

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Prime Labeling of Jahangir Graphs

Anantha Lakshmi.R¹*, Jayalakshmi.K², Madhavi.T³

¹ Research Scholar, JNTUA, Ananthapuramu, Andhra Pradesh, India- 515002

² JNTUA College of Engineering ,Department of Mathematics , Ananthapuramu, Andhra Pradesh, India- 515002

Anantha Lakshmi Institute of Technology, H&S(Dept.),Ananthapuramu, Andhra Pradesh India-515721

*Corresponding author E-mail: anantha.reddem@gmail.com

Abstract

The paper investigates prime labeling of Jahangir graph $J_{n,m}$ for $n \ge 2$, $m \ge 3$ provided that nm is even. We discuss prime labeling of some graph operations viz. Fusion, Switching and Duplication to prove that the Fusion of two vertices v_1 and v_k where k is odd in a Jahangir graph $J_{n,m}$ results to prime graph provided that the product nm is even and is relatively prime to k. The Fusion of two vertices v_{nm+1} and v_k for any k in $J_{n,m}$ is prime. The switching of v_k in the cycle C_{nm} of the Jahangir graph $J_{n,m}$ is a prime graph provided that nm+1 is a prime number and the switching of v_{nm+1} in $J_{n,m}$ is also a prime graph .Duplicating of v_k , where k is odd integer and nm + 2 is relatively prime to k, k+2 in $J_{n,m}$ is a prime graph.

Keywords: Prime labeling; Jahangir graph; Fusion; Switching and duplication.

1. Introduction

The paper considers only finite simple undirected graph throughout. Prime labeling of a graph G is a bijection f: $V(G) \rightarrow \{1, \dots, N\}$ 2,... |V| such that gcd (f(u), f(v))=1 for each edge uv. A graph is called prime graph if it admits a prime labeling. The graph G has vertex set V=V(G) and the edge set E=E(G). The set of vertices adjacent to a vertex u of G is denoted as N(u). For notation and terminology reference to Bondy and Murthy [1] has been made . Prime labeling is a concept that has been introduced by Roger Entringer .Since then many researchers have studied prime labeling for different types graphs. The cycle C_n on *n* vertices is a prime graph was proved by Dertsky [2]. Later Fu [3] considered path P_n on *n* vertices to show that such graphs are prime graphs. Roger surmised during the period 1980s that all trees possess prime labeling, and what he surmised could not be confirmed as a fact till now. Sundaram [8] is one of the exponents who studied the prime labeling for planner grid. Further investigations included the development of prime labelings by authors such as Ganesan and Balamurugan [4] who developed prime labellings for Theta graphs and Meena and Vaithilingam [6] for graphs related to Helm. In addition, Prime Labeling for several fan related graphs [7] have been proved by them. As far as cycle related graphs are concerned it was Vaidhya and K.K. Kanmani [9] who proved their prime labeling. Lee [5] has been attributed with establishing the fact that wheel Wn is a prime graph iff *n* is even.

Definition 1.1.

Under specific conditions, when the vertices of the graphs have been demarcated with values then such phenomenon is termed as (vertex) graph labeling.

Definition 1.2.

Suppose G = (V (G) , E (G)) is a graph possessing *n* vertices. A bijection $f:V(G) \rightarrow \{1, 2, ..., n\}$ is termed as Prime labeling, when

e = uv, hcf(f (u) ,f (v)) = 1 for each edge. When prime labeling occurs a graph is considered as prime graph.

Definition 1.3.

In a graph G, the vertices which are an independent set are a set of interdependent vertices that are nonadjacent.

Definition 1.4.

Consider u and v are two separate vertices meant for a graph G. G₁ is a novel graph that has been designed by fusing (identifying) the two vertices u and v by a sole vertex x in G₁ in such a way that each edge that has been incident with either u (or) v in G is at present incident with x in G₁.

Definition 1.5.

A vertex switching G_v of graphs G has been procured by considering a vertex v of G, deleting the total edges which are incident with v and accumulating edges combining v to each vertex that are not neighboring to v in G.

Definition 1.6.

Duplication of a vertex v of a graph G produces a new graph G by adding a vertex v' with N (v)= N (v').

