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Abstract 
 

Since its inception, the notion of domination has found vital roles in several real life applications related to facility locations, representa-

tives’ selection, communication networks, electrical networks, etc. The vast application of the notion has paved the way for the develop-

ment of the notion with several types. The notion of connected domination is a significant domination parameter amongst the several 

domination varieties emerged in this domain. The problem of determining limited bus stops in a route was effectively addressed by the 

connected domination parameter. Most of the biological and neural networks effectively use this notion to solve several problems which 

require the connectedness of the structures. In view of the growing applications of the variant, several researchers and scholars have pub-

lished numerous research articles on the said parameter. Recently, some researchers attempted on transition of the domination parameter 

into a connected one. In order to facilitate this transition, another variant viz., connected domination transition number was introduced 

and its properties and bounds were studied. In this article we explore more properties and bounds of the parameter connected domination 

transition number for special types of graphs. We also characterize the instances at which the domination and connected domination pa-

rameters would be same for few types of graphs. We also attempted to derive few Nordhaus–Gaddum (NG) type results for the same. 
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1. Introduction 

Though the notion of domination exists in the literature very long 

ago it was formalized only during the last century by Berge [1] 

and Ore [2]. Hundreds of research articles emerged out from then 

onwards about the domination parameter. The connected domina-

tion parameter was jointly introduced by Sampathkumar and Wal-

ikar in [3]. It was further studied in numerous articles such as [4], 

[5].  Several researchers and scholars have published numerous 

research articles on this domination parameter.  

The backbone of any network requires to be connected. So the 

connected domination parameter serves as a virtual backbone in 

any network. In view of connectedness, the connected domination 

parameter has vital applications in several areas. A connected 

dominating set in a communication network increases the band-

width efficiency, reduces the communication overhead, and mini-

mizes the energy consumption. The wireless sensor networks 

build their virtual backbones as connected dominating sets for the 

effective transmission and broadcasting of network signals. The 

task of routing and broadcasting can be efficiently performed in ad 

hoc networks with the help of connected dominating sets. In view 

of its vital applications, Kaspar et. al have attempted to transmit a 

domination parameter into connected one by introducing another 

variant viz., connected domination transition number in [6]. The 

connected domination transition number for any graph G was 

defined to be the difference between the connected domination 

and the domination numbers of G and is denoted as ( )c G . In 

other words, ( ) ( ) ( )c cG G G    . The authors have also inves-

tigated and studied the parameter for bounds and equalities for 

special types of graphs. In this article we focus on the connected 

domination transition number ( )c G  and explore its few more 

properties in various aspects.   

In any graph G, a subset D of vertices is said to be a dominating 

set of G if every vertex of G is either a member of D or adjacent to 

some member of D. A minimum dominating set is a dominating 

set of smallest size. The cardinality of such a minimum dominat-

ing set is referred to as the domination number of G denoted by 

( )c G . A dominating set D of a graph G is said to be a connected 

dominating set if the subgraph induced by the vertices of D is 

connected. The minimum cardinality of a connected dominating 

set is known as the connected domination number denoted by 

( )c G .  

We define the connected domination transition number of a graph 

G as the difference between the connected domination and the 

domination numbers of G and is denoted as ( )c G . In other words, 

( ) ( ) ( )c cG G G    . We study the bounds for ( )c G  and its 

exact values some particular classes of graphs. Further we analyze 

some properties on this number. In order to obtain results on the 

parameter ( )c G , we have recalled some standard results from the 

literature on the domination and connected domination numbers of 

a graph since, this parameter depends on these two. We have made 

an attempt to characterize the class of graphs G for which   

( ) ( )cG G  . Since connected domination is more stable and 

reliable than other such types of its kind we study the extension of 

a domination network into a connected domination network. 

http://creativecommons.org/licenses/by/3.0/
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Readers can refer to [6] to know more about the connected domi-

nation numbers transition number. 

All the graphs treated in this chapter unless and otherwise speci-

fied are finite connected and nontrivial. 

2. Connected Domination Transition Number  

Definition 2.1 [6] 

 

Let G be a connected graph. The connected domination transition 

number is defined as the difference between the connected domi-

nation number 
c  and the domination number   of the graph G 

and is denoted by ( )c G . Symbolically, ( ) ( ) ( )c cG G G    . 

Since a connected dominating set exists only for connected graphs, 

this invariant is also defined only for connected graphs.  

