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Abstract 
 

Model selection introduce uncertainty to the model building process, therefore model averaging was introduced as an alternative to over-

come the problem of underestimate of standards error in model selection. This research also focused on using selection criteria between 

Corrected Akaike's Information Criteria (AICC) and Bayesian Information Criteria (BIC) as weight for model averaging when involving 

interaction effects. Mean squared error of prediction (MSE(P)) was used in order to determine the best model for model averaging. 

Gateshead Millennium Study (GMS) data on children weight used to illustrate the comparison between AICC and BIC. The results 

showed that model selection criterion AICC performs better than BIC when there are small sample and large number of parameters in-

cluded in the model. The presence of interaction variable in the model is not significant compared to the main factor variables due to the 

lower coefficient value of interaction variables. In conclusion, interaction variables give less information to the model as it coefficient 

value is lower than main factor. 
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1. Introduction 

A process of developing a probabilistic model that best describe 

the relationship between the dependent and independent variable 

is called model building. In model building, only the variable that 

best describe the model will be include. This process can be done 

by using several model building approaches. Model selection in 

practice requires the choice of a selection procedure, such as for-

ward selection or backward elimination, coupled with a selection 

criterion, such as AIC or BIC, to select a small subset of variables 

to include in the model [2,8]. Model selection introduces addition-

al uncertainty into the model-building process, but the standard 

errors of parameter estimates obtained from the selected model by 

standard statistical procedures will underestimate the true variabil-

ity. The properties of standard parameter estimates obtained from 

the selected model do not reflect the stochastic nature of the model 

selection process [1]. 

In the literature [1,2,3,6], model averaging has been proposed as 

an alternative to model selection which is intended to overcome 

the underestimation of standard errors that is a consequence of 

model selection. Model averaging aims to incorporate the uncer-

tainty associated with model selection into parameter estimation, 

by combining estimates over a set of possible models [12]. If the 

focus of model selection and model averaging is good prediction, 

then differences in the standard errors of estimators is not directly 

relevant to the comparison of these methods. 

Model averaging is an alternative method for model selection. It 

allows to average the weights for a number of models, instead of 

picking one best model. Model averaging tends to shrink the esti-

mates on the weaker terms, yielding better predictions. The “best” 

models will hold higher weights [1]. 

The effects of multicollinearity will be identified in model averag-

ing when there exist interaction variables. BIC and AIC𝑐  will be 

used to determine the best model in each of the model building 

approach. Lastly, mean squared error of prediction (MSE(P)) will 

be used to compare the model selection criteria when performing 

model averaging with interaction effects in term of prediction [3,4, 

14]. 

This research illustrates the model-building approach using chil-

dren weight at school entry and highlight the most significant 

factors contribute to children weight at school entry. The whole 

procedures of obtaining the best model will be explained step by 

step to provide a clear guideline of model-building approach on 

model averaging method. 

2. Model-Building Approach 

2.1. Multiple linear regression 

Multiple linear regression (MR) is an extended version of simple 

linear regression model that involve two or more explanatory vari-

ables in a prediction equation. A more complex model that contain 

more explanatory variables typically is more useful in providing 

sufficiently precise of the response variable. The general MR 

model with more than two predictor variables is [9] 

 

𝑌𝑖 = 𝛽0 +  𝛽1𝑋𝑖1 +  𝛽2𝑋𝑖2 + … + 𝛽𝑝−1𝑋𝑖,𝑝−1 + ε𝑖                  (1) 

 

where 𝛽0, 𝛽1 ,..., 𝛽𝑝−1  are parameters, 𝑋𝑖1 , …, 𝑋𝑖,𝑝−1  denotes the 

variable (which can be single independent variable, or interaction 

variable (first-order interaction, second-order interaction, third-

order interaction, ...), or generated variable (polynomial variable, 

dummy variable) or transformed variables (ladder transformations, 
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box-cox transformation, not smoothing or stationary)) and εi are 

independent N(0,𝜎2) for i = 1, … , n. For example, the possible 

interaction variable is X12 (first-order interaction variables) which 

is the cross product of independent variables X1 and X2. Another 

example is the third-order interaction variable for three single 

independent variable (X1, X2 and X3) is X123. 

