

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.29) (2018) 173-177

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Spike Response Function Weight and Delay Updating Strategy

Using Delay Rules

Abdullah H. Almasri1*, Shahnorbanun Sahran2, Eiad Yafi3

1Faculty of Business Technology and Accounting, Unitar International University, 47301, Petaling Jaya, Selangor Darul Ehsan, Malay-

sia
2Faculty of Information Science and Technology, Center for Artificial Intelligence, Universiti Kebangsaan Malaysia, 43600, Bangi, Se-

langor Darul Ehsan, Malaysia
3University Kuala Lumpur, Malaysian Institute of Information Technology, 50250, Kuala Lumpur, Malaysia

*Corresponding author E-mail: abdullah@unitar.my

Abstract

Spike Response Function (SRF) plays an important role in the temporal coding Spiking Neural Network (SNN) as it has a significant role

to determine when the neuron should fire. This paper studies the important role of the SRF in the SNN learning stability. It proposes a

novel method to find out the rules to update delay for each class to make SRF stable, and then using these rules to update delay and

weight simultaneously at the SNN learning rule. This method updates the delay depending on the local result to make SRF stable. The

main issue of this paper is to put forward the idea that weight and delay parameters could and need to be updated simultaneously to make

both SRF and SNN stable during the learning process. The delay rules strategy which have been found could be used for pattern recogni-

tion application which use SNN. The limitation of this work is that; getting the updating delay rules depends on a sample data from each

class and the way of selecting the rules.

Keywords: Spiking Neural Network; Spike Response Function; Weight; Delay; Classification; Pattern Recognition.

1. Introduction

Spiking Neural Network (SNN) is the third generation of neural

networks; it is computationally more powerful than the previous

two generations of neural network models [1]. Experimental evi-

dence has accumulated during the last few years, something that

indicates that many biological neural systems use the timing of

single action potentials ("spikes") to encode information [2].

These experimental results from neurobiology have led to the

investigation of the third generation of neural network models

which employ spiking neurons (or "integrate-and-fire neurons") as

computational units [1]. Maass [1] has analyzed the computational

power of networks of spiking neurons with regard to temporal

coding with single spikes. It turns out that this computational

model has at least the same computational power as neural nets of

the first two generations with similar size. These mathematical

models for spiking neurons do not provide a complete description

of the extremely complex computational function of a biological

neuron. Rather, like the computational units of the previous two

generations of neural network models, these are simplified models

that.

focus on just a few aspects of biological neurons. However, in

comparison with the previous two models, they are substantially

more realistic. In particular, they describe much better the actual

output of a biological neuron. Hence this allows the researcher to

investigate on a theoretical level the possibilities of using time as a

resource for a computation and communication [1].

However, a mathematically rigorous analysis of the computational

power of networks of spiking neurons has so far been missing [1].

Maass [1] believes that such analysis will be helpful in under-

standing the organization of computations in complex biological

neural systems. Spiking neuron networks have turned out to be

very powerful [1], but there is still not much known about possible

learning and higher computational mechanisms [3].

The remaining body of this paper consists of four sections. Section

(2) shows the related works. Section (3) shows the importance of

Spike Response Function stability. Section (4) explains the meth-

od of finding the delay rules to update delay and weight simulta-

neously. Finally, the discussion is given in section (5).

2. Related Works

The algorithms which have been proposed by [4-16] alters the

weight for learning, while [3,7,12,17] alters the delay. Awadalla &

Abdellatif Sadek [18] method depends on four steps, each one

depends on the previous. Their steps are: synaptic weights update,

synaptic delay update, synaptic time constant update and neuron

threshold update. Their algorithm encounters a high computational

and time cost due to their strategy.

Updating weight and delay simultaneously was an important issue

which appeared in the literature as a missing solution for it [3-20],

to the best of the author’s knowledge none of them has found a

way to do so.

3. Spike Response Function Stability

The spike response model (SRM) is a general leaky-integrate-and-

fire model. The leaky-integrate-and-fire model describes the bio-

physical mechanisms of the neuron mostly by means of its mem-

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

174 International Journal of Engineering & Technology

brane potential [21]. Furthermore, this model gives great im-

portance to the time lap taken from the last firing event. The mod-

el describes the state of a neuron j at time t by the state variable

()j t .

