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Abstract 
 
The presence of rice weevils is causing degradation of rice quantity and quality during storage. Classifying rice grade is critical since rice 
weevils are not easily detected. This study used deep transfer learning on spectrogram images of sounds to recognize the presence or 

absence of rice weevils in a sound clip. There are 1000 audio files with rice weevil presence and 1000 audio files with the absence of rice 
weevils in the dataset, each having a duration of 5 seconds. Random environments and random number and age of insects were consid-
ered to have models that are less dependent on the environment setting. The dataset was preprocessed to generate the spectrogram image 
of each audio clip. Features of those images were extracted to train some pre-trained Keras models on the dataset. In the dataset, 1400 
images were used for training and 600 were used for testing. Each among the models Xception, ResNet50, InceptionResNetV2, and Mo-
bileNet obtained a rank-1 accuracy of 99.17% while VGG16, VGG19, and InceptionV3 all got a rank-1 accuracy of 99.33%. The average 
precision, average recall, and average F1 score in each trained model are all 99%. These account for the effectiveness of using deep 
transfer learning on spectrogram images of audio recordings in the detection of rice weevils in stored grains. This is also the first study 

that used deep transfer learning on spectrogram images in the acoustic detection of rice weevils. 
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1. Introduction 

Grain production in any country varies yearly.  It is necessary that 

grain is strategically stored from years of over-production for use 
in years of under-production. Another reason for storage is that the 
time of production is not the time of consumption. Stored grain 
can have quantity and quality losses. These losses are attributed to 
infestation by insects, mites, rodents, birds, and microorganisms 
[1]. These infestations lower crop values. Insects do not only con-
sume grain. With their metabolic byproducts and body parts, they 
contaminate the grain as well. Some produce heat and moisture 

leading to growth of microflora and the development of hotspots 
in grain. When the grains are heavily infested, they are not suita-
ble for seed purposes making them unfit for human consumption. 
Grain infestation starts right before the crops are harvested in 
grain-growing regions [2]. It is a practice that grains are stored 
year after year in the same bins, not always properly cleaned, at-
tributing to quick infestation of stored fresh grain. Recognition of 
the presence of insects such as the rice weevil with the scientific 

name Sitophilus oryzae (L.) will aide in the regular bin inspection. 
If an infestation is determined, measures such as fumigation may 
be applied right away. 
Different pest infestation detection techniques are already discov-
ered. Manual samples, traps, and probes have been used to detect 
insects on farms [1]. At present, manual inspection, sieving, crack-
ing-floatation and Berlese funnels are used to determine the pres-
ence of insects in grain handling facilities. The said methods are 

considered inefficient and time-consuming. The usefulness of 

some methods have been demonstrated in research laboratories 
[3], [4], [1]. These methods include acoustic detection, carbon 
dioxide measurement, uric acid measurement, near-infrared spec-
troscopy, and soft X-ray method. They are potential at the industry 
level to detect insects in grain samples. Image analysis programs 
have also been developed to automatically scan X-ray images to 
detect insect infestations. Near-infrared (NIR) spectroscopy has 
been investigated to detect hidden insects in wheat kernels. But X-

ray and NIR spectroscopy methods are costly. Current NIR in-
strumentation is deemed complex in terms of operating procedures 
and calibrations. Another method uses a mobile application that 
locates agricultural pests to limit the utilization of pesticides 
through pesticide monitoring [20]. 
Acoustical methods use insect-feeding sounds for automatic moni-
toring of both internal and external grain feeding insects [1]. Am-
plification and filtering of movement and feeding sounds of in-

sects aid in acoustical detection of insects hidden inside kernels of 
grain. A disadvantage though of acoustical methods is the inability 
to detect dead insects in grain and infestation by early larval stages 
of insects. 
For an adult rice weevil, there is a major peak of energy in the 
frequency spectrum, moving in a frequency range from 1.8 kHz to 
3.0 kHz, with a small resumption peak in the range 3.3 kHz to 3.8 
kHz [5]. For the rice weevil in the larval stage, the peak of energy 