 

Remark 2.2 
1.    Clearly, every 

c -set of a connected graph G contains one or 

more  -sets of G. Hence the connected domination transition 

number ( )c G  can be thought of as the minimum number of ver-

tices required to connect the vertices of any  -set together. 

2.    It is same as the minimum number of intermediate vertices 

included in the shortest paths between the components of the sub-

graph induced by the vertices of some  -set of G which minimal-

ly connect them.  

 

Remark 2.3 
From the definition of the parameter

c , it is evident that 
c  attains 

its maximum (minimum) value only when the parameter 
c  at-

tains its maximum value while the parameter   attains its mini 

mum value. The other extremes of these parameters yield the min-

imum value for the parameter 
c . 

3. Survey 

Before proceeding with the results on the connected domination 

transition number c  we recall some standard results already 

available in the literature survey on domination and connected 

domination numbers which we will use in our findings. 

The following result though trivial will be used in our findings. 

 

3Theorem 3.1 

If D is a  -set of a connected graph G with ( ) 2G  , then for 

every vertex u D ,  there exists at least one vertex v D  such 

that ( , ) 3d u v  . 

This is a direct consequence of the fact that D is a dominating set 

of G. Otherwise, there will be some vertex in the uv-path that is 

not adjacent to any vertex in D implying a contradiction to the 

nature of the set D. 

 

Theorem 3.2 [3]  

For any tree T of order n, ( )c T n l   , where l is the number of 

pendant vertices (leaves) of T. 

Hedetniemi and R.C. Laskar derived the exact value of the con-

nected domination number for all connected graphs in terms of the 

pendant vertices in some spanning tree of G as below. 

 

Theorem 3.3 [4]  

If G is a connected graph with 3n  , then 

( ) ( ) 2c TG n G n      where ( )T G  denotes the maximum 

number of pendant vertices (edges) in any spanning tree of G.  

In [5], Arumugam and Joseph characterized the class of trees, 

unicyclic graphs and cubic graphs with 
c  . We list out some 

of their results here. 

 

Theorem 3.4 [5]  

For a tree T of order 3p  , 
c   if and only if every internal 

vertex is a support. 

 

Theorem 3.5 [5]  

Let G be a unicyclic graph with cycle 
1 2 1. . . . , 5nC u u u u n   and 

let X be the set of all vertices of degree 2 in C. Then 
c   if and 

only if the following conditions hold: 

(a)    Every vertex of degree at least 2 in  V N X  is a support. 

(b)    X  is connected and 3X   

(c)    If 1X P  or 
3P , both vertices in ( )N X  of degree greater 

than 2 are supports and if 2X P , at least one vertex in ( )N X  

of degree greater than 2 is a support. 

The author also provides examples of following unicyclic graphs 

with 
c   in which 1X P , 

2P  or 
3P  respectively in figure 1. 

 

Theorem 3.6 [5]  

Let G be a cubic graph of order n. Then 
c   if and only if G is 

isomorphic to 
4K , 

6C , 3,3K , G1 or G2 where G1 and G2 are as 

given below in figure 2. 

The following upper bound on the domination number of a tree 

was proved by Lemanska. 

 

Theorem 3.7 [9]  

If T is a tree on 3 or more vertices with l pendant vertices (leaves) 

then
2

3

n l


 
 . Also the bound is attained if and only if T be-

longs to the family R where R is the family of all trees in which 

for any two distinct pendant vertices u and v, ( , ) 2 (mod3)d u v  . 

The classical paper [10] of Nordhaus and Gaddum discusses about 

the inequalities related to the chromatic number of a graph G and 

its complement G . Among the other types of inequalities availa-

ble in literature, the Nordhaus–Gaddum (NG) type inequalities are 

considered to be peculiar since they view a single parameter in 

two different ways one with the given graph G itself and the other 

with the complement of the given graph G . 

 

Theorem 3.8 [11] 

For any graph G, if   and   denote the domination numbers of 

G and G  respectively, then 1n    ,  . n   .  

Domination related NG results were first published in 1972 by 

Jaeger and Payan [11]. The upper bound for the sum was sharp-

ened by Cokayne and Hedetniemi [12]. They added that 

1n    , if and only if nG K  or nG K  

Analogous NG results were also developed for the connected 

domination number of a graph. Since the connected domination 

exists only for connected graphs, one can easily perceive that NG 

results for the parameter ( )c G  can be developed only when both 

the graph G and its complement G  are connected. The following 

NG result was proved by Sampathkumar and Walikar. 