Suppose that the spike response function ()st which describes

the internal state of neuron [21] is given by the equation (1) and

described in Figure 1:

1

() ;

()

where 0

st

a
st

st e
a

st t input delay

a

−

=

= − +

(1)

Fig. 1: Spike Response Function

For a spiking neuron j the potential at time t is defined by the

equation (2):

() ()
j

n

j ji ji i ji

i

u t w t t d

= − − (2)

By looking at equation (2), SRF and weight plays a main role in

determining the output value which determines which neuron will

fire. The st parameter which passes to the function needs to be

studied in such a way to make it stable during the learning

process. Three parameters pass through ()st which are (t, input

and delay) as appeared in equation (1). The first two are stable

which means that the delay parameter which passed as a parameter

in the SRF plays a hiding role in the learning and needs to be

studied to make it stable during learning process.

After presenting the input pattern to the SNN, the neuron which

has first been fired is found; the weight will be updated using

learning algorithm technique to update weight whether to decrease

it or to increase it depends on some condition.

Now, the question is: if the network feeds by the same inputs after

updating the weights, will the same winner neuron fire again first;

especially if it was in the correct class?

To clarify this idea, this scenario is studied: suppose that the

neuron which has first been fired belongs to the correct class,

which means if the network feeds with the same inputs after

updating the weight using the learning rules used, the question is:

will the same neuron fire again first which is in the correct class?

There is no guarantee that if the network feeds with the same input

after updating the weight using learning rules, the same winner

neuron in the correct class will be fired again first; and there is no

SNN learning algorithm guaranteeing so.

However, there is something interesting in the SNN which needs

to be studied well, that is, updating the weight will normally let

the internal state of the neuron i.e. SRF ()st change, and that

will lead the winning time of the neuron change dramatically,

which means that the winning time changed in unexpected and

unpredictable manner because of ()st behaviour.

Therefore, the objective of this paper is to study how the ()st

could be stable after updating the weight, verify the role of ()st

in the learning process, and reach to the stage to update delay and

weight simultaneously at the learning rule. To do so, the rules of

updating the delay parameter need to be obtained, then discover

the relation between the class type and the behaviour of ()st ,

and put up the rules for updating the delay at the learning rule. So

by this way, the weight and delay parameters would be updated

simultaneously at the learning rule and that is the main objective

in this paper. With this finding, more research is needed on updat-

ing weight and delay simultaneously in SNN learning algorithm.

4. Identifying Delay Rules Proposed Method

For easy analysis and implementation, a simple method has been

used, n records have randomly been selected from each class

type as a sample data, a tracking number for updating delay rule is

used for each class type to select the most frequent updating rule

repeated during the learning process for each class type.

If the neuron fires at
winnertime wtst st= , when the network feeds with

the same input after updating the weight, the neuron could fire at
1

(, or)

(, 1 or 1)

stepst

wt wt step wt step

wt wt wt

st st st st st

st st st

=
− + ⎯⎯⎯→

− +
, one step back and

forward
wtst is used here to choose the delay rule for ease of

implementation, as after updating the weight and feed the SNN

with the same record, the neuron is expected to not fire far away

from the previous and subsequent stage, and it is almost enough to

show that the delay needs to be updated to make SRF stable.

Delay rule is the rule to update delay at the learning rule through

finding out the maximum times (, 1 or 1)wt wt wtst st st− + appears

using n records selected for each class.

4.1. Steps to make SRF and though SNN learning stable

Five steps to make SRF and though SNN learning stable are

presented in Figure 2, and discussed in detail as follows:

Step1. Processing Stage (Find Old Winner).

Step 4. Update Delay Rule.

Step 5. Choose Delay Rule for Class(i).

Step 3. Spike Response Function Behavior.

Step 2. Update Weight.

Update

Weight and Delay

Simultaneously

Fig. 2: General site-specific proposed to make SRF stable

4.1.1. Processing stage (finding old winner oldwinner)

After selecting n records randomly from each class as a sample

data, one by one record feeds to the SNN to find out the winning

neuron during the learning cycle for Class i ; min max[,]Input tc tc ,

min max[,]Delay d d . Where mind and maxd refer to the minimum

and maximum value of delay, mintc and maxtc refer to the

minimum and maximum value of the temporal coding assigned

experimentally.

International Journal of Engineering & Technology 175

After finding the winning neuron, the spike time of the winning

neuron
wtst is kept as a reference for future use. The pseudo code

for this stage is in Figure 3.

Step 1:

Present a training input pattern from Class i to the SNN.

Step 2:

FOR each t DO

 Update the synapse potential.

