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Abstract 
 

The autoregressive model is a mathematical model that is often used to model data in different areas of life. If the autoregressive model is 

matched against the data then the order and coefficients of the autoregressive model are unknown. This paper aims to estimate the order 

and coefficients of an autoregressive model based on data. The hierarchical Bayesian approach is used to estimate the order and coeffi-

cients of the autoregressive model. In the hierarchical Bayesian approach, the order and coefficients of the autoregressive model are as-

sumed to have a prior distribution. The prior distribution is combined with the likelihood function to obtain a posterior distribution. The 

posterior distribution has a complex shape so that the Bayesian estimator is not analytically determined. The reversible jump Markov 

Chain Monte Carlo (MCMC) algorithm is proposed to obtain the Bayesian estimator. The performance of the algorithm is tested by using 

simulated data. The test results show that the algorithm can estimate the order and coefficients of the autoregressive model very well. 

Research can be further developed by comparing with other existing methods. 
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1. Introduction 

An autoregressive model is a time series model that is often used 

to model data in different areas of life. The autoregressive model 

(AR) is a flexible model by setting the order and model parame-

ters. Okada et al. [1] used the AR model to diagnose Parkinson's 

disease. Ramdane-Cherif et al. [2] applied the AR model to the 

eye tremor movement. The eye tremor movement is extracted 

from the recorded eye position signal. Kisi [3] used the AR model 

to predict stream flow. Zhao, Morgan, and Davis [4] used the AR 

model to classify the output from gas chromatography. Lee and 

Chon [5] used the AR model to model the extraction of respiratory 

rate. Figueiredo and Figueiras [6] used the AR model to detect 

damage. Kim, Faloutsos, and Yang [7] used the AR model to pre-

dict EEG data. Jayawardhana et al. [8] used the AR model to iden-

tify structural damage. Zhang, Qi, and Li [9] used the AR model 

to simulate dynamic light scattering (DLS) signals. Zhao et al. 

[10] used the AR model to predict channels in wireless networks. 

Dai, Liu, and Zhang [11] applied the AR model to the pre-

earthquake ionospheric anomaly analysis. Yuewen et al. [12] used 

the AR model to predict the engine's exhaust gas main engine 

temperature. The AR model can predict the changing trend of 

smoke temperature. Song [13] used the AR model to identify the 

frequency of random signals. Kaewwit, Lursinsap, and 

Sophatsathit [14] used the AR model to determine the high accu-

racy of biometric electroencephalography (EEG). Padmavathi and 

Krishna [15] used the AR model to detect atrial fibration. 

Let  x = (x1, … , xn)  be n time series data where n denotes a 

number of observations. This time series is said to have a p-order 

AR model, written by AR (p), when this time series satisfies the 

stochastic equation as follows: 

xt = zt + ∑ ϕi
(p)

xt−i

p

i=1
 (1) 

 

for i = 1,…, n. The random variable zt is a random error at time t 

and  zt is assumed to have a normal distribution with mean 0 and 

variance σ2 . The vector ϕ
(p)

= (ϕ1
(p)

, … , ϕp
(p)

) denotes the 

coefficient vector of model AR (p). The AR(p) model is called 

stationary if and only if the equation ϕ(b) = 1 − ∑ ϕi
(p)

bip
i=1  is 

zero for value b outside the circle with radius equal to one. 

If the AR model is matched against the data, generally the order 

and the AR model coefficients are unknown. Methods to estimate 

the AR model order have been proposed by several authors, for 

example: [1] and [16]. Okada et al. [1] used the Akaike 

information criterion (AIC) to estimate the AR modeling order. 

Khorshidi and Karimi [16] compared various criteria, namely the 

final prediction error (FPE) criterion and the AIC, to estimate the 

AR model order. Likewise, methods for estimating AR model 

parameters have been proposed by several authors, for example: 

[16] and [17]. Khorshidi and Karimi [16] used the Least-Squares-

Forward (LSF) method to estimate the AR model parameters. 

Chen et at. [17] used Hubor's M-estimation theory to estimate the 

AR model parameters. But in the various parameter estimation 

methods that is proposed by the authors, the order model is often 

assumed to be known. 