2.2. Model selection criteria 

Akaike's information criterion (AIC) is a popular and had been 

widely used as model selection criteria. AIC is calculated using 

the amount of fitted parameters, maximum likelihood estimate, 

and including intercept of model, (p). AIC for model M is [2, 3, 13] 

 

AIC = − 2 ln L(M) + 2𝑝                                        (2) 

 

For small sample sizes (approximated as being when n/p is less 

than 40 where p is the number of fitted parameters and n is the 

sample size in the most complex model), a corrected version of 

Akaike's information criterion, (AIC𝑐) is recommended. The gen-

eral form of  AIC𝑐 is [2, 3, 13] 

 

AIC𝑐 =  𝐴𝐼𝐶 +  
2𝑝 (𝑝 +1 )

𝑛−𝑝−1
                             (3) 

 

Bayesian information criterion (BIC) is a criterion for model se-

lection among a finite set of models. It is based, in part, on the 

likelihood function, and it is closely related to Akaike’s infor-

mation criterion (AIC). The BIC for model M is [2, 3] 

 

BIC = −2 ln 𝐿(𝑀) − (log 𝑛)𝑝              (4) 

 

where L(M) is the maximized value of the likelihood function of 

model M, n is sample size of the data, p is the number of parame-

ter in the model M. 

2.3. Model averaging 

Model selection is for including additional uncertainty into the 

model building process. The properties of parameter estimates 

obtained from the selected model method do not represent the 

stochastic nature of the model selection process. Model averaging 

had been proposed as an alternative method to model selection to 

overcome the under-estimation of standards errors in model selec-

tion. A model average estimator weighs across all possible models 

rather than picking a single best model. Model averaging will give 

less weight on the estimates of the weaker variables and will yield 

better predictions. The 'better' models will receive higher weights 

compare to others model. Suppose that there are M candidate 

models. In one approach, the weight 𝑤𝑚 for model is [1, 2, 10, 12] 

 

𝑤𝑀  =
exp(

𝐼𝑀
2

)

∑ exp (
𝐼𝑀
2

)
𝑀

𝑚=1

                         (5) 

 

where 𝐼𝑀  is model selection criterion for 𝑚 . The estimate of a 

parameter 𝛽𝑃 is  

 

�̂�𝑝 = ∑ 𝑤𝑀�̂�(𝑝,𝑀)
𝑀

𝑚=1
                                      (6) 

 

where �̂�(𝑝,𝑀) is the estimate of �̂�𝑝 under model 𝑀 for 𝑚 = 1,2, …, 

M. The modified weights will be used based on model selection 

criteria AIC, AIC𝑐  and BIC. A modification was carried out for 

calculating the weights in order to avoid numerical error. The 

weights 𝑤𝑀 were calculated as [8] 

 

𝑤𝑀 = 
exp(

𝐼𝑀−�̅� 

2
)

∑ exp (
𝐼𝑀−�̅�

2
)

𝑀

𝑚=1

                          (7) 

where 𝑖 ̅= 
1

𝑀
∑ 𝐼𝑀

𝑀
𝑚=1  with 𝐼𝑀 is log-likelihood function of model 

𝑀 for m = 1, 2, …, M. 

2.4. Mean Square Error for prediction (MSE(P)) 

A reasonable measure for evaluating a model performance is by 

calculating its mean squared error of prediction (MSE(P)). In gen-

eral MSE(P) can be describe as [3, 14] 

 

𝑀𝑆𝐸 (𝑃) =  
1

𝑡
 ∑ (�̂�𝑡 − 𝑦𝑡)2𝑡

𝑖=1            (8) 

 

where �̂�𝑡 is estimated Y of test values and 𝑦𝑡 is the actual test val-

ues used for prediction. MSE(P) is usually used to assess the per-

formance of regressions.  
 

