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Abstract 
 
In terms of its software development, virtual manufacturing continues to be developed and updated following the manufacturing technol-
ogy development. To develop the input aspect of virtual manufacturing and improve virtual interactivity, a muscle sensor is used to con-
vert a user muscle contraction value into software inputs. This study aims to filter and calibrate the digital signal from a muscle sensor 
input device designed for virtual manufacturing environment interaction. Common type of digital filters are designed, tested, and com-
pared using MATLAB to find the optimum filter types and parameters. Furthermore, the signal is calibrated to each individual user. The 

filtered and calibrated input allows the user to interact with objects virtually in a virtual manufacturing environment. 
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1. Introduction 

As a way to minimalize error and maximize efficiency and re-

sources in production in this rapid era, industrialist commonly 
design, tested, and simulate the production process in a virtual 
manufacturing environment. This includes the use of computer-
aided design (CAD) and virtual assembly. The virtual manufactur-
ing system allows early optimization of costs, quality and time [1]. 
Common virtual manufacturing practice is done with the help of 
CAD program utilizing a standard computer mouse and keyboard 
as its input method. To enhance user interactivity with virtual 

object, it is necessary to develop an input device that can simulate 
human force acting on an object. 
The level of interactivity between the subject and the virtual envi-
ronment is closely related to the perception of the presence of 
virtual objects [2]. To improve the interactivity and immersion of 
a virtual environment, one way is to develop a wearable device to 
detect human physical force provided in real time. By detecting 
inputs in the form of user muscle contraction, the resulting force 

can be virtually interacted with a weight-specified object in a vir-
tual environment. For practical use, the said device needs to be 
easy to set and use. A wearable and compact device would be 
suitable for the application. This wearable device must be able to 
detect muscle contraction accurately and maintain a stable signal.  
Signal readings from the muscle sensor are not completely clean 
of the disturbance that affects the accuracy of signal readings, 
which is commonly called a noise. In electronics, noise is an un-

wanted interruption in electrical signals [3]. To extract a desired 
stable signal reading, noise from the device output needs to be 
minimized as small as possible. In order to achieve this, a digital 
filter is applied to the signal. 
In addition, to allow user interact with virtual manufacturing envi-
ronment smoothly and in accordance with real state conditions, it 
is necessary to calibrate the muscle sensor device to each individ-
ual. Muscle contraction sensor readings are individually unique 

[4]. Furthermore, slightly different muscle sensor position yields 
different input. The output from the muscle sensor needs to be 
calibrated so that its value can be adjusted to the virtual human 
muscle force in the CAD program. 

2. Surface Electromyography (Semg) Sensor, 

Filtering and Calibration 

2.1. Surface Electromyography (sEMG) 

There are two general types of EMG, intramuscular EMG and 
surface EMG. Intramuscular EMG, or commonly called invasive 
electrode, use various types of electrodes. The most commonly 
used intramuscular EMG electrode is a needle electrode that is 
penetrated into the skin. The tip of the needle acts as an active 
electrode. On the other hand, surface EMG, or often also called 

non-invasive electrode, measures muscle activity from the surface 
of the skin. It takes more than 2 electrodes with this EMG surface 
because the recorded difference is the potential (voltage difference) 
between two separate electrodes. When EMG signals are obtained 
from electrodes mounted directly on the skin, the signal is a com-
posite of all muscle fiber action potentials that occur in the under-
lying muscle of the skin. The potential of this action occurs ran-
domly. So at some point, EMG signal can be either positive or 

negative voltage. This study uses SEMG type because it provides 
safe, easy and non-invasive muscle contraction recording com-
pared to Intramuscular Electrode. The recording is sufficient to 
obtain muscle-related information and integrate it with CAD ap-
plications for Virtual Manufacturing purposes.8. References 

2.2. Semg Sensor Noise 

Signals recorded by the muscle sensor are not entirely clear from 

disturbance that affect the accuracy of signal readings or common-
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ly called noise. In electronics, noise or noise is an undesired inter-
ference in electrical signals [3]. The noise generated by electronic 
devices varies greatly because it is produced by several different 
effects. The two major source of noise in an SEMG sensor are 
caused by inherent noise and motion artifacts. All types of elec-
tronic equipment generate inherent noise [5]. This could be from 
the sensor electrodes, leads along the wire, amplifier, and trans-
ceiver. Movement of the cable connecting the electrode to the 

amplifier and the interface between the detection surface of the 
electrode and the skin creates motion artifacts. Muscle fibers gen-
erate electric activity whenever muscles are active [6]. 