This paper proposes the estimation of AR order and AR model 

parameters simultaneously that satisfy the condition for 

stationarity. The stationary AR model is very useful for 

forecasting. This paper aims to estimate parameter values 

(p, ϕ
(p)

, σ2) of the AR model simultaneously based on 

observational data x = (x1, … , xn). 
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2. Research Method 

This research uses hierarchical Bayesian approach. The AR order 

model, the AR model coefficients, and the error variance are 

considered as random variables having a certain distribution. This 

distribution is known as the prior distribution. Determination of 

the prior distribution for the parameters (p, ϕ
(p)

, σ2) is done in the 

following way: The prior distribution of the order p is chosen by 

the binomial distribution with the parameter λ. The conditional 

distribution of the coefficient ϕ
(p)

if known p is a uniform 

distribution at the interval of (−1,1)p. The prior distribution of the 

error variance σ2 is the inverted gamma distribution with 

parameters 1 and  β/2. Hierarchically, the prior distribution of  λ 

is the uniform distribution at the interval (0,1). The prior 

distribution of β is Jeffrey's distribution. Then the prior 

distribution of parameters (p, ϕ
(p)

, σ2)  is combined with the 

probability function of x to obtain the posterior distribution of 

parameters (p, ϕ
(p)

, σ2) .  Let π (p, ϕ
(p)

, σ2) express the prior 

distribution for parameters (p, ϕ
(p)

, σ2)  and let 

f (x|p, ϕ
(p)

, σ2)represents the likelihood function for data x, then 

the posterior distribution for the parameters (p, ϕ
(p)

, σ2) can be 

expressed as follows: 

π (p, ϕ
(p)

, σ2|x) ∝  f (x|p, ϕ
(p)

, σ2)  π (p, ϕ
(p)

, σ2) 

The posterior distribution is proportional to the multiplication of 

likelihood function and prior distribution. Since the order p is not 

known, the form of posterior distribution is very complicated. The 

determination of the Bayes estimator cannot be done analytically. 

Therefore the Bayes estimator is determined using the reversible 

jump MCMC algorithm [18]. Reversible jump MCMC algorithm 

allows the transformation from one AR model to another AR 

model. Transformation is not just from one AR model to another 

AR model that has the same order, but the transformation from 

one AR model to another AR model that has a different order. In 

other words, the transformation is done in a space that has 

different dimensions. The performance of reversible jump MCMC 

algorithm is tested using simulated data. 

3. Results and Discussion 

Let s = (xp+1, … , xn) be the realization of the AR(p) model. If the 

value 𝑠0 = (x1, … , xp) is known, the likelihhod function of s can 

be written more or less as follows: 

 

L (s|p, ϕ
(p)

, σ2) = (
1

2πσ2)
(n−p)/2

exp

−
1

2σ2 ∑ g2 (t, p, ϕ
(p)

)
n

t=p+1
 

(2) 

 

Where 

g2 (t, p, ϕ
(p)

) = xt − ∑ ϕi
(p)

xt−i

p

i=1
 (3) 

 

For t = p + 1, … , n with initial value x1 = ⋯ = xp = 0. Let  Sp 

be the stationarity region. Let ϕ
(p)

= ( ϕ1
(p)

, … , ϕp
(p)

)and r
(p)

=

( r1 , … , rp ). By using transformation 

 

F: ϕ
(p)

∈ Sp → r
(p)

∈ (−1,1)p (4) 

 

Then the model AR (xt)t∈Z  is stationary if and only if 

( r1 , … . , rp ) ∈ (−1,1)p  [19]. Further likelihood function for x 

can be rewritten as follows : 

L (s|p, ϕ
(p)

, σ2) = (
1

2πσ2)
(n−p)/2

exp

−
1

2σ2
∑ g2 (t, p, F−1 (ϕ

(p)
))

n

t=p+1
 

(5) 

3.1. Hierarchical Bayesian estimator 

The determination of the prior distribution of the parameters men-

tioned above is as follows: 

a) The prior distribution for order p is binomial distributed with 

parameter  λ 

 

π(p|λ) = Cpmax

p
λp(1 − λ)pmax−p (6) 

  

b) For order p is determined, the distribution for coefficient 

vector  r
(p)

   is uniform distribution on the interval  (−1,1)p 

c) The distribution for variance σ^2 is inverted gamma distribu-

tion with parameters α/2 and β/2 

 

π(σ2|α, β) =
(β/2)α/2

Г(α/2)
(σ2)−(1+α/2)exp −

β

2σ2
 

 

(7) 

Here the distribution for hyperparameter λ is uniform distribution 

on the interval (0,1), the value of α is taken equals 2, and the dis-

tribution for parameter β is Jeffrey's distribution. Let H1 =

(p, r
(p)

, σ2)  and  H2 = (λ, β) .  Thus the prior distribution for 

parameters H1 and  H2 can be presented as follows: 

 