 
Fig 1: Framework of model averaging 

3. Prediction Children Weight At School En-

try 

Study shows there are relationship between rapid weight gain and 

later overweight, leading to the suggestion that prevention and 

treatment of childhood obesity should begin as early as first year 

of life. The Gateshead Millennium Study (GMS) is a study of 

feeding and growth in infancy. The original objectives of the study 

are to explore the relationship between child development and 

feeding in the year of life, but it was later extended to follow up 

the children throughout childhood. The study was conducted at 

Gateshead area of northeast England. There are 1011 babies that 

born between June 1999 to 31 May 2000 that involve in this study. 

The sample size represents 83% of all births in the region on that 

year. The children were studied prospectively using parent report 

questionnaire shortly after birth at 6 weeks and at 4, 8, 12 months. 

The cohort has since been re-traced at school entry, parent report 

questionnaires completed at 5-8 years, and a range of anthropo-

metric and body composition measures collected at age 7-8 years 

[8, 15].  

Data 

Estimate weights across all  

possible models, (𝑊𝑚) 

𝑤𝑀  =
exp (

𝐼𝑀

2
)

∑ exp (
𝐼𝑀

2
)

𝑀

𝑚=1

 

Estimate parameter, (�̂�𝑝) 

�̂�𝑝 = ∑ 𝑤𝑀�̂�(𝑝,𝑀)

𝑀

𝑚=1

 

Best model 

Modified weight based on selec-

tion criteria, AIC𝑐 and BIC 
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Table 1: Description of variable for GMS 

Variables Descriptions Unit 

𝑌 Weight at school entry Kilograms (kg) 

𝑋1 Weight at 6 weeks Kilograms (kg) 

𝑋2 Weight at 4 months Kilograms (kg) 

𝑋3 Weight at 8 months Kilograms (kg) 

𝑋4 Weight at 12 months Kilograms (kg) 

𝑋5 Gender 1=Male, 2=Female 

 

The analysis of male children and female children were carried out 

separately. Table 2 shows the descriptive statistics for male chil-

dren. The mean weight of male children at school entry is 19.58kg 

while the median is 19.20kg. The first quartile is 17.80kg while 

third quartile is 21.00kg. It can be concluded that the smallest 

weight is 14.00kg while the heaviest male child weighted 34.60kg. 

25% of the overall weight falls below 21.00kg and 25% of the 

overall weight is falls above 17.80kg. Table 3 shows the descrip-

tive statistics for female children. The mean weight of female 

children at school entry is 19.90kg while the median is 19.00kg. 

The first quartile is 17.40kg while third quartile is 21.00kg. It can 

be concluded that the smallest weight is 13.00kg while the heavi-

est male child weighted 56.00kg. 25% of the overall weight falls 

below 21.00kg and 25% of the overall weight is falls above 

56.00kg. 

 
Table 2: Descriptive Statistics for male children 

Statistics 
Variables 

𝑌 𝑋1 𝑋2 𝑋3 𝑋4 

Minimum 14.00 3.21 4.50 6.80 7.54 

Median 19.20 4.89 7.00 9.10 10.43 

Mean 19.58 4.91 7.05 9.11 10.44 

Maximum 34.60 6.61 9.75 13.28 14.30 

 

Table 3: Descriptive Statistics for female children 

Statistics 
Variables 

𝑌 𝑋1 𝑋2 𝑋3 𝑋4 

Minimum 13.00 3.11 4.58 5.69 6.80 

Median 19.00 4.57 6.33 8.34 9.58 

Mean 19.90 4.58 6.42 8.38 9.80 

Maximum 56.00 6.51 8.53 11.66 15.70 

 

Figure 2 and 3 show the weights at school entry for male and fe-

male children, which are very similar on average. There are a 

number of exceptionally overweight children, especially female 

children.  

