} \sup_{r,s} \mathcal{H}_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}}|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}}|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] = \\ &= \sup_{r,s} \mathcal{H}_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t + t|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ & \vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t + t|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ \leq \mathcal{C} \left\{ \sup_{r,s} \mathcal{H}_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \frac{1}{2^{\mathbb{P}\mathbf{n},\mathbf{m}}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ & + \sup_{r,s} \mathcal{H}_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \frac{1}{2^{\mathbb{P}\mathbf{n},\mathbf{m}}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ & + \sup_{r,s} \mathcal{H}_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \frac{1}{2^{\mathbb{P}\mathbf{n},\mathbf{m}}} \left[\mathcal{F}_1 \left(\frac{|t|}{\mathbf{q}} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ & \vee \mathcal{F}_2 \left(\frac{|t|}{\mathbf{q}_2} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \right\} \end{split}$$

$$< \mathcal{C} \left\{ \sup_{r,s} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{q_1} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right. \\ \times \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{q_2} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] + \\ \left. + \sup_{r,s} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|t|}{q_1} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2 \left(\frac{|t|}{q_2} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \right\} < \infty$$

Hence $(u, v) \in 2w_{\infty}^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$. This completes the proof.

Theorem 2.4

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function and let $0 < \hbar = \inf_{n,m} \mathbb{P}_{n,m}$ Then

 $2\mathbb{W}^{2\vartheta}_{\infty}(\mathcal{F},\mathbb{p})_{\Delta} \subset 2\mathbb{W}^{2\vartheta}_{0}(\mathbb{p})_{\Delta}$ if and only if

$$\lim_{r,s\to\infty} \hbar_{r,s}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{r,s}} \sum_{\mathbf{m}\in\mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}}] = \infty$$
(2)

For some t > 0.

Proof

Let $2w_{\infty}^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta} \subset 2w_{0}^{2\vartheta}(\mathbb{p})_{\Delta}$. Suppose that (2) does not hold. Therefore there are a subinterval $\mathbb{I}_{(r,s)(m)}$ of the set of interval $\mathbb{I}_{r,s}$ and a number $\mathfrak{t}_{0} > 0$, where $\mathfrak{t}_{0} = \frac{|\Delta u_{n,m}, \Delta v_{n,m}|}{\varrho}$ for all n, m, such that

$$\hbar_{(r,\delta)(m)}^{-1} \sum_{\substack{\mathbf{n} \in \mathbb{I}_{(r,\delta)(m)} \\ < \infty}} \sum_{\substack{\mathbf{m} \in \mathbb{I}_{(r,\delta)(m)} \\ < \infty}} [\mathcal{F}_1(t_0)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2(t_0)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}}] \leq \mathcal{K}$$
(3)

Such that m = 1, 2, 3, ...

Let us define $(u, v) = (u_{n,m}, v_{n,m})$ as following $(\Lambda u, \Lambda u) = \begin{cases} (\varrho t_0, \varrho t_0), & n, m \in \mathbb{I}_{(r,s)(m)} \end{cases}$

Thus by
$$(3),(u,v) \in 2w_{\infty}^{2\vartheta}(\mathcal{F},\mathbb{p})_{\Lambda}$$
. But $(u,v) \notin 2w_{0}^{2\vartheta}(\mathbb{p})_{\Lambda}$.

Hence (2) must be hold. Conversely, suppose that (2) holds and that $(u, w) \in$

Conversely, suppose that (2) holds and that $(u, v) \in 2w^{2\theta}_{\infty}(\mathcal{F}, \mathbb{p})_{\Delta}$. Then, for each \mathcal{V}, \mathcal{S}

$$\hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{\left|\Delta u_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \lor \mathcal{F}_2\left(\frac{\left|\Delta v_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \le \mathcal{K}$$

$$< \infty \tag{4}$$

Suppose that $(u, v) \notin 2w_0^{2\theta}(\mathbb{P})_{\Delta}$. Then, for some number $0 < \varepsilon < 1$, there is an umbern₀, m₀ such that , for a subinterval \mathbb{I}_{r_1, s_1} of the set of interval $\mathbb{I}_{r, s}$, $\varepsilon < \frac{|\Delta u_{n,m}, \Delta v_{n,m}|}{\varrho}$ for $n_0 \le n$, $m_0 \le m$. From properties of the double Orlicz function, we can write