π(H1, H2) =  π(p|λ)π (r
(p)

|p) π(σ2|α, β)π(λ)π(β) (8) 

 

= Cpmax

p
λp(1

− λ)pmax−p (
1

2
)

p (β/2)α/2

Г(α/2)
(σ2)−(1+α/2)exp

−
β

2σ2

1

β
 

(9) 

According to Bayes's Theorem, posterior distributions for parame-

ters H1 and H2 can be expressed as 

π(H1 , H2|s) ∝  L(s|H1)π(H1, H2) 

Posterior distribution is a combination of likelihood function and 

prior distribution that is assumed before the sample is taken. In 

this case the posterior distribution π(H1, H2|s) has a very compli-

cated form so that the Bayes estimator cannot be determined by 

analysis. Therefore the reversible jump MCMC algorithm is pro-

posed to determine the Bayes estimator.  

3.2. Reversible jump MCMC algorithm 

Let M = (H1, H2). In general, the MCMC method is a sampling 

method by creating a homogeneous Markov chain M1, … . . , Mn 

that satisfies aperiodic and irreducible properties such that 

M1, … . . , Mn can be considered as a random variable following the 

distribution π(H1, H2|s) . Thus, the M1, … . . , Mn  can be used to 

estimate the parameter M. To realize it Gibbs Hybrid algorithm is 

adopted. It consists of two stages: (1) the distribution simulation 

of π(H1|H2, s) and (2) the simulation distribution of π(H2|H1, s). 

The Gibbs algorithm [20] is used to simulate the distribu-

tion π(H2|H1, s). The reversible jump MCMC algorithm is used to 

simulate the distribution π(H1|H2, s). 

The distribution simulation π(H2|H1 , s) is done in the following 

way: The conditional distribution H2 is known to H1 and s can be 

expressed as 

π(H2|H1, s) ∝ λp(1 − λ)pmax−p(β/2)α/2exp −
β

2σ2

1

β
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Since this distribution is a gamma distribution with parameters α/2 

and  
1

2σ2
 , the Gibbs algorithm can be used to simulate the distribu-

tion of  π(H2|H1 , s).  

The distribution simulation π(H1|H2, s) is done in the following 

way: The conditional distribution of H1  if it is known H2and s is 

π (p, r
(p)

|H1, s) = ∫ π(H1|H2, s)
R+

dσ2 (10) 

Let v =
α

2
+

n−pmax

2
 and w =

β

2
+

1

2
∑ g2(t, p, F−1(r

(p)
))n

t=pmax+1 . 

Since w =
β

2
+

1

2
∑ g2(t, p, F−1(r

(p)
))n

t=pmax+1   then  

π (p, r
(p)

|H1, s) ∝ Cpmax

p
λp(1 − λ)pmax−p (

1

2
)

p (β/2)α/2

Г(α/2)

1

β

Г(v)

wv  

On the other hand, the distribution π(H1|H2, s) can be expressed 

as the product of the distribution of π (p, r
(p)

|H1, s) and the dis-

tribution of π(σ2|p, r
(p)

, H2, s), i.e: 

(H1|H2, s) = π (p, r
(p)

|H1, s) π (σ2|p, r
(p)

, H2, s) (11) 

Furthermore, to simulate the distribution of π(H1|H2, s), a hybrid 

algorithm is used. It consists of two stages: (a) The distribution 

simulation π (σ2|p, r
(p)

, H2, s) , (b) The distribution simulation 

π (p, r
(p)

|H1, s). Gibbs algorithm is used to simulate the distribu-

tion  π (σ2|p, r
(p)

, H2, s).  

The distribution simulation π (p, r
(p)

|H1 , s) is done by using the 

reversible jump MCMC algorithm. The reversible jump MCMC 

algorithm uses three types of transformations, namely: birth of the 

order, death of the order, and change in the coefficient 

3.2.1. Birth / death of the order 

The birth of the order from the AR(p) model to the AR(p+1) 

model is done by adding coefficients. Let p be the actual value for 

the order and 𝑟
(𝑝)

= ( 𝑟1 , … . , 𝑟𝑝 )  is the actual value for the 

AR(p) model coefficient. As in Suparman and Doisy [21], the 

random variable u is chosen according to the triangular 

distribution with mean 0 

𝑔(𝑢) = {
𝑢 + 1, −1 < 𝑢 < 0
1 − 𝑢, 0 < 𝑢 < 1

 (12) 

The coefficient vector  r
(p)

 is completed with random variable u, 

so the proposed new coefficient vector is r
(p+1)