 Update the output.

WHILE t timewindow

Step 3: Find winner (call it
oldwinner).

Fig. 3: Pseudo code for processing stage

4.1.2. Update weight

Updating the weights is performed by using a learning algorithm

technique for a classification task. There is no specific learning

algorithm that has been selected from the literature to apply this

technique, as the objective is to discuss the importance of SRF and

the proposed technique in order to determine the delay rules that

will aid in reaching the point in which the SNN learning algorithm

is able to simultaneously update the weight and delay values.

4.1.3. Spike response function behavior

After updating the weights, the SNN again feeds back with the

same record, which has been used before to study the ()st be-

havior whether it is static or dynamic through seeing whether the

same neuron, which has been won before
oldwinner , wins again

newwinner . Here are two cases that need to be addressed: The first

one is that the
oldwinner is in the correct class; and the second

case is if the
oldwinner is in the incorrect class, the pseudo code

for the two cases are in Figure 4.

In the first case, two cases need to be studied: the first one is if the

newwinner is the same as
oldwinner , here ()st is stable; so it just

needs to update the delay rule track number that no change on the

delay rule has been done in this case and then return to the learn-

ing algorithm with new input data. The second one is if the

newwinner is not the same as the
oldwinner ; here ()st needs to be

stabilized. The winning neuron needs to be found at 1wtst − and

1wtst + in one step back and one step forward only; for ease of

analysis and implementation.

So, three cases need to be addressed and studied: the first one is

finding the winner at 1wtst − , if
oldwinner is the same as the

newwinner , that is, the ()st needs to be stabilized by updating the

delay rule, and then updating the track number whose rule needs

to be updated. The second is to find the winner at 1wtst + , if the

oldwinner is same as the newwinner , that is, the ()st needs to be

stabilized by updating the delay rule, and then updating track

number whose rule needs to be updated. The third case is if the

winning neuron at 1wtst − and 1wtst + is not the same as the

oldwinner , that is, if the winning neuron could be at wtst n− or

wtst n+ where max2,3,...,n st= , nothing is to be done in this case

as mentioned earlier in this paper that one step back and one step

forward has been taken for ease of analysis and implementation.

In the second case, two cases need to be studied: the first one is if

the newwinner is same as oldwinner ; here ()st needs to be stabi-

lized. The winning neuron needs to be found at 1wtst − and

1wtst + in only one step back and one step forward for ease of

analysis and implementation as follows; three cases need to be

addressed and studied: the first one is to find the winner at 1wtst − ,

if the
newwinner is in the correct class, that is, the ()st needs to

be stabilized by updating the delay, so it needs to update the delay

rule track. The second one is to find the winner at 1wtst + , if the

newwinner is in the correct class, that is, the ()st needs to be

stabilized by updating the delay, so it needs to update the delay

rule track. The third one, if the winning neuron is at 1wtst − and

1wtst + not in the correct class, that is, if the winning neuron

could be at
wtst n− or

wtst n+ where
max2,3,...,n st= , in this

case nothing is to be done in this method. The second case is if the

newwinner is not the same as the
oldwinner : If

newwinner is in the

correct class, so it just needs to update the delay rule track, or else

return to the learning algorithm with new input data

A. If
oldwinner is in the correct class:

 a.
old newwinner = winner

 Go to update delay rule (section 4.4).

 b.
old newwinner winner (()st dynamic)

 Case (1):

 Update the synapse potential at
wtst - 1

 Update the output at
wtst - 1

 Find winner at
wtst - 1

 If
old newwinner = winner Go to update delay rule

(section 4.4).

 Case (2):

 Update the synapse potential at
wtst +1

 Update the output at
wtst +1

 Find winner at
wtst +1

 If
old newwinner = winner Go to update delay rule

(section 4.4).

 Case (3):

 If neither Case (1) nor Case (2) then return to the

learning algorithm with new input data from Class

i.

B. If
oldwinner is in the incorrect class:

 a.
old newwinner = winner

 Case (1):

 Update the synapse potential at wtst - 1

 Update the output at
wtst - 1

 Find winner at
wtst - 1

 If
newwinner is in the correct class Go to update

delay rule (section 4.4).

 Case (2):

 Update the synapse potential at
wtst +1

 Update the output at
wtst +1

 Find winner at wtst +1

 If newwinner is in the correct class Go update delay

rule (section 4.4).