$$\left[\mathcal{F}_{1}(\varepsilon)^{\mathbb{P}_{n,m}} \vee \mathcal{F}_{2}(\varepsilon)^{\mathbb{P}_{n,m}}\right] \leq \mathcal{F}_{1}\left(\frac{\left|\Delta u_{n,m}\right|}{\varrho}\right)^{\mathbb{P}_{n,m}} \vee \mathcal{F}_{2}\left(\frac{\left|\Delta v_{n,m}\right|}{\varrho}\right)^{\mathbb{P}_{n,n}}$$

Which contradicts (2), by using (4). Hence we get $2w^{2\theta}(\mathcal{F}_{m})$, (5)

Which contradicts (2), by using (4). Hence we get $2w_{\infty}^{20}(\mathcal{F}, \mathbb{p})_{\Delta} \subset 2w_{0}^{20}(\mathbb{p})_{\Delta}$. This completes the proof.

Definition 2.5:[7]

The Orlicz function \mathcal{F} is said to satisfy the Δ_2 -condition for all values of x, y, if there exists a constant L > 0 such that[15 and 16] $\mathcal{F}(2x, 2y) \leq L\mathcal{F}(x, y), x \geq 0, y \geq 0$

Theorem 2.6

Let $0 < \hbar = \inf \mathbb{P}_{n,m} \leq \mathbb{P}_{n,m} \leq \sup \mathbb{P}_{n,m} = \mathcal{H} < \infty$. For a double Orlicz function $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ which satisfies Δ_2 -condition, we have $2w_0^{2\vartheta}(\mathbb{P})_{\Delta} \subset 2w_0^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Delta}$, $2w^{2\vartheta}(\mathbb{P})_{\Delta} \subset 2w^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Delta}$ and $2w_{\omega}^{2\vartheta}(\mathbb{P})_{\Delta} \subset 2w_{\omega}^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Delta}$.

Proof

Let $(u, v) \in 2w^{2\vartheta}(\mathbb{p})_{\Delta}$, then we have

$$\hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right]$$

$$\to 0 \text{ as } r, s \to \infty$$

for some t.

Let $0 < \varepsilon$ and choose δ with $1 > \delta > 0$ such that $[\mathcal{F}_1(t) \lor \mathcal{F}2t < \varepsilon \text{ for } 0 \le t \le \delta$. We can write

For the first summation above, we immediately write $\left[\left(\left| A_{i} \right| \right)^{\mathbb{P}_{n,m}} \right]$

$$\begin{split} \hbar_{\tau,s}^{-1} & \sum_{\mathbf{n} \in \mathbb{I}_{\tau,s}} \sum_{\substack{\mathbf{n} \in \mathbb{I}_{\tau,s} \\ |\Delta u_{\mathbf{n},\mathbf{m}} - t|/\varrho \leq \delta, }} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathsf{T}} \\ & \nabla \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathsf{T}_{\mathbf{n},\mathbf{m}}} \right] < \end{split}$$

 $< \max(\varepsilon, \varepsilon^{\hbar})$

by using continuity of $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$. For the second summation, we will make followingprocedure. We have

$$\left| \left(\frac{|\Delta u_{n,m} - t|}{\varrho} \right) \vee \left(\frac{|\Delta v_{n,m} - t|}{\varrho} \right) \right| < 1 + \left| \left(\frac{|\Delta u_{n,m} - t|}{\varrho} \right) \vee \left(\frac{|\Delta v_{n,m} - t|}{\varrho} \right) \right| / \delta.$$

Since $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ is non-decreasing and convex, it follows that

In this way, we write

$$\begin{split} &\hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{\left| \Delta u_{\mathbf{n},\mathbf{m}} - t \right| }{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2 \left(\frac{\left| \Delta v_{\mathbf{n},\mathbf{m}} - t \right| }{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \\ &\leq \max(\epsilon, \epsilon^{\hbar}) + \\ &+ \max\{1, \left[L\left(\mathcal{F}_1(2) \vee \mathcal{F}_2(2)\right) / \delta \right]^{\mathcal{H}} \} h_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{\left| \Delta u_{\mathbf{n},\mathbf{m}} - t \right| }{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \\ &\vee \mathcal{F}_2 \left(\frac{\left| \Delta v_{\mathbf{n},\mathbf{m}} - t \right| }{\varrho} \right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \end{split}$$