To define the other way a vertex v' is told to have been in duplication of v under condition that all the vertices that are beside v are at present neighbored to v' In G'.

Definition 1.7.

Jahangir graph $J_{n,m}$ for $n \ge 2$, $m \ge 3$ is a graph with on nm + 1 vertices comprising a certain cycle C_{nm} possessing single vertex that is additional and is beside m vertices of C_{nm} placed at a distance n between the C_{nm} . Jahangir graph $J_{2,8}$ that is visible on his tomb which is located in his mausoleum.

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. Main Results of Prime Labeling on Jahangir Graph

Theorem 2.1.

If *nm* is even then the Jahangir graph $J_{n, m}$ for $n \ge 2$, $m \ge 3$ is a prime graph.

Proof:

Let $J_{n,m}$ be a Jahangir graph. $V(J_{n,m}) = \{v_1, v_2, \dots, v_{nm+1}\}$ and $E(J_{n,m}) = \{v_i \ v_{i+1} / 1 \le i \le nm-1\} \cup v_{nm}v_1 \cup \{v_{1+jn}v_{nm+1} / 0 \le j \le m-1\}$ then $|V(J_{n,m})| = nm+1$ and $|E(J_{n,m})| = (n+1)m$. Here the set $\{v_i \ v_{i+1} / 1 \le i \le nm-1\} \cup v_{nm}v_1$ represent as edges of the cycle and the set $v_{1+jn}v_{nm+1} / 0 \le j \le m-1\}$ represent the set of edges adjacent to the vertex v_{nm+1} .

The vertex labeling of $J_{n,m}$ is $f:V(J_{n,m}) \rightarrow \{1,2,...,nm+1\}$ such that $f(v_i) = i+1$ for $1 \le i \le nm$ and $f(v_{nm+1}) = 1$. It is to be noted that with nm+1 vertices and nm+1 labelings f is bijection. As '1' is relatively prime to each natural number and any two successive natural numbers are relatively prime. Therefore, for each edge $e = uv \in E(J_{n,m})$ and gcd (f(u), f(v)) = 1. Hence, $J_{n,m}$ proves to have undergone prime labeling. Therefore, $J_{n,m}$ is a prime graph.

Illustration 2.2.

The following graphs 1&2 indicates the Prime labeling of $J_{2,3} \, \text{and} \, J_{3,4}.$

Figure 2. Jahangir graph J_{3,4}

Programme 2.3.

Pseudo code for the prime labeling of J_{n,m} is written in 'C' programme #include<stdio.h> #include<conio.h> int f(int); intgcd(int,int); intn,m; void main() { inth,g,v[1000],e[1000],f1[1000],f1ag=1,i,j,f1ag1=1;; clrscr(); scanf("%d%d",&n,&m); for(i=1;i<=n*m;i++)f1[i]=f(i);printf("%d\n",f1[i]); } for(i=1;i<n*m;i++) { g=gcd(f1[i],f1[i+1]); printf("GCD=%d",g); if(g!=1){ flag=0; break; ł -} h=gcd(f(n*m),f(1));printf("h=%d",h); for(j=0;j<=m-1;j++)g=gcd(f(1+j*n),f(n*m+1));printf("GCD1=%d",g); if(g!=1)flag1=0; break; } } printf("flag1=%d",flag1); if(flag==1&&h==1&&flag1==1)printf("\n Prime Graph"); else printf("\n Not a Prime Graph"); getch(); int f(int i) if(i==n*m+1)return 1; else return i+1; } intgcd(inta,int b) { int r; while(b!=0) r=a%b;a=b; b=r; } return a; }

printf("Enter n,m:");

Theorem 2.4.

When nm happens to be an odd number then $J_{n,m}$ will cease to be a prime graph.

Proof:

Note that the order of $J_{n,m}$ is nm+1. Hence, one has to use from 1 to nm+1 integers while labeling the vertices. In this way we have $\frac{nm+1}{2}$ odd integers. For the moment, one can allocate odd numbers to at most $\frac{nm+1}{2}$ (as nm is odd) vertices from among the said nm vertices in the cycle C_{nm} . Next one must assign a prime number to the center of the graph $J_{n,m}$ and each prime number is

odd. Therefore, one has to assign at most places

numbers to the vertices. However, because we are having $\frac{nm+1}{2}$ odd numbers with us, it is not possible. Finally, $J_{n,m}$ is not considered to be a prime graph for odd nm.