 

Theorem 3.9 [3] 

If G is a coconnected graph, then ( 3)c c n n    , with equality 

if and only if 4G P . 

This result was further improved by Hedetniemi and Laskar in [4]  
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Theorem 3.10 [4]  

If G and G  are both connected, then 1n    . 

This bound was further sharpened by Laskar and Peters [7]. They 

proved that the upper bound is attained if and only if 
5G C . 

Many such interesting NG results on few domination parameters 

are discussed by Frank Harary and Teresa W. Haynes in [8]. 

 

 
Figure 1: Unicyclic Graphs 

 

 
Figure 2: Cubic Graphs 

4. Main Results 

On studying the parameter, ‘connected domination transition 

number’ we are interested to characterize the class of graphs at-

taining the minimum or maximum bound. The case of studying 

the class of graphs attaining the minimum bound zero is equiva-

lent to characterizing the class of graphs for which 
c  . Many 

authors have attempted to study about this problem and character-

ized only some particular class of graphs having 
c  . The fol-

lowing theorem characterizes such types of graphs.  

 

Theorem 4.1 

For any connected graph G, ( ) ( )cG G   if and only if the fol-

lowing two conditions are satisfied: 

i.   G has a spanning tree T, whose every internal vertex is a sup-

port. 

ii.   There exists a  -set of G constituted by the internal vertices 

of T. 

 

Proof 

 

Assume that ( ) ( )cG G  .    ---- (1)  

 

By theorem 3.3, for the connected domination number ( )c G  

there corresponds a spanning tree T of G with (maximum) number 

of pendant vertices ( )T G  such that ( ) ( )c TG n G   . Using the 

relation (1), we have ( ) ( )TG n G   . Hence, there corresponds 

a  -set of cardinality ( )Tn G . We observe that the number 

( )Tn G  is equal to the number of internal vertices of the span-

ning tree T. Let D be the set of internal vertices of the spanning 

tree T. Obviously, the set of all internal vertices of any spanning 

tree is a dominating set and so D is also a dominating set. Clearly 

the vertices of D are connected. Hence the  -set D turns out to be 

a c -set also satisfying the requirement (ii).  

It remains to show that every internal vertex of T is a support. 

Otherwise, let u be an internal vertex of T that is not a support. 

Since the induced subgraph D  is connected, ( )N u D   . It 

follows that, the set  D D u    is also a dominating set whose 

cardinality is less than  , which is a contradiction to the fact that 

D is a minimal dominating set. Therefore, every internal vertex of 

the spanning tree T is a support.  

Conversely, assume that G is a connected graph satisfying the 

requirements of the theorem. 

Let T be a spanning tree of G whose every internal vertex of T is a 

support (condition i). Let D be a  -set of G formed by the inter-

nal vertices of T (condition ii). Clearly, the induced subgraph D  

is connected. Hence D  is also a 
c -set . Therefore, we get 

c  . 

The above theorem is a more generalization of the characterization 

of graphs whose domination and connected domination numbers 

are equal. One can understand that this theorem is proved for any 

graph in general. And theorem 3.4, by Arumugam and Joseph [5] , 

on class of trees follows as a corollary to the above theorem. 

 

Theorem 4.2 

For any connected graph G, ( ) ( )cG G   if and only if G has 

some spanning tree GT  with )(Gn   number of pendant 

vertices. 

 

Proof  

Let us assume that ( ) ( )cG G    

By theorem 3.3, we understand that corresponding to the connect-

ed domination number ( )c G , there exists some spanning tree T 

of G such that, ( ) ( )c TG n G   , where ( )T G  is the maximum 

number of vertices of any spanning tree of G. Since ( ) ( )cG G  , 

we see that the number of pendant vertices of the spanning tree T 

is ( )n G . 

Conversely, let G be a connected graph having a spanning tree T 

with ( )n G  pendant vertices. This implies that the number of 

internal vertices of the spanning tree T is ( )G  which are con-

nected and hence these internal vertices form a 
c -set also. Thus 

( ) ( )cG G   

 

 
Figure 3: Spanning trees of unicyclic graphs 

 

 
Figure 4: Spanning trees of cubic graphs 

 

Examples of some graphs for which ( ) ( )cG G   

Though there are several graphs having ( ) ( )cG G   to be brief 

enough, we consider the class of graphs considered by 

S.Arumugam in theorems 3.5 and 3.6 which are respectively uni-

cyclic and cubic graphs. 

The spanning trees of the graphs shown in figures 3 and 4 satisfy 

the conditions specified in theorems 4.1 and 4.2. 