Taking the limit as $\varepsilon \to 0$ and $r, s \to \infty$, it follows that $(u, v) \in 2w2\vartheta(\mathcal{F}, \mathbb{p})\Delta[15$

Following similar arguments we can prove that $2w_0^{2\theta}(\mathbb{p})_{\Delta} \subset 2w_0^{2\theta}(\mathcal{F},\mathbb{p})_{\Delta}$ and $2w_{\infty}^{2\theta}(\mathbb{p})_{\Delta} \subset 2w_{\infty}^{2\theta}(\mathcal{F},\mathbb{p})_{\Delta}$

After step of this section, different inclusion relations among these double sequencespaces are going to be studied. Now we have

Theorem 2.7

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function. Then the following statements are equivalent.

- i. $2w^{2\vartheta}_{\infty}(\mathbb{p})_{\Delta} \subset 2w^{2\vartheta}_{\infty}(\mathcal{F},\mathbb{p})_{\Delta}$
- ii. $2w_0^{2\vartheta}(\mathbb{p})_{\Delta} \subset 2w_{\infty}^{2\vartheta}(\mathcal{F},\mathbb{p})_{\Delta}$
- iii. $\sup_{r,s} \hbar_{r,s}^{-1} \sum_{n \in \mathbb{I}_{r,s}} \sum_{m \in \mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}_{n,m}} \vee \mathcal{F}_2(t)^{\mathbb{P}_{n,m}}] < \infty \text{ for all } t > 0.$

Proof

i) \Rightarrow ii): Let (i) holds. To verify (ii), it is enough to prove2 $w_0^{2\vartheta}(\mathbb{P})_{\Delta} \subset 2w_{\infty}^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Delta}$.

Let $(u, v) \in 2w_0^{2\theta}(\mathbb{p})_{\Delta}$. Then, there exist $\geq r_0, s \geq s_0$, for $0 < \varepsilon$, such that

$$\begin{split} &\hbar_{r,s}^{-1}\sum_{\mathbf{n}\in\mathbb{I}_{r,s}}\sum_{\mathbf{m}\in\mathbb{I}_{r,s}}\left|\mathcal{F}_{1}\left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}}|}{\varrho}\right)^{\mathbb{P}^{\mathbf{n},\mathbf{m}}}\vee\mathcal{F}_{2}\left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}}|}{\varrho}\right)^{\mathbb{P}^{\mathbf{n},\mathbf{m}}}\right|<\varepsilon\\ &\text{Hence there exists}\mathcal{K}>0 \text{ such that}\\ &\sup_{r,s}\hbar_{r,s}^{-1}\sum_{\mathbf{n}\in\mathbb{I}_{r,s}}\sum_{\mathbf{m}\in\mathbb{I}_{r,s}}\left[\mathcal{F}_{1}\left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}}|}{\varrho}\right)^{\mathbb{P}^{\mathbf{n},\mathbf{m}}}\vee\mathcal{F}_{2}\left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}}|}{\varrho}\right)^{\mathbb{P}^{\mathbf{n},\mathbf{m}}}\right]<\kappa\end{split}$$

So, we get $(u, v) \in 2W^{2\vartheta}_{\infty}(\mathbb{p})_{\Lambda}$

ii) \Rightarrow iii): Let (ii) holds. Suppose that (iii) does not holds. Then for some t > 0

$$\sup_{r,s} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}}] = \infty$$

And therefore we can find a subinterval $\mathbb{I}_{(r,s)(m)}$ of the set of interval $I_{r,s}$ such that

$$\hbar_{(r,s)(m)}^{-1} \sum_{\mathbf{n}\in\mathbb{I}_{(r,s)(m)}} \sum_{\substack{\mathbf{m}\in\mathbb{I}_{(r,s)(m)}\\ > m, m = 1, 2, 3, \dots}} \left[\mathcal{F}_1\left(\frac{1}{m}\right)^{\mathbb{P}_{n,m}} \vee \mathcal{F}_2\left(\frac{1}{m}\right)^{\mathbb{P}_{n,m}} \right]$$
(5)

