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Abstract 
 

The system of non-linear algebraic equations arising from the application of the central difference approximation to the fully developed 

Brinkman-Forchheimer flow equation is solved using the computer assisted continuation method based on the classical, explicit Runge-

Kutta method of four slopes. The continuation method is found to be very effective in capturing boundary and inertia effects in the 

considered flow through porous media. Further, it succeeds in giving the required solution for large values of Forchheimer number when 

shooting method fails to do so. Heat transport in forced convective flow through the annulus is quantified in terms of the Nusselt number. 

It is found that the effect of increasing the radius of the inner cylinder is to increase the Nusselt number. The results of fully-developed, 

non-linear flow and heat transfer through a rectangular channel and a cylindrical porous tube are obtained as limiting cases of the present 

study. 
Keywords: Brinkman, Forchheimer, Annulus, Heat Transfer, Insert, Computer assisted Numerical Method. 

 

1. Introduction 

The utility of porous media in practical applications is well known 

at the present time to merit more than a not-so-detailed exposition 

(see Nield and Bejan [1], Vafai [2], Rudraiah et al [3]). In the light 

of the above observation we merely reiterate the advocacy of 

umpteen number of eminent researchers to have boundary and 

inertia effects in flow equations of porous media. To cite a few 

recent works, we draw attention to the work of Skjetne and 

Auriault [4] that provides new insights on steady, non-linear flow 

in porous media. Also the work of Calmdi and Mahajan [5] 

presents the non-linear, non-Darcy equation as an excellent 

candidate for description of flow in metal foam porous media. 

Khaled and Vafai [6] draw us from extra-corporeal application 

situations into corporeal flows. Their [6] work suggests a non-

linear flow model for high perfused skeletal tissues. In all these 

applications, and many more, high flow rate and /or 

highpermeability in porous media warrants the quantification of 

the departure from Darcy’s law in terms of Brinkman friction and 

super-linear drag, the former arising due to solid boundaries and 

the latter caused by form drag due to the solid matrix. Restricting 

our attention to uni-directional flows, we call attention to two 

extremely important works of Vafai and Kim [7], and Nield et al 

[8] that deal with forced convection in a channel filled with a 

porous medium. A steady, uni-directional, non-linear, non-Darcy 

flow was assumed in these works. The above two works concern 

exact solutions of the non-linear two-point boundary-value 

problem arising in the study. The non-linearity in the governing 

quasi-linear differential equation is a quadratic function of 

velocity. In literature, the nomenclature attached with this friction 

is either after the name of Forchheimer [9] or Ergun [10]. We 

follow the classic mathematical works and prefer use of the name 

of Forchheimer to Ergun on reasons of maintaining continuity in 

nomenclature and not adding to the confusion in literature over 

different model names. In so far as the Darcy friction and viscous 

shear is concerned, there is no debate at the present time on having 

two viscosities in the equation- actual fluid viscosity and effective 

viscosity (see Lauriat and Prasad [11] and Givler and Altobelli 

[12]). In the present problem we consider the two non-Darcy 

effects due to inertia and boundary. Poulikakos and Renken [13] 

performed a numerical study of boundary and inertia effects on 

porous medium flow and heat transfer. Parang and Keyhany [14] 

analysed mixed convection in an annular region considering 

boundary and inertia effects. Hooman [15, 16] quite recently has 

published numerical works pertaining to this non-linear flow 

model in porous media. In the paper we report the solution of the 

Brinkman-Forchheimer equation for fully developed two-

dimensional flow through an annulus using the finite-difference 

and homotopy continuation methods. Further heat transport in the 

forced convective flow is also considered. 

2. Mathematical Formulation for Flow 

through a Cylindrical Porous Annulus 

The physical system consists of a highly percolative annulus 

whose cylindrical surface is impermeable to the liquid. It is 

assumed that the non-Darcy fully developed flow in the medium 

can be described by the Brinkman-Forchheimer model and so we 

have 
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where w(r) is the axial filter velocity and p(z) is the axial pressure. 

The other quantities are as explained in the previous section. The 

boundary conditions for solving Eq. (1) are 
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We now non-dimensionalize Eqs.(1)-(2) using the following 

definition:  
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where    is a characteristic velocity. Substituting Eq. (3) in Eqs 

(1)-(2), we get  
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        (ratio of radii of cylinders).  

