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Abstract 
 

Functionally graded material is a new type of composite material and it is used in several smart applications. The static deflec-tion of the 

FG beam under mechanical and/or thermal load is a complex phenomenon because of the complexity of material properties. The power 

law model is used to described the material properties of FG beam. The analytical approach depending on the compound beam theory is 

derived in order to find the equivalent cross section area of FG beam and then calculate the static deflection for new beam. This approach 

can be achieved analytically when the power law index equals 1 and achieved by numerical integrals (Trapezoidal and Simpson Method) 

for any value of power law index. The numerical approach ( Finite Element Method using ANSYS software) used in this work depends 

on the laminate theory , compound beam theory in order to build three different models. The validation of these methods were done by 

comparing the results with the results of Alexraj et. al. [9]. The comparison among the five methods were done and analysis to choose the 

suitable method. 

 
Keywords: FG Beam; Static Deflection; Finite Element Method; ANSYS Software; Trapezoidal Method; Simpson Method; Power Law Model; Cantilever 

Beam; Simply Supported Beam. 

 

1. Introduction 

Composite material is a material made by combining two or more 

constituent materials with significantly different mechanical , 

physical or chemical properties in order to produce a material with 

characteristics different from the individual components. An ex-

cellent combination of properties in additional to light weight will 

be produced when it compared with individual parent materials. 

With the increasing demands in modern technologies of the con-

ventional homogeneous composite material, the new advanced 

materials with special mechanical characteristics should be fabri-

cated. Functionally graded materials (FGM) are one of these ad-

vanced materials which have unique properties such as thermal 

resistance, high toughness, and low density. Functionally graded 

materials can be defined as the material which the volume frac-

tions of two or more individual components material are varied 

continuously as a function of position along certain dimensions of 

the structure to achieve a required function. The smooth variations 

of their mechanical properties along preferential directions lead to 

avoid the main drawbacks of the classical composites such as the 

stress discontinuities at the layer-interfaces and the low resistance 

to temperature shocks. 

In 1984, a group of materials scientists in Japan introduced the 

concept of functionally graded materials (FGMs) by preparing 

thermal barrier materials. They investigated different models to 

produce a structure made of functionally graded materials resisting 

both of mechanical and thermal loads. FUH-Gwo YUAN et al [1] 

derived a new finite element model that can be used for long and 

short beams in 1989. There laminated finite element model in-

cluded separate rotational degrees of freedom for each lamina . 

They compared there for both deflections and stresses results with 

other solutions and they get good agreement. Reddy et al [2] 

solved the governing equations for the bending of cross-ply lami-

nated composite beams. They used the classical, first-order, sec-

ond-order and third-order theories in their analysis. They devel-

oped exact solutions for symmetric and anti-symmetric cross-ply 

beams with arbitrary boundary conditions under arbitrary load-

ings. They presented numerical results and showed the deflection 

of the beam, the number of layers, the effect of shear deformation 

and the orthotropicity ratio on the static response of composite 

beams. In 2003, a new beam element Chakraborty et al [3] was 

developed to study the thermo-elastic behavior of functionally 

graded beam structures. They depend on the first-order shear de-

formation theory and it accounts in order to vary elastic and ther-

mal properties along its thickness. They examined different stress 

variations using both power-law and exponential variations of 

material property distribution. Their static models was showed 

that it is an effective way to smoothen stress jumps in bi-material 

beams. In 2009 Mseut Simsek [4] investigated the static analysis 

of a simply-supported functionally graded beam under a uniformly 

distributed load . He used Ritz method within the framework of 

Timoshenko and the higher order shear deformation beam theories 

in his work. He studied the displacements and the stresses of the 

beam for various material distributions. He found that in order to 

minimized stresses and displacements in a beam-type structure, 

the material properties of the FG beam can be designed by select-

ing a suitable power-law exponent. In 2011 Almeida [5] used a 

Total Lagrangian formulation for presenting a geometric nonlinear 

analysis formulation for functionally graded beams. He studied the 
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influence of material gradation on the response. He compared 

between the behavior of functionally graded beam with homoge-

neous material beam. 

A new finite element model was developed by El Shafei [6] in 

order to analyze the response of isotropic and orthotropic beams 

with different boundary conditions. He represented the field dis-

placements equations of the beams by a first order shear defor-

mation theory and the Timoshenko beam theory. He used Hamil-

ton’s principle in order to derive equations of motion of the 

beams. He improved the obtained results by applying shear correc-

tion factor. He compared the results of the proposed model with 

the available results of other investigators and he get a good 

agreement. His proposed model decreased the error due to un-

accurately modeling of the curvature present in the actual material 

under bending (i.e. shear Locking).  