3. Main Results on Fusion of Vertices in the Jahangir Graph $J_{n,M}$

Theorem 3.1.

The Fusion of two vertices v_1 and v_k in a Jahangir graph $J_{n,m}$ $n \ge 2, m \ge 3$ such that nm is even and nm is relatively prime to k where k is an odd number is a prime graph.

Proof:

Suppose G is a graph resulting from fusion of two vertices v_1 and v_k where k is an odd number in the cycle of $J_{n,m}$ then |V(G)| = nm and |E(G)| = (n+1)m. The set of edges are the edges which are incident on v_1 and v_k are incident with the new vertex ' $v_1 = v_k$ ' and the remaining are same.

We define the labeling f:V(G) \rightarrow {1,2,3,...,nm} such that f(v₁ = v_k) = k and f(v_i) = i for all I and f(v_{nm+1}) = 1. As 'k' is an odd number so, the gcd(2,k)=1and k is relatively prime to nm and each pair of successive natural numbers are relatively prime. Therefore, hcf(f(u),f(v)) = 1 for each edge e=uv \in E(G). Hence, G complies prime labeling. Therefore G is a prime graph.

Illustration 3.2.

The following graphs represent the fusion of v_1 and v_3 in $J_{2,5}$ and v_1 and v_5 in $J_{3,4}$ respectively.

Remark 3.3.

The fusion of v_1 and v_3 in $J_{2,3}$ is prime even though 6 is not relatively prime to 3. The labeling of fusion of v_1 and v_3 in $J_{2,3}$ is shown in figure 5.

Figure 5. Fusion of v1 and v3 in J23

Theorem 3.4.

The Fusion of two vertices v_{nm+1} and v_k for any k in a Jahangir graph $J_{n, m}$ for $n \ge 2$ and $m \ge 3$ such that nm is even is a prime graph.

Proof:

odd

Suppose G is a graph resulting from fusion of two vertices v_{nm+1} and v_k in $J_{n,m}$ then |V(G)| = nm and |E(G)| = (n+1)m. The set of edges in G are the set of all edges which are in the cycle C_{nm} and the set of all edges which are adjacent to v_{nm+1} . Define the labeling $f:V(G) \rightarrow \{1,2,3,...,nm\}$ such that $f(v_{nm+1} = v_k) = 1$ and $f(v_{k-j}) = nm + 1 \cdot j$ for $1 \le j \le k - 1$; $f(v_{k+i}) = i + 1$ for $1 \le i \le nm - k$. Note that f(u), f(v) are co-prime numbers for each edge $e=uv \in E(G)$. Hence, G complies prime labeling. Therefore, G is a prime graph.

Illustration 3.5.

The fusion of v_{11} and $v_2,$ fusion of v_{11} and v_4 in $J_{2,5}$ shown in the figures 6 and 7

Figure 6. The fusion of v11 and v2 in J2.5

Figure 7. The fusion of v_{11} and v_4 in $J_{2,5}$

4. Main Results on Switching of Vertices in the Jahangir Graph $J_{n,M}$.

Theorem 4.1.

The switching of v_{nm+1} in the Jahangir graph $J_{n,m}$ for $n \ge 2$, $m \ge 3$ such that nm is even is a prime graph.

Proof:

Suppose *G* is a graph resulting from switching v_{nm+1} in $J_{n,m}$ then |V(G)| = nm + 1 and |E(G)| = (2n-1)m. The set of edges in *G* are the set of edges in the cycle C_{nm} and the set of edges which are not adjacent to v_{nm+1} . We define the labeling $f:V(G) \rightarrow \{1,2,3,...,nm+1\}$ such that $f(v_{nm+1})=1$ and $f(v_i) = i+1$ for $1 \le i \le nm$. Note that f(u), f(v) are co- prime numbers for each edge $e=uv \in E(G)$. Hence, *G* complies prime labeling. Therefore, *G* is a prime graph

Illustration 4.2.

Switching of v_{13} in $J_{3,4}$ is shown in the figure 8.

Theorem 4.3.