 

 
Fig. 1: Schematic of the hollow cylinder with concentric solid cylindrical 

insert and porous filling. 

3. Finite Difference Approximation and Ho-

motopy Continuation Method of Solution 

In the method of solution adopted in the paper we need to 

discretize the interval of interest [ ,1]. We do this by using the 

discrete points  
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 In what follows       is denoted by   . We first apply the 

central difference approximation to the first and order second 

derivatives in equation (5) and this procedure yields:  
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 Rearranging equation (7) we get a system of N non-linear 

algebraic equations in the form:  
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In equation (8) A is given by  
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Let    be the unknown solution of the system (9). To obtain this 

solution we shall later consider a family of problems to be 

described using a homotopy parameter          Henceforth, to 

bring in     , we use a suggestive notation        in place of 

     and         in place of        With the intention of 

obtaining           from       , an assumed initial 

approximation to the system (8), we define the following mapping  
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In   , the   s are actually           unless otherwise mentioned. 

Let us assume        is the unique solution of  
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Differentiating equation (13) with respect to p, we get 
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and using equation (12), we have  
  

  
                               (                          )

  
  

In the above       is the assumed initial approximation of system 

(9). Rearranging equation (14), we get a system of N differential 

equations:  
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To solve the system (15), subject to condition (9), by the explicit, 

classical Runge-Kutta method of four slopes we partition the 

range of p, namely [0,1], into M sub-intervals with the mesh 

points  
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4. Heat Transport  

Local thermal equilibrium and homogeneity are assumed and 

hence the steady-state thermal energy equation in the absence of 

heat source terms, axial conduction, and thermal dispersion is:  
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 It follows from the first law of thermodynamics that  
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We now define the mean velocity   and the bulk mean 

temperature    in the following form:  
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Further, dimensionless variables will now be introduced as (see 

Hooman [16])  
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 The Nusselt number Nu is defined by:  
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As noted by Nield [17], though the local temperature   is a 

function of both axial and radial coordinates, dimensionless 

temperature distribution in the fully developed region,  , is a 

function of the radial coordinates     only, while the bulk mean 

temperature is a function of the axial coordinate     only. In non-

dimensional form eq.17 becomes (when eq.3, eq.19 and eq.20 are 

used):  
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 where the boundary conditions are as follows  
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 Equation (21) can be solved, using boundary conditions (22), to 

obtain the following expression for     :  
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 Using the compatibility condition,  
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 The Nusselt number can be obtained in the form:  
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The results obtained by solving equations (15), subject to 

conditions (9), by the Runge-Kutta method are documented in 

figures 3 - 5. Figure 6 and 7 depict comparison of results of 

limiting cases of present study. Figures 8-11 show the variation of 

Nusselt number with different parameters. 

5. Results and Discussion 

As made known quite explicitly in the introduction it is the 

intention of the paper to propose a combination of the finite 

difference and homotopy continuation methods for solving a non-

linear, non-Darcy equation with quadratic drag. Heat transport in 

such a flow is also investigated. Before we embark on a discussion 

of the solution we note here that the definition of Brinkman and 

Darcy numbers as used in the paper is inverse of the classical 

definitions. We now move on to discuss the results obtained in the 

paper. 

The velocity profiles for different parametric values have been 

plotted in Figure 2. Figure 2(a) illustrates the fact that the velocity 

decreases with increase in the value of Darcy number for the an 

annular flow through porous media. The plug velocity is seen in 

the annulus flow when Da is large. The profile in the case of small 

Da is parabolic rather than flattened as in plug flow velocity. 

Figure 2(b) brings out the effect of the Brinkman number,  , on 

the flow velocity and shows that there is a decrease in velocity 

with an increase in  , as shown by Vafai and Kim [7] and Nield et 

al. [8]. The boundary effect is captured quite well by the method 

of solution used in the paper. 

In figure 2(c) we clearly see the effect of non-linear form drag on 

the velocity. The form drag is represented by the Forchheimer 

number, F. The effect of increasing F is to decrease the velocity, 

which is similar to the effect of increasing Da. The results of the 

present paper indicate that the effect of the F on the flow velocity 

becomes weak for low-percolation media. The excellent results on 

boundary and inertia effects on flow velocity speak about the 

utility of the solution procedure in capturing detailed flow features. 