Let us define $(u, v) = (u_{n.m}, v_{n.m})$ as following

$$(\Delta u_{n,m}, \Delta v_{n,m}) = \begin{cases} (\frac{\varrho}{m}, \frac{\varrho}{m}), & n, m \in \mathbb{I}_{(r,s)(m)} \\ (0,0), & n, m \notin \mathbb{I}_{(r,s)(m)} \end{cases}$$

Then $(u, v) \in 2w_0^{2\vartheta}(\mathbb{p})_{\Delta}$ but by $(5), (u, v) \notin 2w_{\infty}^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$ which contradicts (ii).

Hence (iii) must holds.

iii) \Rightarrow i): (iii) Let hold and $(u, v) \in 2w^{2\vartheta}_{\infty}(\mathbb{p})_{\Delta}$. Suppose that $(u, v) \notin 2w^{2\vartheta}_{\infty}(\mathcal{F}, \mathbb{p})_{\Delta}$. Then for $(u, v) \in 2W^{2\vartheta}_{\infty}(\mathbb{p})_{\Delta}$

$$\sup_{r,s} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{\left|\Delta u_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2\left(\frac{\left|\Delta v_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right]$$
$$= \infty \tag{6}$$

Let $t = \frac{|(\Delta u_{n,m}, \Delta v_{n,m})|}{|(\Delta u_{n,m}, \Delta v_{n,m})|}$ for each n, m, then by (6)

$$\sup_{r,s} h_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}\mathbf{n},\mathbf{m}} \vee \mathcal{F}_2(t)^{\mathbb{P}\mathbf{n},\mathbf{m}}] = \infty$$

Which contradicts (iii). Hence (i) must holds.

Theorem 2.8

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$ be a double Orlicz function. Then the following statementsare equivalent.

 $2w_0^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta} \subset 2w_0^{2\vartheta}(\mathbb{p})_{\Delta}$ $2w_0^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta} \subset 2w_{\infty}^{2\vartheta}(\mathbb{p})_{\Delta}$ i)

ii)

 $\inf_{\mathcal{T},s} h_{\mathcal{T},s}^{-1} \sum_{n \in \mathbb{I}_{r,s}} \sum_{m \in \mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}^{n,m}} \vee \mathcal{F}_2(t)^{\mathbb{P}^{n,m}}] <$ iii) ∞ for all t > 0.

Proof

i) \Rightarrow ii): It is obvious.

ii) \Rightarrow iii): Let (ii) holds. Suppose that (iii) does not holds. Then $\inf_{r,s} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} [\mathcal{F}_1(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2(t)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}}] = 0 \text{ for some } t > 0,$

And we can find a subinterval $\mathbb{I}_{(r,s)(m)}$ of the set of interval $\mathbb{I}_{r,s}$ such that

$$\hbar_{(r,s)(m)}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{(r,s)(m)}} \sum_{\mathbf{m} \in \mathbb{I}_{(r,s)(m)}} [\mathcal{F}_{1}(m)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_{2}(m)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}}] < \frac{1}{m}, m$$

$$= 1, 2, 3, \dots$$
(7)

Let us define $(u, v) = (u_{n,m}, v_{n,m})$ as following

 $(\Delta u_{n,m}, \Delta v_{n,m}) = \begin{cases} (\varrho m, \varrho m), & n, m \in \mathbb{I}_{(r,s)(m)} \\ (0,0) & , & n, m \notin \mathbb{I}_{(r,s)(m)} \end{cases}$ Thus, by (7) $(u, v) \in 2w_0^{2\theta}(\mathcal{F}, \mathbb{P})_{\Delta}$ but $(u, v) \notin 2w_{\infty}^{2\theta}(\mathbb{P})_{\Delta}$ which

contradicts (ii). Hence(iii) must holds.

iii) \Rightarrow i): Let (iii) holds. Suppose that $(u, v) \in 2w_{\infty}^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Lambda}$. Therefore,

$$\hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{\left|\Delta u_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \vee \mathcal{F}_2\left(\frac{\left|\Delta v_{\mathbf{n},\mathbf{m}}\right|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right]$$
$$\to 0$$
(8)