For an elasto-plastic FGM, A.R. Daneshmehr [7] studied simply 

supported Euler-Bernoulli beam using variation method. He load-

ed the rectangular section beam by uniformly distributed trans-

verse loading. He used a power law model to describe material 

properties. He calculated analytically the required moment to have 

fully plastic beam and stress response of the beam. Also, a finite 

element model is used by Mehta [8] in order to study both static 

and dynamic behavior of functionally graded material beams. 

Mehta [8] used a power law in their study. Alexraj et al [9] used 

Finite Element Method (FEM) by ANSYS software in order to 

study a static analysis of Functionally Graded beam under uni-

formly mechanical and thermal load. They assumed power law 

model to represent the temperature dependent material properties. 

They used Timoshenko beam theory to calculate deflection and 

stress of cantilever and simply supported beam. Several methods 

and theories were used to discuss and analysis the static and/or 

dynamic response of beam made by functionally graded materials 

(FGMs) [10-20]. 

In this work, analytical solution, using the equivalent cross section 

area of the combined beam , was found in order to calculate the 

static deflection of cantilever and simply supported functionally 

graded beam under concentrated and distribution load. The analyt-

ical solution was compared with three finite element models. 

2. Problem description 

Consider a FG beam with rectangular cross-section W(width) * h 

(height) and length L as shown in Fig 1. This FG beam is consti-

tuted by a mixture of two constituents, typically ceramic and metal. 

The top surface of the beam is a pure ceramic (it is Al2O3 in this 

work) while the metal (it is Nickel in this work) located at the 

bottom surface of the beam. The following assumptions were con-

sidered in this work: 

a) Linear elastic behavior. 

b) Small deformations of materials. 

c) The gravity is not taken into account. 

 

 
Fig. 1: Geometry of Functionally Graded Beam. 

3. Effective material properties of FG beam 

In the composite materials, the rule of mixture is the main rule 

used to calculate the mechanical and physical properties of com-

posite materials that constituted two or more separated materials. 

In other words, there is discontinuity in mechanical and physical 

properties. In FGM, the continuity in mechanical physical proper-

ties is the main purpose of this materials. The mechanical and 

thermal properties of FG are described by three mathematical 

models as follow [21]: 

a) Power Law Model. 

b) Sigmoid Law Model. 

c) Exponential Law Model. 

In this work, the Power Law Model was considered and can be 

write as [21-22]: 

 

E(y) = (Ec − Em) [
y

h
+

1

2
]
K
+ Em                                                (1) 

 

Where: 

 

Ec= Modulus of Elasticity of ceramic. 

 

Em= Modulus of Elasticity of metal. 

 

h= thickness of beam 

 

K= Power Law Index. 

4. Analytical model 

According to the theory of compound beam [23-24], the analytical 

solution can be derived by the following procedure: 

a) The height of beam (h) is divided into (N) layers as shown 

in Fig. 2.  

 

 
Fig. 2: The Model of Ten Layered FGM Beam. 

 

(1) Rewrite equation (1): 

 
E(y)

Em
= (

Ec

Em
− 1) [

y

h
+

1

2
]
K
+                                                          (2) 

 

b) According to the theory of compound beam the width of 

each layer can be calculated as follow: 

 

(Am)eqEm = (Alayer)realElayer  

 

But 𝐴∗ = 𝑊∗(∆𝑦) ; *=m, layer Wlayer= W=Wm 

 

(𝑊𝑚)𝑒𝑞 = (𝑊𝑙𝑎𝑦𝑒𝑟)𝑟𝑒𝑎𝑙
𝐸𝑙𝑎𝑦𝑒𝑟

𝐸𝑚
= 𝑊

𝐸(𝑦)

𝐸𝑚
                                      (3) 

 

Substituting equation (2) into equation (3): 

 

𝑊(𝑦) = (𝑊𝑚)𝑒𝑞 = 𝑊 [(
𝐸𝑐

𝐸𝑚
− 1) [

𝑦

ℎ
+

1

2
]
𝐾
+ 1]                         (4) 

 

c) Calculate the area of cross section using equation (5): 

 

𝐴𝑟𝑒𝑎 = ∫ 𝑊(𝑦)𝑑𝑦
ℎ

2

−
ℎ

2

= 𝑊ℎ [
1

(𝐾+1)
(
𝐸𝑐

𝐸𝑚
− 1) + 1]                      (5) 