It is important to mention here that the method succeeds in giving 

the required solution for large values of   whereas shooting 

technique, based on Runge-Kutta-Fehlberg45 and modified 

Newton-Raphson methods, fails in the situation. Figure 3 depicts 

the effect of   on the velocity and the expected result of increasing 

velocity for increasing values of   can be readily observed. 

The channel and cylindrical tube results can be obtained from 

those of the annulus by considering the following BVP:  

 
   

   
 

 

 

  

  
                  (26) 

 

                        (27) 

 

where  

 

      {
                                              
                                           

 (28) 

 

 
 

 



International Journal of Engineering & Technology 293 

 

 
Fig2 (a)-(c): Plots of U(Y) versus Y for the annulus flow ( =0.2) 

 

 
Fig.3: Plot of U(Y) vs. Y for different values of    and for Da =10, F =2.5 

and   =1.2 

 

 
Fig.4: Plot of U(Y) vs. Y for different values of Da and for F=1   =1,  = -

1 and  =0 (rectangular flow of Hooman[15]). 
 

 
Fig.5: Plot of U(Y) vs. Y for different values of Da and F for   =1.2, =-1 

and  =1 for cylindrical flow of Hooman and Gurgenci[16]. 

Figures 4 and 5 show the comparison of the results on velocity 

with those of Hooman[15] and Hooman and Gurgenci[16] for a 

rectangular porous channel and cylindrical porous flow. 

Computations reveal the following general result:  

                                             

and the same can be seen in each of the figures 2-5. The above 

result can be attributed to the fact that curvature and concentric 

cylindrical inserts slow down the fluid in the considered porous 

medium flow.  
Figure 6(a) depicts the variation of Nusselt number with Da. It can 

easily be observed that for small values of Da in the range 

       1, Nusselt number varies insignificantly with Da. A 

similar observation can be made  

on effect of Da in the range         . From the above 

observations we may thus infer that Nusselt number variation in 

porous media is significant only in the range      100. As a 

consequence we may also conclude that the inclusion of the 

Forchheimer term is justified in a porous medium whose Da value 

lies in the range 1 to 100. 

Figure 6(b) illustrates the fact that Nu varies linearly with  . This 

is in keeping with the observation that can made on the linear 

variation of U(Y) with  . Figure 6(c) reinforces the observation on 

the Nusselt number variation with Da. Significant changes in Nu 

with change in F is seen only in the case when         . 

From the Figure we observe that the effect of increasing form drag 

is to increase the heat transport. 

Another important result from the present study is on the variation 

of Nu with scaled radius of the concentric cylindrical insert 

(Figure 7). It is apparent that there is less heat transport in a 

cylinder with no insert in comparison with the corresponding 

result on Nusselt number when an insert is present. The 

observation on the plots in the figure 6 are also applicable to 

cylindrical flows. 

Tables 1 and 2 show close qualitative agreement between the 

present results on Nusselt number in the limiting cases of 

Hooman[15], Nield [17] and Gurgenci[16]. 
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Fig.6 (a)-(c): Plots of    for the annulus flow (  = 0.2). 

 

 
Fig.7: Plot of    vs   for fixed values of Da =1, F=2, and  =1 for a 

cylindrical annulus ( =1). 
 
Table 1: Rectangular Problem-Comparison between present results on 

Nusselt number with those of Hooman [15] and Nield[17]. 

 

Table 2: Cylindrical Problem-Comparison between present results on 

Nusselt number with those of Hooman and Gurgenci[16]. 

Parameters 

     
    

     

        
     
     

            
   

           

     
     

       

Nu (Present) 4.146 4.115 5.12886 5.84798 

Nield [17] 4.159 4.122 5.129 — 

Hooman [15] 4.181 4.131 5.139 5.8935 

6. Conclusions 

1. The combination of the finite-difference and homotopy 

continuation methods gives the solution for all permissible 

values of the parameters of the problem and particularly 

when the shooting method fails.  

2. The presence of thermally-insulated insert is to enhance the 

velocity and hence the heat transport.  

3. There is no need to separately study the forced convection 

problems of rectangular channel, cylindrical and annulus 

flows. The results of the first two can be obtained from an 

annulus flow.  
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