The switching of $v_k \ k \ge l$ in the cycle C_{nm} of the Jahangir graph $J_{n,m}$ for $n \ge 2$, $m \ge 3$ such that nm+1 is a prime number, is a prime graph.

Proof:

Suppose *G* is a graph obtained by switching v_k in $J_{n,m}$ then /V(G)/= nm + 1. The set of edges in *G* are the set of edges in the cycle C_{nm} which are not incident on v_k in $J_{n,m}$ are now incident on v_k and the rest of edges will remain same in $J_{n,m}$. The required labeling $f:V(G) \rightarrow \{1,2,3,..., nm+1\}$ such that $f(v_k)=nm+1, f(v_{nm+1}) = 1$ and $f(v_{k+i}) = i+1$ for $1 \le i \le nm-k$ and $f(v_{k-i}) = nm+1-i$ for $1 \le i \le k-1$. Note that f(u), f(v) are co-prime numbers for each edge $e=uv \in E(G)$. Hence, *G* complies prime labeling. Therefore, *G* is a prime graph

Illustration 4.4.

The switching of v_1 and switching of v_5 in $J_{3,4}$ are shown in the figures 9,10.

Figure 10. The switching of vs in J34

(3)

5. Main Results on Duplication of a Vertex in the Jahangir Graph $J_{n,M}$.

Theorem 5.1.

The Duplication of v_k where k is odd integer and nm+2 is relatively prime to k, k+2 in the Jahangir graph $J_{n,m}$, for $n \ge 2, m \ge 3$ such that nm is even is a prime graph.

Proof:

Let G be a graph obtained by duplicating v_k by v_k' in $J_{n,m}$.

We define the labeling $f:V(G) \rightarrow \{1, 2, 3, ..., nm + 2\}$ such that $f(v_{nm+1}) = 1$ and $f(v_i) = i + 1$ for $1 \le i \le nm$, $f(v_k') = nm + 2$. As mentioned in the theorem 2.1, hcf(f(u), f(v)) = 1 for each edge $e = uv \in E$ (G). Hence, G complies prime labeling. Therefore, G is a prime graph.

Illustration 5.2.

Duplication of v_3 in $J_{3,4}$ is shown in the figure 11.

Figure 11. Duplication of v1 in J1,4

6. Conclusion

In this paper we checked the prime labeling of Jahangir graph $J_{n,m}$ by using 'C' Program for different n, m values which satisfy the condition nm is even. Similarly we can apply different languages for checking the labelings of different families of the graph.

References:

- [1] J.A.Bondy and U.S.R.Murthy, *Graph Theory and Applications* (North Holland).New York (1976)
- [2] T.O.Dretskyetal, "On Vertex Prime labeling of graphs in graph theory", *Combinatories and applications* vol.1 J.Alari (Wiley. N.Y. 1991)299-359
- [3] H.C.Fu and K.C.Huany, "On Prime labeling Discrete Math", 127 (1994) 181186.
- [4] V.Ganesan & Dr.K.Balamurugan, "On prime labeling of Theta graph", *International Journal of Current Research and Modern Education (IJCRME)* ISSN (Online): 2455 – 5428 Volume I, Issue II, 2016
- [5] S.M.Lee, L.Wui and J.Yen, "On the amalgamation of Prime graphs". *Bull. Malaysian Math.Soc.* (Second Series) 11, (1988) 59-67.
- [6] S.Meena and K.Vaithilingam :Prime labeling for some helm related graphs, *International Journal of Innovative Research in Science*, *Engineering and Technology* Vol. 2, Issue 4, April 2013.
- [7] S.Meena and K.Vaithilingam, "Prime labeling for some fan related graphs", *International journal of Engineering Research &technology (IJERT)* ISSN :2278-0181 vol.1 Issue9,November-2012.
- [8] M.Sundaram Ponraj & S.Somasundaram, (2006) "On prime labeling conjecture are Combinatoria" 79 205-209
 [9] S.K.Vaidya and K.K.Kanmani, "Prime labeling for some cycle re-
- [9] S.K.Vaidya and K.K.Kanmani, "Prime labeling for some cycle related graphs", *Journal of Mathematics Research* vol.2. No.2.May 2010 (98-104).