 

 
Fig 3: Boxplot of male children 

 
Fig 3: Boxplot of female children 

Model averaging was carried out using two selection criteria as the 

weight for the models. The best model for model averaging will be 

choose based on the MSE(P) value of the model. Table 4 shows 

the coefficient and p-value of model averaging for male children, 

while Table 5 shows the output for female children. Coefficient 

for variable weight at 12 months (𝑋4) is significant in both outputs 

using BIC as model selection criteria in Table 4 and Table 5. This 

shows that there are significant effects of weight at 12 months on 

weight at school entry at age 5-8 years.  
 

Table 4: Coefficient and p-value of model averaging for male children 

Model 

selection 
criteria 

𝐴𝐼𝐶𝑐 BIC 

Coefficient p-value Coefficient p-value 

Constant 0.658 0.125 0.4173 0 

𝑋1 −7.562 × 10−2 0.667 −2.491 × 10−4 0.952 

𝑋2 1.637 × 10−2 0.865 −3.872 × 10−4 0.919 

𝑋3 −4.094 × 10−2 0.428 −1.342 × 10−2 0.131 

𝑋4 −3.314 × 10−2 0.430 −1.480 × 10−2 0.019 

𝑋1𝑋2 1.843 × 10−3 0.841 −2.399 × 10−6 0.990 

𝑋1𝑋3 7.054 × 10−3 0.694 −8.485 × 10−6 0.980 

𝑋1𝑋4 7.529 × 10−3 0.674 1.226 × 10−5 0.968 

𝑋2𝑋3 −1.135 × 10−3 0.902 3.586 × 10−5 0.907 

𝑋2𝑋4 −2.899 × 10−3 0.758 1.768 × 10−5 0.947 

𝑋3𝑋4 2.860 × 10−3 0.553 9.472 × 10−4 0.223 

𝑋1𝑋2𝑋3 −1.518 × 10−4 0.857 −7.437 × 10−8 0.996 

𝑋1𝑋2𝑋4 −6.217 × 10−5 0.926 −2.395 × 10−8 0.997 

𝑋1𝑋3𝑋4 −6.948 × 10−4 0.701 −2.099 × 10−7 0.991 

𝑋2𝑋3𝑋4 2.853 × 10−4 0.736 −8.517 × 10−9 0.998 

𝑋1𝑋2𝑋3𝑋4 −1.190 × 10−6 0.977 −5.00 × 10−14 1 

 

Table 5: Coefficient and p-value of model averaging for female children 

Model 

selection 

criteria 

𝐴𝐼𝐶𝑐 BIC 

Coefficient p-value Coefficient  p-value 

Constant 0.0139 0.019 0.009 0.001 

𝑋1 −1.997 × 10−4 0.871 −4.835 × 10−5 0.838 

𝑋2 −7.767 × 10−4 0.495 −5.837 × 10−4 0.730 

𝑋3 −5.383 × 10−4 0.503 −7.054 × 10−5 0.750 

𝑋4 −8.060 × 10−4 0.169 −5.837 × 10−4 0.018 

𝑋1𝑋2 2.014 × 10−5 0.905 2.541 × 10−7 0.975 

𝑋1𝑋3 1.046 × 10−5 0.933 3.289 × 10−7 0.967 

𝑋1𝑋4 1.604 × 10−5 0.875 3.728 × 10−6 0.862 

𝑋2𝑋3 5.966 × 10−5 0.638 2.192 × 10−6 0.899 

𝑋2𝑋4 2.310 × 10−5 0.783 7.961 × 10−6 0.770 

𝑋3𝑋4 2.010 × 10−5 0.713 5.449 × 10−6 0.775 

𝑋1𝑋2𝑋3 −1.629 × 10−6 0.910 −1.513 × 10−10 0.999 

𝑋1𝑋2𝑋4 −1.001 × 10−6 0.930 −4.129 × 10−10 0.998 

𝑋1𝑋3𝑋4 −4.701 × 10−7 0.947 −2.250 × 10−10 0.999 

𝑋2𝑋3𝑋4 −1.085 × 10−7 0.980 −1.121 × 10−10 0.999 

𝑋1𝑋2𝑋3𝑋4 3.809 × 10−10 0.998 1.032 × 10−18 1 

 

Table 6 shows the value of MSE(P) for all 4 models. Only one 

best model will be chosen for male and female children based on 

the lowest MSE(P) value. Based on Table 6, the best model for 
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male and female children are the model obtained using 𝐴𝐼𝐶𝑐  as 

selection criteria. 𝐴𝐼𝐶𝑐  have lower MSE(P) due to the effect of 

small sample size. 
 