2.3. Filtering 

In Digital Signal Processing (DSP), the input and output signal 
inputs are within the time domain [7]. This is because it is usually 
made by sampling at regular intervals of time. The most common 

way of sampling is at the same space interval, or sample. Many 
other types of domain can represent a signal; however, time and 
space domains are the most common.  
Filtering can be done in a time and frequency domains. For exam-
ple, a type of filter which only process a signal in a time domain is 
a Moving Average filter. This is because it’s simple algorithm 
process of finding the average on a number of points or window 
size and continue to shift along the data. Moving Average is the 

most common filter in DSP because of its simplicity. However, 
Moving Average is a poor filter for frequency domain signals 
because of its poor ability to separate one frequency band from 
other frequencies [8]. As for common example of filters which are 
performed on frequency domains are Chebyshev, Butterworth, and 
Elliptic filters. The process remove noise by allowing a desired 
frequency to be passed in the filter, and forbidding or attenuating 
other undesirable frequencies to pass on to some extent.  

Chebyshev's response is a mathematical strategy to achieve faster 
roll-off by allowing ripple in frequency response. Chebyshev re-
sponse is the optimal balancing between these two parameters. 
There are two types of Chebyshev filters, the first one being a type 
1 filter, meaning that the ripple is only allowed in the passband. 
While the type 2 filter Chebyshev only has a ripple in stopband. 
When the ripple is set to 0%, this filter is called the maximum flat 
or Butterworth filter. Ripple of 0.5% is often a good choice for 
digital filters. This corresponds to the precision and accuracy typi-

cal of the analogue electronics passed by the signal [8]. Aside of 
these two filters, is another filter called the Elliptic filter, which 
has a ripple both in passband and stopband. However, Elliptic 
filters provide faster roll-off advantages than Chebyshev and But-
terworth for certain poles. 
 

2.4. EMG System Calibration for Virtual Environment 

EMG signals are directly related to the physiology of each indi-
vidual. These measurements are influenced by physiological fac-
tors including muscle fiber patterns, motor vehicle discharges, 
changes in blood flow in the muscles, the forces that produce the 
capacity of each muscle, nerve activity, and neurotransmitter ac-

tivity in different areas of the muscle, skin conductivity, position. 
shape and size of muscle. The EMG signal has different character-
istics depending on age, muscle development, motorway unit, 
bone density, heat distribution of muscle, skin fat layer, and ges-
ture style. The external appearance of a two-person movement 
may look the same, but the characteristics of the EMG signal are 
different [4]. Because each individual can have different EMG 
signal values and range, system calibration is performed to cali-
brate each individual unique signal. This way, a large group of 

user can have a similar interactive experience in a virtual envi-
ronment. 

3. System Modelling, Semg Sensor Filtering, 

and Calibration Development 

3.1. System Modelling 

SEMG sensor used in this study is a Myoware muscle sensor pro-
ducer by Advancer Technologies. This sensor is used because it’s 
one of the simple and practical EMG sensor in the market. The 

size is relatively small and the module is designed to be directly 
attached to the electrode. As it eliminates more cable use, it also 
minimize the potential motion artifacts noise. Furthermore, this 
device is compatible with common microcontrollers such as Ar-
duino which makes it easy to tweak the signal. Output signal from 
this sensor is amplified, rectified, and integrated or commonly 
called EMG envelope. But this EMG envelope signal still needs 
further calibration for virtual manufacturing purposes as the signal 

still frequently fluctuate along the time. To integrate the sensor 
signal in a virtual environment, a minimum ripple signal is needed. 
Arduino nano is used in this study to receive data through one of 
its analog-to-digital converter (ADC) port. The data is converted 
into voltage value by Arduino nano and then transmitted by the 
NRF24. The NRF24 module serves to transmit or receive data 
streams wirelessly between the same modules over a 2.4GHz radio 
frequency. The other NRF24 connected to Arduino and the com-
puter is set to receive data transmitted from the SEMG sensor. 