is in a narrow frequency range from 1.3 kHz up to 2.0 kHz. 
A combination of sound parameterization and neural network was 
used in a study for identification of insect sounds [6]. Each acous-
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tic signal was preprocessed and segmented. MFCC values were 
used in the training of the probabilistic neural network (PNN). 
Another study used sound parameterization with MFCCs but the 
classification is through the hidden Markov model (HMM) [7]. 
There is also a study that used a combination of linear predictive 
cepstral coefficients (LPCCs), line spectral frequencies (LSFs), 
and MFCCs to extract features, with the combination of MFCC 
and LSF giving the best results. In a certain study, MFCC and 

linear frequency cepstral coefficient (LFCC) methods were used in 
a support vector machine (SVM) for successful insect classifica-
tion of 88 species [8]. Successful acoustic methods were also em-
ployed in [9] and [10]. 
A classification system was developed detecting sounds in record-
ings and classifies them as one of four types: background noise, 
whistles, pulses, and combined whistles and pulses [11]. A data-
base of underwater recordings made off the Spanish coast during 

2011 was used to test the classifier. A sound detection rate of 
87.5% was achieved for a 23.6% classification error rate through 
the use of cepstral-coefficient-based parameterization. Two pa-
rameters computed using the multiple signal classification algo-
rithm and an unpredictability measure were included in the classi-
fier to improve the said results. The parameters helped to classify 
the segments containing whistles, increasing the detection rate to 
90.3% and reducing the classification error rate to 18.1%. 

This study utilized transfer learning on spectrogram images of 
audio files to detect the presence of rice weevil sound. The follow-
ing Keras pre-trained deep neural models were used: Xception, 
VGG16, VGG19, ResNet50, InceptionV3, InceptionResNetV2, 
and MobileNet. 

2. Deep Transfer Learning: Keras Pre-

Trained Models 

Transfer learning uses pre-trained models and makes small chang-
es in the architecture [12]. The network weights from the pre-
trained model are extracted and transferred to another network 
instead of training this network from scratch, that is, learned fea-

tures are transferred. In deep learning, since large amount of data 
is needed to achieve good results, transfer learning is popular to 
avoid expensive training of new deep neural networks [13]. 
Image classification using deep convolutional networks is the 
most popular transfer learning application [13]. Such models in-
clude the Keras pre-trained models. Transfer learning allows the 
use of deep learning with a small amount of data and lower com-
putational capabilities. 

The Keras pre-trained models are used for prediction, feature ex-
traction, and fine-tuning [14]. These are models made available 
with pre-trained weights. The weights are trained on ImageNet for 
image classification. These models include Xception, VGG16, 
VGG19, ResNet50, InceptionV3, InceptionResNetV2, MobileNet, 
DenseNet, NASNet, MobileNetV2. The last three models stated 
are not used in this study. 
The said architectures are compatible with TensorFlow, Theano, 

and CNTK backends [12]. When these models are instantiated, 
they will be built according to the image data format set in the 
Keras configuration file. The following table shows each model’s 
performance on the ImageNet validation dataset, specifically the 
top-1 accuracy. 
 
Table 1: Some Pre-trained Keras Models’ Performance on the ImageNet 

Validation Dataset 

Model Size Top-1 Accuracy 

Xception 88 MB 0.79 

VGG16 528 MB 0.715 

VGG19 549 MB 0.727 

ResNet50 99 MB 0.759 

InceptionV3 92 MB 0.788 

InceptionResNetV2 215 MB 0.804 

MobileNet 17 MB 0.665 

Xception has a 299x299 default input size, VGG16 has 224x224, 
VGG19 has 224x224, ResNet50 has 224x224, InceptionV3 has 
299x299, InceptionResNetV2 has 299x299, and MobileNet has 
224x224 [15]. 