=

( r1 , … . , rp , u) . The acceptance/rejection probability 

corresponding to the birth order is αN = min{1, rN} where 

rN =
π (p + 1, r

(p+1)
|H2, s)

π (p, r
(p)

|H2, s)

q (p + 1, r
(p+1)

; p, r
(p)

)

q (p, r
(p)

; p + 1, r
(p+1)

)
 (13) 

In contrast, the death of the order from the AR(p+1) model to the 

AR(p) model is done by removing the last coefficient. Let p+1 be 

the actual value of the order and r
(p+1)

= ( r1 , … . , rp , rp+1) is 

the actual value for the AR(p+1) model coefficient. The 

coefficient  rp+1  is removed. So the proposed new coefficient 

vector is r
(p)

= ( r1 , … . , rp ) . The probability of 

acceptance/rejection corresponding to order death is αD =
min{1, rN

−1}. 

3.2.2. Change of the coefficient 

The change of coefficient from AR(p) to AR(p) is done by chang-

ing each coefficient. Let 𝑟
(𝑝)

= ( 𝑟1 , … . , 𝑟𝑝 ) is the actual value 

for the coefficients. For i=1,...,p, take the random variable 𝑢𝑖 =

𝑠𝑖𝑛(𝑟𝑖 + 𝑠) with s taken according to the uniform distribution on 

the interval [-π/10,π/10]. So the new coefficient vector is 𝑟
∗(𝑝)

=

( 𝑟1
∗, … , 𝑟𝑖

∗ = 𝑢𝑖 , … , 𝑟𝑝
∗) . The acceptance/rejection probability 

corresponding to the coefficient change is 𝛼𝐶 = 𝑚𝑖𝑛{1, 𝑟𝐶} where 

rC =
π (p, r

∗(p)
|H2, s)

π (p, r
(p)

|H2, s)

q (p, r
∗(p)

; p, r
(p)

)

q (p, r
(p)

; p, r
∗(p)

)
 

3.3. Simulation study 

The reversible jump MCMC algorithm is used to identify the AR 

model order and the AR model parameter for the simulated data. 

A simulation study is conducted to find out whether the perfor-

mance of the reversible jump MCMC algorithm worked well or 

not.  

To know the performance of reversible jump MCMC algorithm 

simulation study is conducted. Figure 1 is an AR simulation data 

made according to the equation (1) with n = 250, order p = 3, 

ϕ
(3)

= (ϕ1
(3)

= −0.36, ϕ2
(3)

= −0.24, ϕ3
(3)

= 0.81)and  σ2 = 4.  

  
Fig 1. : Simulated Data 

 

The reversible jump MCMC algorithm is implemented in this 

simulation data to estimate the AR model order, AR model coeffi-

cients, and error variance. Figure 2 shows the histogram of the AR 

model order.  

 
Fig 2.: Histogram of the AR Order 

 

Figure 2 shows that the mode of AR order is reached in order 3. 

This means that the estimator for AR order is p = 3. After it is 

determined that the most suitable AR model is AR (3) then the 

estimator for the AR coefficient and corresponding error variance 

is determined, i.e:  

ϕ̂
(3)

= (ϕ̂1
(3)

= −0.36, ϕ̂2
(3)

= −0.26, ϕ̂3
(3)

= 0.82) 

and  σ̂2 = 3.79. Table 1 summarizes the comparison between AR 

order estimators, AR coefficient estimators, and error variance 

estimators with AR-order values, AR coefficients, and error vari-

ance. 
 

Table 1: Comparison between the value of parameters and the value of 

estimators 

Value of Parameters Value of Estimators 

p = 3 p̂ = 3 

ϕ
(3)

= (−0.36, −0.24, 0.81) ϕ̂
(3)

= (−0.36, −0.26, 0.82) 

σ2 = 4 σ̂2 = 3.79 
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Table 1 shows that the reversible jump MCMC algorithm can 

estimate the AR model order, AR model coefficients, variance 

error very well. 

4. Conclusion  

The above description is a review of the theory of the reversible 

jump MCMC algorithm to estimate the order of AR model, AR 

model coefficient, and error variance. The simulation study shows 

that the algorithm can estimate AR model parameters very well. 

The proposed algorithm has the advantage that the resulting esti-

mation is an AR model that verifies the condition of the stationari-

ty. Another advantage is that the algorithm can estimate parame-

ters  (𝑝, 𝜙
(𝑝)

, 𝜎2) simultaneously. 

Research can be further developed in comparison with existing 

estimation methods to determine effectiveness. Research may also 

be developed on the replacement of assumptions for errors, such 

as AR models with not normally distributed errors. 
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