 Case (3):

 If neither Case (1) nor Case (2) then return to the

learning algorithm with new input data from Class

i.

 b. old newwinner winner

 If newwinner is in the correct class go to update delay

rule (section 4.4), else return to the learning algorithm

with new input data from Class i.

Fig. 4: Pseudo code proposed for SRF behavior

.

176 International Journal of Engineering & Technology

4.1.4. Update delay rule

To stabilize the SRF, only one of three delay rules will be updat-

ed; these are
1new olddly dly= ,

2
1new olddly dly= − or

3
1new olddly dly= + where

1newdly ,
2newdly and

3newdly represent the

track number for how many times the delay rule repeated during

the learning cycle; and here three cases will be studied as shown in

Figure 5.

Step1: Tracking delay rules parameter:

1

2

3

1

1

new old

new old

new old

dly dly

dly dly

dly dly

 =

= −

= +

Step 2:

IF winner fires at

wtst
1new ++dly

ELSE IF winner fires at

wtst - 1
if ;

if

 ;

2

3

wt wt max wt new

wt wt max wt new

st (st) (st) dly

st (st) (st) dly

 + +

 + +

ELSE IF winner fires at

wtst +1
if ;

if

 ;

3

2

wt wt max wt new

wt wt max wt new

st (st) (st) dly

st (st) (st) dly

 + +

 + +

Step 3: Then return to the learning algorithm with new

input data from Class i.

Fig. 5: Pseudo code proposed for updating delay rule

The first case is if the
newwinner neuron fires at

wtst , the delay

rule
1newdly will remain the same. The second case is if the

newwinner neuron fires at 1wtst − , the delay will be updated as

follows; if the
wtst is greater than

max()st , the delay will be de-

creased one step, or else it will be increased one step. The third

case is if the newwinner neuron fires at 1wtst + , the delay will be

updated as follows; if the
wtst is greater than

max()st , the delay

will increase one step, or else will decrease one step. The delay

change range would be [,]step stepdly n st dly n st− + .

4.1.5. Choosing delay rule for class i

Finally, choosing the delay rule for each Class i is carried out

using equation (3) as follows:

1 2 3() ((, ,))new new newClass i SelectRule Max dly dly dly= (3)

The maximum value within
1newdly ,

2newdly and
3newdly is selected

and employed in the learning rule to update the delay for class i .

Next, it returns to the processing stage with another class to de-

termine its delay rule. In other words, after the learning cycle is

complete for all the records that have been selected for class i (e.g.,

if 10n = records have been selected from each class, and three

delay rules could be applied (
1newdly ,

2newdly or
3newdly)); if the

delay rule
1newdly is repeated 3 times, 2 times for rule

2newdly , and

5 times for rule
3newdly ; Rule

3newdly will be selected to reflect the

behavior of ()st for class i , as the track number is the maxi-

mum. (i.e.) for class i , the delay rule will be
3newdly . Further

investigation is required to select n to tackle the situation where

the repeated times for two rules are equal.

4.2. Update weight and delay simultaneously

After finding out all delay rule for each class, these rules will be

used for updating weight and delay simultaneously at the learning

rule. The learning rule will be as shown in Figure 6.

A. Update weight (as used in the learning algorithm rule

for classification).

B. Update delay.

IF the winner belongs to:

 Case 1: Apply the reflecting updating delay rule for

class 1.

Case 2: Apply the reflecting updating delay rule for

class 2.

…

Case
classN : Apply the reflecting updating delay

rule for class
classN

END IF.

Fig. 6: The basic steps proposed of updating weight and delay

Updating delay does not depend on the state if the winner in the

correct or incorrect class. The delay rule is founded for both cases

when the neuron in the correct or incorrect class (Refer to 4.3). So

the updating delay rules will be as in step 2.

5. Discussion

Two main issues at this paper have been studied. Firstly, the hid-

ing role of SRF during the learning process and the need to make

it stable during the learning process. Secondly, the need to update

weight and delay simultaneously at the main learning rule to make

SNN learning rule stable.

This paper proves logically that SRF plays an important role in the

temporal coding SNN as it has a significant role to determine

when the neuron should fire. An SNN learning stability is an im-

portant issue that needs to be improved by finding out the parame-

ters which play an important role during the learning process

without taking care of assigning those parameters carefully, as the

role of those parameters is still a going debate.

6. Conclusion

SRF stability guides this research study to come to the point where

weight and delay would be updated simultaneously at the learning

rule to make SNN learning stable as much as possible, which is

the main objective of this paper.