 

d) Calculate the centroid of cross section area using equation 

(6): 
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�̅�𝐴 = ∫ �̅�𝑑𝐴 = ∫ 𝑦𝑊 [(
𝐸𝑐

𝐸𝑚
− 1) [

𝑦

ℎ
+

1

2
]
𝐾
+ 1]𝑑𝑦

ℎ

2

−
ℎ

2

  

 

Where:�̅� = 𝑦 and 𝐴 = 𝑊 [(
𝐸𝑐

𝐸𝑚
− 1) [

𝑦

ℎ
+

1

2
]
𝐾
+ 1]  

 

�̅� =
[𝑊∫ 𝑦[(

𝐸𝑐
𝐸𝑚

−1)[
𝑦

ℎ
+
1

2
]
𝐾
+1]𝑑𝑦

ℎ
2

−
ℎ
2

]

𝑊[(
𝐸𝑐
𝐸𝑚

−1)[
𝑦

ℎ
+
1

2
]
𝐾
+1]

                                                     (6) 

 

If K=1  

 

(�̅�)𝐾=1 =
(
𝐸𝑐
𝐸𝑚

−1)ℎ

6[(
𝐸𝑐
𝐸𝑚

−1)+2]
                                                                   (7) 

 

e) Calculate the second moment of area using equation (8): 

 

𝐼 = ∫ 𝑦2𝑑𝐴 = ∫ 𝑦2𝑊 [(
𝐸𝑐

𝐸𝑚
− 1) [

𝑦

ℎ
+

1

2
]
𝐾
+ 1] 𝑑𝑦

ℎ/2

−ℎ/2
               (8) 

 

If K=1 then: 

 

𝐼 =
𝑊ℎ3

24
[(

𝐸𝑐

𝐸𝑚
− 1) + 2]                                                               (9) 

 

Now, the maximum deflection of cantilever and simply supported 

beam under concentrated load (F (N)) can be calculated by: 

 

𝛿 =
𝐹𝐿3

3𝐼𝐸
                                                                                        (10) 

 

𝛿 =
𝐹𝐿3

48𝐼𝐸
                                                                                       (11) 

 

Now, the maximum deflection of cantilever and simply supported 

beam under distribution load (P (N/m)) can be calculated by: 

 

𝛿 =
𝑃𝐿4

8𝐼𝐸
                                                                                        (12) 

 

𝛿 =
5𝑃𝐿3

384𝐼𝐸
                                                                                    (13) 

 

If (K=1), the maximum deflection can be calculated directly using 

equations (5, 7, 9, 10, 11, 12 and 13). But if (k≠1), The numerical 

integral must be used in equations (6 and 8). In this work, Trape-

zoidal and Simpson's integral are used.  

5. Finite element models 

In order to simulate the FG beam by ANSYS software, three mod-

els are suggested and these models are: 

a) Equivalent Cross Section Area:  

In this model, the cross section area of the beam changes due to 

the value of power law index (K) .From equation (4), the cross 

section of the beam can be drawn. Due to this change in cross 

section area, the material properties of the beam are the properties 

of metal only. Three dimensional beam is drawn in ANSYS soft-

ware and element (SOILID187) is used in this model. This model 

is called " ANSYS – Case 1" (see Fig. 3 – a). 

b) Equivalent Properties of Layer :  

In this model, the height of beam is divided into (N) layer and the 

properties of each layer can be calculated using equation (1). Two 

dimensional beam with (N) layers is drawn in ANSYS software 

and element (SHELL181) is used in this model. This model is 

called " ANSYS – Case 2"(see Fig. 3 – b). Also, three dimensional 

beam with (N) layers is drawn in ANSYS software and element 

(SOILID187) is used in this model. This model is called " ANSYS 

– Case 3"(see Fig. 3 – c).  

The convergent criteria of numerical solution is considered for all 

the above ANSYS models. 

 

 

 

 
(a) ANSYS - Case 1 

 

 

 
(b) ANSYS - Case 2 

 

 

 
(c)ANSYS - Case 3 

  

Fig. 3: The Three Ansys Models Used I This Work. 