3. Materials and method 

3.1. Audio Dataset 

The audio dataset is composed of two clusters, the positive dataset 
(with rice weevil sound) and the negative dataset (without rice 
weevil sound), each set containing 1,000 audio clips. The audio 

clips are of .wav extension, each having a 5-second duration. 
Ten positive audio clips and nine negative audio clips were 
trimmed from [16]. In those ten positive audio clips, the larval 
stage of the insects in the recordings is from 16 days to 18 days 
old. Those clips were recorded noise-free using the following 
acoustic sensors: Bruel and Kjaer accelerometer, piezoelectric disk 
sensor, PVDF film sensor, 30 kHz ultrasonic sensor, and 40 kHz 
ultrasonic sensor. The nine negative audio clips, recorded using 

accelerometers, are environmental sounds without the presence of 
the rice weevil. 
The other positive audio clips, recorded using the X-NUCLEO-
CCA02M1 expansion board through the STM32 NUCLEO-
F401RE development board, were taken from the Research and 
Development Department of the Philippine Center for Postharvest 
Development and Mechanization (PHilMech). The X-NUCLEO-
CCA02M1 is an evaluation board with two digital MP34DT01-M 
MEMS microphones [19] soldered onto the board. The following 

figure shows the actual image of the X-NUCLEO-CCA02M1 
board. The microphones are the two gold components at the lower 
part of the board. 
 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 1: X-NUCLEO-CCA02M1 expansion board 

 
The board supports audio streaming to a personal computer 

through a USB connector. MP34DT01-M is an ultra-compact, 
low-power, omnidirectional, digital MEMS microphone built with 
a capacitive sensing element and an IC interface. When this board 
is flashed and connected to the computer, it will be recognized as 
a standard multichannel USB microphone. 
A variable number of rice weevil were present during the record-
ing with different noise present across clips. The next figure 
shows the data gathering setup in PHilMech. 
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Fig. 2: Audio acquisition setup 

 
In the previous figure, a layer of vinyl sheet, a layer of ordinary 

foam, and another layer of vinyl sheet were constructed between 
the wooden insulation (plywood) and the external frame 
(plywood). The total size of the box is 3 ft. by 3 ft. A layer of 
sound proofing foam covers the wooden insulation inside the box 
for audio recording. The jar contained 100 grams of rice grains 
with rice weevils. The jar was covered on top with a microfilter 
paper to prevent the insects from escaping the jar. The two built-in 
microphones of the STM32 sound recording device was 
positioned approximately 1 cm above the microfilter paper. The 

recording was done in a personal computer where the STM32 
device is connected via a USB cord. The recording application 
used was Audacity 2.2.2. 
The other negative audio clips are some environmental sounds 
randomly taken from the ESC-50 dataset that has 2,000 labeled 
environmental recordings of 50 classes with 40 clips in each class 
[17]. There are 10 classes per category, the categories being 
animal sounds, natural soundscapes and water sounds, human 

(non-speech) sounds, interior/domestic sounds, and exterior/urban 
noises. 
The following table shows the summary of the dataset parameters: 
 
Table 2: Some Pre-trained Keras Models’ Performance on the ImageNet 

Validation Dataset 

Parameters Value 

number of positive dataset 1000 

number of negative dataset 1000 

sampling rate 44.1 kHz 

duration of an audio clip 5 s 

bit rate 705.6 kbps 

number of bits 16 

number of channels 1 

dataset extension .wav 

 
All dataset audio clips were filtered using a high pass filter set at 
1.3 kHz since the frequency range for larval and adult stage weevil 
is 1.3 kHz to 3.8 kHz [5]. After filtering, the clips were 
normalized using the Peak Loudness (RMS) method. 
The spectrogram images of the resulting clips were generated 
using the librosa python package [18]. The sampling rate was set 
at 44.1 kHz, the same sampling rate of the clips. The window 
length is set at 500 samples and hop length is set as ¼ of the 

window length at 125 samples. This is to make sure that at least 
one period of the minimum rice weevil sound frequency will be 
covered. The output images are of .jpg extension, each with a size 
of 503 pixels by 376 pixels. The following figures show sample 
spectrogram images generated: 
 