 

 
Fig. 1: EMG Sensor Transmitter System Model 

3.2. sEMG sensor Filtering 

Types of filter tested and compared in the paper are moving aver-
age, Chebyshev, Butterworth, and Elliptical filter. For moving 
average filter, filter results will be displayed by varying the num-
ber of points. To get an overview of the filter effect on the data, 
the number of points varied is 10 points, 25 points, 50 points, and 
100 points. Because the only changeable parameters is the number 
of points, then to obtain the optimal number of points, a moving 

average filter is tested using 2 to 200 points with each 1 point 
increment. Then, the filter result of the various points is compared 
to the sum absolute difference (SAD) value to find the value 
where the filter results will be more or less the same at a certain 
point.  
As for the frequency domain filters that includes Chebyshev Fil-
ters, Butterworth, and Elliptic, the first step is to display graph 
signal in the frequency domain. This process is done using FFT 

available in MATLAB. By analyzing the graph in the frequency 
domain, cut-off and filter are determined (low-pass, high-pass, 
band-pass, or band-stop). The process is followed by determining 
the optimal order. It will be determined through a trial and error 
method from the smallest value of order, which is 1. The order 
will be incrementally increased by 1 until it is analyzed that the 
filter have the same effect up to a smallest value of order. The 
order of a filter has the same effect on all three Chebyshev, But-

terworth, and Elliptic filters. 
When the filter cut-off frequency and optimal order are obtained, 
the types of filters are compared to find the the most ideal filter for 
Virtual Manufacturing purpose. 
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3.3. Semg Sensor System Calibration 

EMG sensors are calibrated in order to measure biceps brachii 
muscle contraction force so that their force values can be used as 
inputs to interact with objects in a virtual CAD application. The 

relationship between filtered EMG signal amplitudes with dumb-
bell loads that varied in weight in the real world are examined. 
Then, the R squared value of each user will be compared to de-
termine the linearity of the muscle sensor reading. To implement it 
in a virtual manufacturing system, each user line function calcu-
lated from the sample weights will be used to modify the Arduino 
code. It will allow the Arduino to modify and calibrate its reading 
depending on the user. 

4. Results 

4.1. Filtering 

 
Fig. 2: Moving average filter with different number of points / window 

sizes 

 
Fig. 3: SAD to window size graph 

In accordance with the Moving Average function theory, the graph 
will have less ripple as the number of points is increased. As the 
number of points increased, the filter took longer time to display 

the calibrated data because it needs more data. 
As shown in Figure 2, the time it took to display a calibrated data 
for 10 point Moving Average is under 1 second, compared to 100 
point Moving Average at above 2 seconds. The result would be 
better achieved with the lowest number of points or window size 
possible. With short window size, the minimum amount of data 
required to calibrate the data becomes smaller. On the other hand, 
window size must not be too small because the filter result will 

not be optimal. 

To find the optimal number of points, the Sum Absolute Differ-
ence (SAD) is calculated for each data range, from 2 data points 
up to 200 data points for each 1 point increment, which then dis-
played in graphical form. From Figure 3 it can be concluded that 
starting at 100 points, the graph starts to become linear. This 
means the number of dots or data ranges above 100 points will 
have roughly the same filter response to the data. 
To design the frequency domain filter, the signal is displayed in a 

frequency domain graph using MATLAB FFT function. 
 

 
(a) 

 
(b) 

Fig. 4: (a) Normalized frequency data of Myoware sensor, (b) Magnifica-

tion of normalized frequency data 

 
The FFT function yields a figure with an extreme graph hike in the 
frequency close to 0. This is likely due to the overall noise sources 
being minimized in addition to the rectified and filtered output 
data from the EMG Myoware sensor to some extent from the be-
ginning. Figure 4b shows that the lower end of the extreme slope 
shows the value 0.005π. If traced to its peak, this line will end at a 
frequency value of 0. This line indicates that the suitable type of 
filter is low-pass filter with a 0.005 π cut-off frequency.  

To determine the optimum order of the filter, a low-pass Cheby-
shev filter with 0.005 π cut-off frequency and 50dB passband 
ripple is designed, and then compared with increasing value of 
order. 
Figure 5 shows that the 2nd order is adequate to filter the signal 
with minimum result. The order above 2nd order has roughly the 
same result which indicates that the rest order are redundant. 
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Fig. 5: Comparison of Chebyshev filters with different order 

The optimum cut off frequency and order obtained from the trial is 

used for designing the frequency domain filter which includes 
Butterworth, Chebyshev, and Elliptical filter. The value of pass-
band ripple is determined at 0.5 dB and the stopband attenuation 
for Elliptic filter is determined at 40dB. The Butterworth, Cheby-
shev, Elliptic filter with the same cut off frequency and order and 
the optimum moving average filter obtained earlier is then com-
pared in one graph. 
 