The following upper bound relates the domination number   with 

the connected domination transition number c . 

 

Theorem 4.3 

For any connected graph G, ( ) ( ( ) 1)c TG n G    , where ( )T G  

denotes the maximum number of pendant vertices (edges) in any 

spanning tree of G. 
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Proof  

From the definition of the parameter ( )c G , one can understand 

that the above result is a direct consequence of theorem 3.3 and 

the fact that ( ) 1G  . 

 

Theorem 4.4 

For any connected graph G, 0 ( ) 2( ( ) 1)c G G    . As noted 

earlier the lower bound is attained if and only if ( ) ( )cG G  . 

The upper bound is also sharp and is attained if and only if 

( , ) 0 (mod3)d u v  , for any two vertices u, v in any  -set D of G. 

 

Proof 

We have already discussed the proof concerning the lower bound 

of the theorem. Let us proceed to discuss the proof concerning the 

upper bound and its related part. 

Let G be a connected graph with domination number ( )G  and 

let D be a  -set of G. 

If the induced subgraph D  by itself is connected, then 

( ) 0c G  . This gives the lower bound of the inequality.  

If the induced subgraph D  is not connected then 

(i)   There exists at least one pair of vertices say ,u v D  each of 

them belonging to different components of D  such that 

( , ) 3d u v    (see theorem 3.1) 

(ii)   It has at most   components in which case D is independent. 

Let us form a subgraph H of G starting from the induced subgraph 

D . Since D  is disconnected, H is also disconnected. By ob-

servation (i) any component of H can be connected to some other 

component of H by a path of length at most three. This path in-

cludes maximum two intermediate vertices between the compo-

nents. Include this path in H. As long as H is disconnected, inclu-

sions of such paths are possible by observation (i).  

By observation (ii) there are at most   components which can be 

minimally connected by the inclusion of at most 1   such paths 

(property of tree). 

We see that the resulting subgraph H is connected and the number 

of vertices included in H in order to make it connected is at most 

2( 1)  . In view of the remark 2.2 we obtain ( ) 2( ( ) 1)c G G   . 

We see that the path graphs 
3kP , k= 1, 2, 3, . . .  attain the upper 

bound and hence the bound is sharp. Let us continue the discus-

sion about the attainment of the upper bound. 

Let D be any  -set of G such that ( , ) 0 (mod3)d u v  , for any 

two vertices ,u v D .   

In this case, (a) the set D is independent and (b) for every vertex 

u D , there exists at least one vertex v D  such that ( , ) 3d u v  ; 

otherwise, D cannot be a dominating set. Hence any shortest u–v  

path has exactly two intermediate vertices. The remaining part of 

the proof is easily follows from the above discussion. 

Conversely, assume that ( ) 2( ( ) 1)c G G   . 

Let D be a  -set of G.   

If the induced subgraph D  is connected, then ( ) 0c G   which 

implies that ( ) 1G   and there is nothing to prove.  

Suppose that the induced subgraph D  is disconnected. 

To prove: ( , ) 0 (mod3)d u v   for any two vertices ,u v D .  

On the contrary, assume that ( , ) 0 (mod3)d u v  , for some pair of 

vertices ,u v D . 

In the light of observation (i) above we see that ( , ) 2d u v  . With-

out loss of generality, let us assume that ( , ) 2d u v  . Then the two 

components possessing the vertices u, v can be connected by a 

path of length 2 which has only one intermediate vertex. In the 

light of observation (ii) above, the number of components in D  

yet to be connected is 1  . From previous arguments all these 

components can be minimally connected by ( 2)  path pieces 

each of which include at most two intermediate vertices. Hence 

the total number of intermediate vertices involved in the path 

pieces that connect the vertices of D are 2( 2) 1 2 3     . In 

view of the remark 2.2 (2), we have ( ) 2 3c G    which is less 

than 2( 1)   a contradiction to the assumption. Hence the result 

follows. 

Corollary  4.5     (Comparison with Independence number) 

( ) 2( ( ) 1)c G G     

 

Proof  
We know that every maximal independent set is a minimal domi-

nating set and hence ( ) ( )G G  , where ( )G  denotes the in-

dependence number of the graph G . Using this in the above ine-

quality we get, ( ) 2( ( ) 1)c G G   . 

The same holds for the lower independence number ( )i G  (which 

is also called as independent domination number) and hence we 

get another similar corollary. 