Table 6: MSE(P) values  

Model Selection Criteria MSE(P) 

Male 
𝐴𝐼𝐶𝑐 𝟏. 𝟏𝟓𝟎 × 𝟏𝟎−𝟒 

BIC 1.340 × 10−4 

Female 
𝐴𝐼𝐶𝑐 𝟑. 𝟖𝟎𝟗 × 𝟏𝟎−𝟕 

BIC 9.443 × 10−6 

 

One of the assumption of regression is distribution of the residual 

should be normally distributed. In Figure 4, Q-Q plot is used to 

illustrate the distribution of residual for male children using  

𝐴𝐼𝐶𝑐. The data seen to be normally distributed, however, Kolmo-

gorov-Smirnov test is conducted to support the graphical method. 

Since the p-value of the Kolmogorov-Smirnov test is more than 

0.05, so null hypothesis is rejected. The residuals are normally 

distributed.  

 
Fig 4: Q-Q plot for male children using 𝐴𝐼𝐶𝑐 

 

Figure 5 shows that Q-Q of residuals for Female children using 𝐴𝐼𝐶𝑐. The 

data seen to be normally distributed, however, Kolmogorov-Smirnov test 

is conducted to support the graphical method. Since the p-value of the 
Kolmogorov-Smirnov test is more than 0.05, so null hypothesis is rejected. 

The residuals are normally distributed. 

 

 
Fig 5: Q-Q plot for female children using 𝐴𝐼𝐶𝑐 

4. Discussion and conclusion 

Model-building using model averaging on children weight at 

school entry were illustrated clearly. This research considers up to 

high-order interaction to determine the best model. Model averag-

ing being compare using AICC and BIC as selection criteria to 

modify the weight of parameter. 

The results show that model selection criterion  𝐴𝐼𝐶𝑐 , perform 

better than BIC for male children while for female children BIC is 

better compare to AICC. Theoretically 𝐴𝐼𝐶𝑐  is known to be less 

biased than BIC when there is small sample size. However, there 

is only slightly different on the MSE(P) value of AICC and BIC for 

male and female children. As a conclusion, Model uncertainty is 

not an issued if the posterior concentrated on a single model and 

will lead to similar result for model averaging. Therefore, model 

selection criteria performance depends on the data [4]. 

The parameter with important information will be distribute more 

weight compare to the one with less information in model averag-

ing method. Interaction variables will have smaller values of coef-

ficient due to the cross-product of parameter, where the value of 

parameter getting larger and the coefficient will be smaller. Inter-

action variable is not significant compare to the main factor varia-

bles due to the lower coefficient value of interaction variables [8, 

3, 9]. In conclusion, interaction variables give less information to 

the model as it coefficient value is lower than main factor. 

5. Recommendation for Future Research 

More predictor variable can be added to the model averaging in 

the future. However, the command for model averaging MuMIn 

package in R language only limits until 31 parameters, so it is 

advised to write a new command that can include more parameter 

in model averaging for R language in the future research [7]. 

Categorical variable or dummy variable can be introduced in the 

model. In this research, the variable gender for male and female 

children were analyses separately to form two different equations. 

It is suggested that the variable should be treated as dummy varia-

ble where 0 represent male and 1 represent female [5]. 

Other interaction variables also can be included in the model such 

as polynomial when it have quadratic response function or when 

the true curvilinear response function is unknown but a polynomi-

al function is a good approximation to the true function [7]. 

As model averaging did not remove any of the variables from the 

model, a variable screening step can be used before deriving a 

model averaging predictor. A simple alternative screening proce-

dure such as backward elimination which bases on the p-value can 

be used as a screening step to remove insignificant variables [11]. 
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