6. Validation 

In order to check the models described in this work, the compari-

son with the static deflection results of Alexraj et. al. [9] were 

done. with Dimensions and material properties of the FG beam 

and applied load used by Alexraj et. al. [9] are summarized in 

Table (1): 

 
Table 1: Dimension, Materiales Properties and Applied Load Used Be 

Alexraih Et.Al. [9] 

 
 

The comparison between the static deflection results of Alexraj et. 

al. [9] and the results of the calculation methods used in this work 

are made as shown in Table 2. When the number of layers in-

creases, the statics deflection converges to exact value. when 
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K=1,the exact value, that calculated analytically, is (1.61e-6) and 

equals to the value of Trapezoidal and Simpson method when the 

number of layers is (50) layer. Generally, a very good agreement 

can be seen between Alexraj ET. al. [9] and Trapezoidal and 

Simpson method at any value of power law index (K). 

 
Table.2: Comparession between the Result Calculating by the Method of 

This Work and Ref [9] 

 

7. Results and discussion 

The material properties , dimensions and applied loads used in this 

work are summarized in Table ( 3). 

 
Table 3: Dimenision, Materials Propperties and Applied Load Used in 

This Work 

 
 

The results of this work can be divided into three parts as follow: 

1) Material Properties of FG Beam: 

The material properties (especially modulus of elasticity) depend 

generally on two factors ( material properties of parents (i.e. metal 

and ceramic) and power law index (K)). The difference between 

the material properties of parents is the range of the material prop-

erties of each point in the FG beam. While the power law index (K) 

is responsible on the variation in each point. Figure 4 shows the 

change in volume fraction of each point in the height of FG beam 

depending on the value of Power law index (K). The effect of 

material properties of parents is shown in Figure 5. The change in 

material properties , when the power law index equals (1), is linear. 

While the change in material properties , when the power law 

index is less than (1), is nonlinear and depending on the value of 

power law index. The same behavior can be seen but with differ-

ent nonlinearity curve when the power law index is larger than (1) 

(see Figure 6 and 7). In Figures (8,9 and 10), the difference in 

change rate of material properties due to increase the power law 

index appears sharply when the material properties ratio 

(Ek(y)/Ek=1(y)) is considered. Finally, the effect of power law in-

dex on the material properties appears in Figures (11 and 12) at 

different position of height of FG beam.  

2) Equivalent Cross Section Area: 

The analysis of compound beam described in this work assumed 

that the cross section area of the beam changes due to the variation 

in the material properties along the height of the FG beam. In 

order to explain the effect of power law index on the shape of 

cross section area , the cross section area for different value of 

power law index is drawn in Figure 13 when the number of layers 

is 10. When the power law index equals 1, the linear variation in 

width of FG beam appears. While different nonlinear variations 

appear when power law index less and larger than 1.  

The number of dividing layers is an important factor in order to 

converge the calculated parameter to the exact value. The effect of 

layer 's number is not appear in the shape of cross section area 

when the power law index equals 1 because of the linear variation 

in material properties (see Figure 14). While the effect of layer 's 

number appears in the shape of cross section area when the power 

law index less or larger than 1(see Figures 15 and 16). 

According to the above factors, the maximum static deflection in 

this work are calculated when the power law index equals or less 

than 1only.  

3) Maximum Static Deflection: 

As maintained in Table 3, two types of support are used and for 

each type of support, two kinds of applied load are used. There-

fore, this section is divided into two parts according to the support 

type. 

a) Cantilever FG Beam:  

Figure 17 shows the comparison among the maximum deflection 

of cantilever FG beam calculating by different methods when the 

applied load is concentrated Force (100 N) for the power law In-

dex value (K) between 0.1 and 1. While the same comparison , 

when the applied load is distribution load, is shown in Figure 18. 

The following points can be noted from these figures: 

1) In all methods except ANSYS – Case 1, when the number 

of layers increases, the maximum static deflection converg-

es to the exact value in the two applied loads.  

2) In ANSYS – Case 1, the number of layers is not effect on 

the maximum deflection at any value of power law index. 

But the value of maximum deflection converges to exact so-

lution when the power law index increases to 1. 

b) Simply supported FG Beam: 

Figures 19 and 20 show the comparison among the maximum 

deflection results calculated by the five methods used in this work 

when the FG beam supports as cantilever and simply supported 

beam respectively. Generally, the results of method ANSYS – 

Case 1 is constant when the number of layers increase and its re-

sults converge to exact value when the power law index converges 

to 1 for the cantilever FG beam. But for simply supported beam, 

the results of the five method are constant when the number of 

layers and power law index increase. The results of method AN-

SYS – Case 1 is divergent when its results compare to the results 

of the other four methods. 