 
 

 
Fig. 3: Spectrogram image of a positive audio clip 

 

 
Fig. 4: Spectrogram image of a negative audio clip 

3.2. Feature Extraction and Training 

For transfer learning, the following pre-trained Keras models were 
used as feature extractors: Xception, VGG16, VGG19, ResNet50, 
InceptionV3, InceptionResNetV2, and MobileNet. Extraction of 
features in the spectrogram image dataset was done by taking only 
the activations available before the last fully connected layer of 
each network, more specifically before the final softmax classifier. 

Those activations were taken as the feature vector of the classifier 
model. 
After the feature extraction using each model, the training of the 
Logistic Regression classifier was done using the extracted fea-
tures and labels: 70% of the data was allotted for training and 30% 
for testing. These correspond to 1400 training data and 600 testing 
data. 
The following figure shows the processes involved in each model. 

 
Fig. 5: Model processes 
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Under pre-processing, audio clips were filtered and normalized. 
The spectrogram images of the resulting audio files were generat-
ed. Deep features of these images were then extracted for classifi-
er training and testing. The classifier output will finally provide 
the prediction. 

4. Experimental Results and Discussion 

After feature extraction using the Keras pre-trained models and 
training the resulting model of new features, Xception, ResNet50, 
InceptionResNetV2, and MobileNet obtained a rank-1 accuracy of 
99.17% each while VGG16, VGG19, and InceptionV3 all got a 
rank-1 accuracy of 99.33%. 
Figure 6 shows the confusion matrix of Xception, ResNet50, In-
ceptionResNetV2, and MobileNet while Figure 7 shows the one of 

VGG16, VGG19, and InceptionV3. Label 0 is for the negative 
data while label 1 is for the positive data. 
 

 
Fig. 6: Confusion matrix of Xception, ResNet50, InceptionResNetV2, and 

MobileNet 
 

 
Fig. 7: Confusion matrix of VGG16, VGG19, and InceptionV3 

 
There are 5 negative test data predicted as positive in each model 
in Figure 6. In Figure 7, there are 4 negative test data predicted as 
positive. All other test data were predicted correctly. 

The following table shows the precision, recall (sensitivity), and 
f1 score of each model. Note that the average precision, average 
recall, and average F1 score of each model are all 0.99 or 99%. 
 

Table 3: Performance Parameters of the Trained Models 
Model Classification Precision Recall F1 Score 

Xception 
negative data 0.98 1.00 0.99 

positive data 1.00 0.98 0.99 

VGG16 
negative data 0.99 1.00 0.99 

positive data 1.00 0.99 0.99 

VGG19 
negative data 0.99 1.00 0.99 

positive data 1.00 0.99 0.99 

ResNet50 
negative data 0.98 1.00 0.99 

positive data 1.00 0.98 0.99 

InceptionV3 
negative data 0.99 1.00 0.99 

positive data 1.00 0.99 0.99 

InceptionResNetV2 
negative data 0.99 1.00 0.99 

positive data 1.00 0.99 0.99 

MobileNet 
negative data 0.98 1.00 0.99 

positive data 1.00 0.98 0.99 

5. Conclusion  

Results show that given the data used, VGG16, VGG19, and In-
ceptionV3 outperform Xception, ResNet50, InceptionResNetV2, 
and MobileNet based on their rank-1 accuracy by a difference of 

0.16%. That mere difference is not significant that any of the said 
models are said to be effective in rice weevil sound detection. The 
detection rates of the models based on rank-1 accuracy are higher 
than those of other studies. This study is also the first one to use 
deep learning on spectrogram images of acoustic files in the detec-
tion of rice weevil presence. 
It is recommended that other Keras pre-trained models such as 
DenseNet, NASNet, and MobileNetV2 be utilized as well. The 

dataset may still be expanded to include clips with rice weevil 
sound in other environments. 
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