As $r, s \to \infty$. Again, suppose that $(u, v) \notin 2w_0^{2\vartheta}(\mathbb{p})_{\Delta}$ for some number $\varepsilon > 0$ and a subinterval $\mathbb{I}_{(r,s)(m)}$ of the set of interval $\mathbb{I}_{\tau,\delta}$, we have $\left(\frac{|(\Delta u_{n,m}-t,\Delta v_{n,m}-t)|}{2}\right) \geq \varepsilon$ for all n, m. ρ

Then, from properties of the double Orlicz function, we can write $(|\Delta u_n m|)^{\mathbb{P}n,m}$ $(|\Delta v_n |)^{\mathbb{P}^{n,m}}$

$$\begin{bmatrix} \mathcal{F}_1\left(\frac{|\mathcal{I} \mathcal{U}_{n,m}|}{\varrho}\right) & \forall \mathcal{F}_2\left(\frac{|\mathcal{I} \mathcal{U}_{n,m}|}{\varrho}\right) \end{bmatrix} \ge [\mathcal{F}_1(\varepsilon)^{\mathbb{P}_{n,m}} \lor \mathcal{F}_2(\varepsilon)^{\mathbb{P}_{n,m}}]$$

Consequently, by (8) we have
$$\lim_{\varepsilon \to \infty} \mathcal{h}_{r,\delta}^{-1} \sum_{l} \sum_{i} [\mathcal{F}_1(\varepsilon)^{\mathbb{P}_{n,m}} \lor \mathcal{F}_2(\varepsilon)^{\mathbb{P}_{n,m}}] = 0$$

 $n \in \mathbb{I}_{r,s}$ $m \in \mathbb{I}_{r,s}$ Which contradicts (iii). Hence (i) must holds.

Finally, in this section, we consider that $\mathbb{P}_{n,m}$ and $\mathbb{Q}_{n,m}$ are any bounded double sequences of strictly positive real numbers. We are able to prove $2w^{2\vartheta}(\mathcal{F}, \mathfrak{q})_{\Delta} \subseteq 2w^{2\vartheta}(\mathcal{F}, \mathfrak{p})_{\Delta}$ only under additional conditions.

Theorem 2.9

i) If $0 \le \inf \mathbb{P}_{n,m} \le \mathbb{P}_{n,m} \le 1$ for all k, then $2w^{2\vartheta}(\mathcal{F})_{\Delta} \subseteq$ $2\mathbb{W}^{2\vartheta}(\mathcal{F},\mathbb{P})_{\Delta}$ ii) $0 \leq \mathbb{P}_{n,m} \leq \sup \mathbb{P}_{n,m} = \mathcal{H} < \infty$, then $2\mathbb{W}^{2\vartheta}(\mathcal{F}, \mathbb{P})_{\Delta} \subseteq$ $2\mathbb{W}^{2\vartheta}(\mathcal{F})_{\Delta}$

Proof

i) Let $(u, v) \in 2w^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$ since $0 \le \inf \mathbb{p}_{n,m} \le \mathbb{p}_{n,m} \le 1$ we get

$$\begin{split} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho}\right) \lor \mathcal{F}_2\left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho}\right) \right] \leq \\ & \leq \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1\left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \right] \\ & \lor \mathcal{F}_2\left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho}\right)^{\mathbb{P}_{\mathbf{n},\mathbf{m}}} \end{bmatrix}$$

And hence $(u, v) \in 2W^{2v}(\mathcal{F})_{\Delta}$.

Let $0 \leq \mathbb{p}_{n,m} \leq \sup \mathbb{p}_{n,m} = \mathcal{H} < \infty$, and $(u, v) \in 2 \mathbb{W}^{2\vartheta}(\mathbb{p})_{\Delta}$. Then for each $0 < \varepsilon < 1$ there exists a positive integer $\mathscr{V}_0, \mathscr{S}_0$ such that

$$\hbar_{\tau,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{\tau,s}} \sum_{\mathbf{m} \in \mathbb{I}_{\tau,s}} \left[\mathcal{F}_1\left(\frac{\left|\Delta u_{\mathbf{n},\mathbf{m}} - t\right|}{\varrho}\right) \lor \mathcal{F}_2\left(\frac{\left|\Delta v_{\mathbf{n},\mathbf{m}} - t\right|}{\varrho}\right) \right] \leq \varepsilon$$