Corollary 4.6(Comparison with Independent domination number) 

( ) 2( ( ) 1)c G i G    

Results on Tree graphs 

Though we have so far derived results on the bounds of the pa-

rameter, connected domination transition number of a graph 

( )c G , using its spanning trees, we have not discussed yet the 

bounds of the class of graphs called trees. 

 

Theorem 4.7 

If T is a tree with l pendant vertices, then 
2( 1)

( )
3

c

n l
T

 
 . The 

bound is reached if and only if R includes the tree T where R is the 

family of all trees in which for any two distinct pendant vertices u 

and v, ( , ) 2 (mod3)d u v  . 

 

Proof  
Since the connected domination number for trees remains to be 

constant as c n l    by theorem 3.2, the case of attaining the 

upper bound for the connected domination transition number of 

trees ( )c T wholly lies on the case of tree attaining the lower 

bound of the value ( )T . The remaining part of the theorem fol-

lows easily from theorem 3.7. 

 

Theorem 4.8 

For any integer 0k  , there exists a graph such that ( )c G k  . 

 

Proof  

For k = 0, let G be a corona graph 1kP K  then ( ) ( )cG G   and 

( ) 0c G  . 

 

 

Figure 5: Firecracker graph , 2kF  

 

For k = 1, let G  be the path graph 5P . 

v1 v2 v3 v4 vk -1 vk 
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For k >1, , let G  be the graph obtained from G by subdividing 

the pendant edges. 

 

 

Figure 6: Firecracker graph , 3kF  

 

It is an easy exercise to anyone to verify that ( )c G k   , k >1. 

Thus the graphs G, G , G  render ( )c G k  , for all nonnegative 

integers k. 

Nordhaus–Gauddam Type Results 

We wish to discuss a NG (Nordhaus–Gauddam) result [10] for the 

parameter ( )c G . The NG results we have recalled in section 4 of 

this chapter, for both the domination parameters ( )G  and ( )c G  

are of upper bound types. In view of the remark 2.3, in order to 

derive one such upper bound we require a NG result on the lower 

bound of the parameter ( )G . 

In order to use deduce some NG results we require a lower bound 

result of same type for the domination parameter as in the next 

theorem. 

 

Theorem 4.9 

If G is a coconnected graph, then 4    and the bound is 

sharp. 

 

Proof  

Let G be a coconnected graph. This implies both graphs G  and 

G  are connected and 4n  . This implies none of the graphs G 

and G  has a vertex of full degree; otherwise, if v G  is a vertex 

of full degree i.e. ( ) 1d v n  , then it is adjacent to every vertex 

of G by which it would be isolated from the remaining vertices in 

the complement graph G , a contradiction to the assumption that 

both G and G  are connected. Similar argument holds for the 

complement graph G  also. 

Thus ( ) 1d v n  , for any vertex ,v G G .  

Hence ( ) 2G   and ( ) 2G  . 

i.e. , 2    and hence 4   . 

When 4G P , we see that 4   . Hence the bound is sharp. 

 

Theorem 4.10 

If G is a coconnected graph, then ( 1)( 4)c c n n     , where 

( )c c G   and ( )c c G   and the bound is sharp. 

 

Proof  

Since G is a coconnected graph, both graphs G  and G  are also 

connected and 4n  . By definition we have, 

( ) ( ) ( )c cG G G     and ( ) ( ) ( )c cG G G     

i.e. ( ) ( )c c c cG G       

( ) ( ) ( ) ( )c cG G G G        

 ( ) ( ) ( ) ( )c cG G G G        

2( 3) 4 3 4 ( 1)( 4)n n n n n n         , using theorems 3.9 

and 4.9. 

Again the path 4P  attains the bound. Hence this bound is sharp.  

Theorem 4.11 

If any graph G is coconnected, then 3c c n     and the bound 

is sharp. 

 

Proof  

As in the previous theorem we have,  

 ( ) ( ) ( ) ( )c c c cG G G G           

Using the theorems 3.10 and 4.9 we get, 3c c n    . 

When 
5G C , the upper bound in above bound is reached. 

5. Conclusion 

In this research article we have focused primarily on establishing a 

stable and reliable facility location from an existing one by means 

of constructing connected dominating sets in the networks. To this 

end, researchers have defined a new domination related parameter 

viz., connected domination transition number of a graph and stud-

ied its properties. We add flavor to this parameter by exploring its 

bounds and characteristics for various types of graphs. We also 

have attempted on Nordhaus–Gauddam type results for the variant. 
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