8. Conclusions 

From the results, the following points can concluded: 

1) The analytical solution (i.e. Trapezoidal and Simpson meth-

od) and he numerical approach (ANSYS – Case 2 and Case 

3) are a very good approach to calculate the static deflection 

of cantilever and simply supported FG beam under concen-

trated and distribution load. 

2)  The numerical approach (ANSYS – Case 1) fails in calcu-

lation the static deflection of cantilever and simply support-

ed FG beam under concentrated and distribution load espe-

cially when the power law index smaller than 1. 

For the next work, the normal stress and shear stress will calculat-

ed using the same methods described in this work. Also, the static 

deflection, normal stress and shear stress due to thermal load will 

studied too. 
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Fig. 4: Distribution of Volume Fraction along the Height of Beam for 

Different Power Law Index When the Number of Layers is 10. 

 

 
Fig. 5: Distribution of Modulus of Elasticity (E) Along the Height of 

Beam for Different Power Law Index when the Number of Layers is 10. 

 

 
Fig. 6: Distribution of Modulus of Elasticity (E) along the Height of Beam 

for Power Law Index Is (0.1 – 1) when the Number of Layers is 10. 

 

 
Fig. 7: Distribution of Modulus of Elasticity (E) Along the Height of 
Beam for Power Law Index is (1 – 2) When the Number of Layers is 10. 

 

 
Fig. 8: Distribution of Modulus of Elasticity Ratio (Ek(y)/Ek=1(y)) Along 

the Height of Beam for Different Power Law Index When the Number of 
Layers is 10. 

 

 
Fig. 9: Distribution of Modulus of Elasticity Ratio (Ek(y)/Ek=1(y)) Along 
the Height of Beam for Power Law Index is (0.1 – 1) When the Number of 

Layers is 10. 

 

 
Fig. 10: Distribution of Modulus of Elasticity Ratio (Ek(y)/Ek=1(y)) 
Along the Height of Beam for Power Law Index is (1 – 2) When the Num-

ber of Layers is 10. 

 

 
Fig. 11: Distribution of Modulus of Elasticity Ek(y) Due to Change in 

Power Law Index at Different Depth of Beam When the Number of Layers 

is 10. 
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Fig. 12: Distribution of Modulus of Elasticity Ratio (Ek(y)/Ek=1(y)) Due 

to Change in Power Law Index at Different Depth of Beam When the 
Number of Layers is 10. 

 

 
Fig. 13: Equivalent Cross Section Area when the Number of Layers is 10. 

 

 
Fig. 14: Equivalent Cross Section Area when K=1. 

 

 
Fig. 15: Equivalent Cross Section Area when K=0.5. 

 

 
Fig. 16: Equivalent Cross Section Area when K= [2]. 

 
K=0.1 K=0.2 

  
K=0.3 K=0.4 
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K=0.5 K=0.6 

  

  

K=0.7 K=0.8 

 
 

  

K=0.9 K=1 

  
Fig. 17: Comparison Among the Maximum Deflection of Cantilever Beam 

Calculating by Different Methods Due to Change in Number of Layers 

When the Load is a 100 N concentrated Force and Different Value of 
Power Law Index (K). 

 
K=0.1 K=0.2 

  
  

K=0.3 K=0.4 

  
  

K=0.5 K=0.6 

  
  

K=0.9 K=1 

  
Fig. 18: Comparison Among the Maximum Deflection of Cantilever Beam 
Calculating by Different Methods  Due to Change in Number of Layers 

When the Load is a 100 N/m distributed load and Different Value of Pow-

er Law Index (K). 

 
K=0.1 K=0.2 

  
  

K=0.3 K=0.4 

  
  

K=0.5 K=0.6 

  
  

K=0.7 K=0.8 

  
  

K=0.9 K=1 

  
Fig. 19: Comparison Among the Maximum Deflection of Simply Support-

ed Beam Calculating by Different Methods Due to Change in Number of 
Layers When the Load is a 100 N concentrated Force and Different Value 

of Power Law Index (K). 
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K=0.1 
 

K=0.2 

  

K=0.3 
 

K=0.4 

 

 

K=0.5 
 

K=0.6 

 

 

K=0.7 
 

K=0.8 

 

 

K=0.9 
 

K=1 

Fig. 20: Comparison Among the Maximum Deflection of Simp-

ly Supported Beam Calculating by Different Methods  Due to 

Change in Number of Layers when the Load Is A 100 N/M Dis-

tributed Load and Different Value of Power Law Index (K). 
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