for all $r \geq r_0, s \geq s_0$. This implies that

$$\begin{split} \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right)^{\mathbb{P}\mathbf{n},\mathbf{m}} \right] \\ &\leq \hbar_{r,s}^{-1} \sum_{\mathbf{n} \in \mathbb{I}_{r,s}} \sum_{\mathbf{m} \in \mathbb{I}_{r,s}} \left[\mathcal{F}_1 \left(\frac{|\Delta u_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right) \right] \\ &\vee \mathcal{F}_2 \left(\frac{|\Delta v_{\mathbf{n},\mathbf{m}} - t|}{\varrho} \right) \end{split}$$

Therefore $(u, v) \in 2W^{2\vartheta}(\mathcal{F}, \mathbb{p})_{\Delta}$.

Using the same technique as in Theorem 2 in [14], it is easy to prove thefollowing theorem.

Theorem 2.10

Let $0 < p_{n,m} \le q_{n,m}$ for all n, m and let $(q_{n,m}/p_{n,m})$ be bounded.Then

 $2\mathbb{W}^{2\vartheta}(\mathcal{F},\mathbb{q})_{\Delta} \subseteq 2\mathbb{W}^{2\vartheta}(\mathcal{F},\mathbb{p})_{\Delta}$

References

- [1] Altay B &Basar F, "Some new spaces of double sequences", J. Math. Anal.Appl., Vol.309, (2005), pp.70-90.
- [2] Alotaibi A, Mursaleen M & Raj K, "Double Sequence Spaces by Means of Orlicz Functions", Abstract and Applied Analysis, (2014).

- [3] BasarirM & Sonalcan O, "On Some Double Sequence Spaces", Indian Academy of Mathematics Journal, Vol.21, No.2, (1999), pp. 193–200.
- [4] Battor AH & Hasan ZH, "Statistical Convergent of Generalized Difference Double Sequence Spaces which Defined by Orlicz Functions", M.Ss Thesis, Univ. of Kufa, (2017).
- [5] Freedman AR, Sember JJ & Raphael M, "Some Cesaro-type summability spaces", Proc. London Math. Soc., Vol.37, No.3, (1978), pp.508-520.
- [6] Kizmaz H, "On certain sequence spaces", Canad.Math.Bull.,Vol.24, No.2,(1981),pp.169-176.
- [7] Krasnoselskii MA &Rutitsky YB, "Convex function and Orlicz spaces", Groningen, The Netherlands, (1961).
- [8] Lindenstrauss J & Tzafriri L, "On Orlicz sequence spaces", Israel J. Math., Vol.10, No.3,(1971),pp.379-390.
- [9] Parashar SD & Choudhary B, "Sequence spaces defined by Orlicz functions", Indian Journal of Pure and Applied Mathematics, Vol.25, No.14,(1994), pp.419-428.
- [10] Tripathy BC & MahantaS, "On a class of generalized lacunary difference sequence spaces defined by Orlicz functions", Acta Math. Appl. Sinica (English Ser.), Vol.20, (2004), pp.231–238.
- [11] Tripathy BC &Sarma B, "On some classes of difference double sequence spaces", Fasciculi Mathematici, Vol.41, (2009), pp.135-142.
- [12] Tripathy BC &Sarma B, "Some difference double sequence spaces defined by Orliczfunction", Kyungpook Mathematical Journal, Vol.58, (2008).
- [13] Tripathy BC & Sarma B, "Vector Valued Double Sequence Spaces Defined by OrliczFunction", Math. Slovaca, Vol.59,No.6, (2009), pp.767-776.
- [14] Öztürk E &Bilgin T, "Strongly summable sequence spaces defined by a modulus", Indian J. Pure Appl. Math., Vol.25, No.6, (1994), pp.621-625.
- [15] Yesembayeva Z, "Determination of the pedagogical conditions for forming the readiness of future primary school teachers", Opción, Año, Vol.33, (2018), pp.475-499
- [16] Mussabekova G, Chakanova S, Boranbayeva A, Utebayeva A, Kazybaeva K & Alshynbaev K, "Structural conceptual model of forming readiness for innovative activity of future teachers in general education school", Opción, Vol.34, No.85,(2018).