References

[1] Maass, W., Networks of spiking neurons: the third generation of
neural network models, Neural Networks, Vol 10, No. 9, pp. 1659-

1671, 1997

[2] Hopfield, J., Pattern recognition computation using action potential
timing for stimulus representation, Nature, Vol 376, No. 6535, pp.

33-36, 1995.

[3] Natschläger, T. & B. Ruf 1998. Spatial and temporal pattern analy-
sis via spiking neurons. Network: Computation in Neural Systems

9(3): 319-332.

[4] Bohte, S., H. La Poutré & J. Kok 2002. Unsupervised clustering
with spiking neurons by sparse temporal coding and multilayer

RBF networks. IEEE Transactions on Neural Networks 13(2): 426-

435.
[5] Bohte, S. M., J. N. Kok & H. La Poutré 2002. Error-

backpropagation in temporally encoded networks of spiking neu-

rons. Neurocomputing 48(1–4): 17-37.
[6] Bohte, S. M., J. N. Kok & H. La Poutre 2000. Unsupervised classi-

fication of complex clusters in networks of spiking neurons. Inter-

national Joint Conference on Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS. 3 pp. 279-284 vol.3.

International Journal of Engineering & Technology 177

[7] Charles, E. Y. A. 2006. Supervised and Unsupervised Weight and

Delay Adaptation earning in temporal Coding Spiking Neural Net-
works. Thesis Doctor of Philosophy Cardiff, Cardiff.

[8] Ghosh-Dastidar, S. & H. Adeli 2007. Improved spiking neural net-

works for EEG classification and epilepsy and seizure detection. In-
tegrated Computer-Aided Engineering 14(3): 187-212.

[9] Ghosh-Dastidar, S. & H. Adeli 2009. A new supervised learning

algorithm for multiple spiking neural networks with application in
epilepsy and seizure detection. Neural Networks 22(10): 1419-1431.

[10] Grüning, A. & I. Sporea 2012. Supervised Learning of Logical Op-
erations in Layered Spiking Neural Networks with Spike Train En-

coding. Neural Processing Letters 36(2): 117-134.

[11] Jianguo, X. & M. J. Embrechts 2001. Supervised learning with
spiking neural networks. International Joint Conference on Neural

Networks, 2001. Proceedings. IJCNN '01. pp. 1772-1777 vol.3.

[12] Ruf, B. & M. Schmitt 1998. Self-organization of spiking neurons
using action potential timing. IEEE Transactions on Neural Net-

works 9(3): 575-578.

[13] Sahran, S. 2007. Application of Spiking Neural Networks and the
Bees Algorithm to Control Chart Pattern Recognition.Thesis Doctor

of Philosophy Cardiff, Cardiff.

[14] Sporea, I. & A. Grüning 2012. Supervised Learning in Multilayer

Spiking Neural Networks. Neural Computation 25(2): 473-509.

[15] Zhang, C.-w. & H.-j. Liu 2009. A New Supervised Spiking Neural

Network. Second International Conference on Intelligent Computa-
tion Technology and Automation, 2009. ICICTA '09. 1 pp. 23-26.

[16] Kasabov ,N.K.(2014).NeuCube: A spiking neural network architec-

ture for mapping, learning and understanding of spatio-temporal
brain data. Neural Networks , 52,62–76.

[17] Tao, X. & H. Michel 2004. Data clustering via spiking neural net-

works through spike timing-dependent plasticity. 1 pp. 168–173.
[18] Awadalla, M. H. A. & M. Abdellatif Sadek 2012. Spiking neural

network-based control chart pattern recognition. Alexandria Engi-

neering Journal 51(1): 27-35.
[19] QingXiang, W., D. Bell, Q. Guilin & C. Jianyong 2006. Knowledge

Representation and Learning Mechanism Based on Networks of

Spiking Neurons. Systems, Man and Cybernetics, 2006. SMC '06.
IEEE International Conference on. 4 pp. 2796-2801.

[20] Abdullah H. Almasri and Shahnorbanun Sahran, 2014. Time Win-

dow, Spike Time and Threshold Boundary for Spiking Neural Net-
work Applications. Journal of Applied Sciences, 14: 317-324.

[21] Wolfgang Maass & C. M. Bishop. 2001. Pulsed Neural Networks

Ed. 1st Edition. Cambridge, Massachusetts: The MIT Press.