 

Fig. 6: Comparison of Moving average, Elliptic, Chebyshev and Butter-

worth filter 

 

Fig. 7: Magnification comparison of Moving average, elliptic, Chebyshev 

and Butterworth filter around t = 5000ms 

 

The comparison of filters indicates that the filter works better in 
the frequency domain. Moving average filter fluctuate more than 
the other three filters.  
In general, elliptic and Chebyshev filters have similar curves but 
when examined on an enlarged scale, it appears that Elliptic filters 
have more ripple along their curves. 
To determine the optimal filter, the fluctuation or variation in a 
steady state of the signals are compared. This can be represented 

by the standard deviation. If the deviation standard is large, it 
means a lot of ripples in the signal, and vice versa. The standard 
deviation will be measured from the point when the signal across 
the filter is stable: the data range between seconds 9 and 10. This 
value is compared for all test filter filters. 
 
Table 1: Different Filters Standard Deviation in a Steady State Condition 

(9s – 10s) 

Filter Standard Deviation 

Butterworth 5.243 x 10
-7

 

MA100 36.03 x 10
-7

 

Chebyshev 8.619 x10
-7

 

Elliptical 6.219 x 10
-7

 

4.2. Calibration 

The calibration is done by involving 5 people with a diverse body 
mass index as sample. This diversity aims to test and know the 

difference in reading of analog values for each individual. Data 
from 5 respondent is taken for 20 seconds with variation of load 1 
kg, 2 kg, 3 kg, 4 kg, 5 kg. The weights are lifted at a 90 degrees 
angle between the arm and the elbow. 
 

Table 2: Muscle Contraction Value on Different Weight 

User 

No. 

Average Muscle Contraction Value (x 10-4 V) 

0 kg 1 kg 2 kg 3 kg 4 kg 5 kg 

1 0.25 0.58 0.75 0.99 1.56 2.33 

2 0.49 0.80 1.10 1.44 1.97 2.52 

3 0.38 0.64 0.93 1.59 2.67 2.56 

4 0.20 0.52 0.87 1.05 1.50 1.38 

5 0.15 0.29 1.17 1.11 1.29 1.47 

Total Average 0.29 0.56 0.96 1.23 1.80 2.05 

 

 
Fig. 8: Average muscle contraction on different weight 

Displayed in a graphical form, it can be seen that all the graphs of 
each respondent have a curve close to exponential. To check the 
exponential trend further, the exponential R squared value of each 
respondent are calculated. 
The R squared value table shows that the sensor readings of all 
respondents with load variations have a linear relationship close to 

1 or 100%. 
 

Respondent No. Standard Deviation 

1 0,96 

2 0,99 
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3 0,96 

4 0,85 

5 0,79 

Total Average 0.91 

5. Conclusion  

For Virtual Manufacturing purpose, the importance of obtaining a 
stable signal (minimum ripple) from EMG sensor as generated by 
the Butterworth filter exceeds the urgency of obtaining a fast roll-
off frequency at the expense of signal fluctuations such as Cheby-
shev and Elliptic filters. With other approaches, Moving Average 
filters that process filters in time domain are not very well suited 

for EMG Sensor filters because after testing, the results are not as 
optimal as other filters that do so on the frequency domain.  
Therefore, after testing for all four filters, it can be concluded that, 
although the difference between three frequency domain filter are 
not significant, the optimal filter for Myoware EMG sensors for 
the use of Virtual Manufacturing is a low-pass Butterworth filter 
with a 2nd order parameter and a cut-off frequency of 0.005π. The 
Butterworth filter has the smallest standard deviation value in a 

steady state muscle condition. 
The calibration results show that the value of the filtered EMG 
Myoware sensor with the Butterworth filter has a exponentially 
approximated output for all respondents with a minimum R 
squared value = 0.79 and a maximum R squared of 0.99. With a 
high R squared number close to 1, it is probable that the ADC 
output value of the varied load can be predicted as an exponential 
approximation. 
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