

Copyright © 2018 Kiran Kumar B. et al. This is an open access article distributed under the Creative Commons Attribution License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (4) (2018) 7068-7071

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i4.22264

Research paper

Cross-project defect prediction using ant colony optimization

Kiran Kumar B. 1 *, Dr. Jayadev Gyani 2, Dr. Narsimha G. 3

1 Dept. of IT, KITS, Warangal, India

2 Dept. of CS, CCIS, Majmaah University, Saudi Arabia
3 Dept. of CSE, JNTUH College of Engineering, Sultanpur, India

*Corresponding author E-mail: kiran_b_kumar@yahoo.com

Abstract

Software defect prediction techniques applied on single project are showcasing good results because of availability voluminous data to

train the model. But newly developed software projects may not have sufficient amount data to train the model. In cross-project defect

prediction model (CPDP), training model is constructed by using defect dataset of one project (which contains sufficient amount of data)

and tested on another project (which contains less amount of data). In this paper, we selected similar features from eight open source

defect datasets from PROMISE repository and applied meta-heuristic Ant Colony Optimization (ACO) algorithm for Cross-Project de-

fect Prediction.

Keywords: Ant Colony Optimization; Classification; Cross-Project Defect Prediction; Data Mining; Meta-heuristic.

1. Introduction

Software quality is measured by the reliability of the final product.

Reliability is inversely proportion to the number of defects in the

product. Deploying the poor quality software, leads to more issues

in project maintenance. One way to improve the software reliabil-

ity is by reducing number of defects (bugs) in the software. So, the

software testing team plays a vital role in finding the defects and

the cost spent on testing phase takes about half of the total project

cost.

To reduce this cost, researchers are focusing on using of defect

prediction techniques to predict the defects in early stages of the

project. Defects can be detected by training the model with exist-

ing defect data and the trained model can be used to test the new

data.

Quality of the prediction models depends on dataset size used in

training the model. A model trained on large volumes of data

gives more accurate prediction [1]. In reality, for most of the pro-

jects, the training dataset size is less or may not be available.

Building the models for prediction is not possible. Hence, engi-

neers are using the datasets available in other projects to build the

model and use these models to test the defects in their own pro-

jects [2-4]. This method is called as cross-project defect predic-

tion.

The major challenge in cross-project defect prediction is selecting

relevant features (metrics) from different projects. To address

these challenges, we used TDselector method [7] which considers

the similarity between training instance and testing instance and

also the number of defects of each training instance. The selected

(relevant) features are normalized using z-score normalization.

The normalized features are used in training and testing process.

 The rest of the paper is organized as follows. Related work is

given in Section II. Section III describes process used. Experimen-

tation and results are shown in Section IV and Section V gives

conclusion and future scope.

2. Related work

In last few years CPDP become thrust area in the research of soft-

ware engineering. Comparison between cross-project defect pre-

diction and with-in project defect prediction is presented by He et

al. [8]. Different techniques of feature selection are used in the

comparison. Results shows that with-in project defect prediction

gives high precision where as cross-project defect prediction gives

better performance in recall and F-measure. Defect prediction

across the companies proposed by Turhan et al. [5]. To build pre-

dictors, they used defect dataset of other company’s project to test

the target projects. Ni et al. [6] proposed three ranking strategies

named FeSCH to choose relevant features. By considering class-

imbalance contexts under CPDP environments, Ryu et al. [9] pro-

posed a multi objective naive Bayes learning technique. This ap-

proach achieved better performance over single objective models.

Li et al. [10] proposed hierarchical select-based filter method by

comparing some well known data filters to improve CPDP per-

formance. It shows that the choosing of data filter strategy im-

proves the CPDP performance. Zhang et al. [11] experimented on

the projects collected from both SourceForge and Google Code

and proposed a universal CPDP model. They concluded that

CPDP is viable for different projects which have metric sets of

heterogeneous type. Nam and Kim [12] introduced metric selec-

tion and matching technique to build a predictor and proposed a

method HDP. They experimented on twenty eight different pro-

jects and results shows that 68% of predictions are giving better

performance compared to WPDP. A Unified Metric Representa-

tion (UMR) is proposed by Jing et al. [24] for heterogeneous de-

fect data. They considered fourteen publicly available heterogene-

ous datasets from 4 different companies for the experimentation.

Christian Blum [13] discussed outline and applications of Ant

Colony Optimization (ACO) by using more techniques from oper-

ations research and artificial intelligence. Ramakanta Mohanthy,

Venkatshwarlu Naik, Azmath Mubeen [14] used ACO for predic-

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 7069

tion of software reliability and to optimize the accuracy of soft-

ware reliability predictive models. D Martens [15] used

AntMiner+ to identify credit risk of customers by building an

internal rating system. Bo Liu, Hussein A. Abbass, and Bob

McKay [16] proposed an improvement for ACO called

Ant_Miner3 to discover the classification rules. Wei Gao [17]

presented ant colony algorithm for clustering for improving the

accuracy and computational efficiency. Christian Blum [18] pre-

sented a review and recent trends of using ACO. M. Dorigo et al

[19] introduced A novel Ant Colony based classifier, PolyACO

that utilizes ray casting to operate in two dimensional space. Da-

vid Martens et. al.[20] proposed ant miner+ for classification by

using ACO.

3. Process

In CPDP, the main challenge is selection of relavant attributes

from different defect datasets of various projects. Defect datasets

contain different metrics pertaining to each project. For the com-

bination of these metrics, there is a class label attrinute which

shows the presence of defect. Some datasets store YES or NO,

some may store TRUE or FALSE and some may have 0 or 1. The

metric values of each project depends on complexity of the pro-

ject. For example LOC metric, number of inheritance level etc. is

different from one project to another. To address these issues the

datasets should be preprocessed.

3.1. Pre-processing

The steps involved in preprocessing are given below.

1) Choose the predictor attributes (metrics) which are common

in all the datasets.

2) Change the value of class label attribute to uniform value.

3) Normalize the predictor attribute values to map in the range

between 0 and 1.

3.2. Ant colony optimization

ACO is a meta-heuristic bio-inspired optimization technique mo-

tivated by the behavior of real ants in the process of finding their

food. The ants can communicate through their environment by

depositing a chemical called pheromone. The paths chosen by ants

contain high volume of pheromone and the paths that are not cho-

sen having less pheromone level due to evaporation.

ACO uses artificial agents (ants) that cooperate to find good solu-

tions for discrete optimization problems. These artificial agents

simulate the foraging behavior of their counterparts in finding the

shortest-path to the food source from their nest. The first algo-

rithm following the principles of the ACO meta-heuristic is the

Ant System [21], [22], where ants repeatedly construct solutions

and add pheromone to the paths corresponding to these solutions.

Path selection is a random procedure based on two parameters, the

pheromone and heuristic values. The pheromone value gives an

indication of the number of ants that chose the trail recently, while

the heuristic value is a problem dependent quality measure.

An ant will move from node i to node j with probability

Where

 Is the amount of pheromone on edge i, j

 is a parameter to control the influence of

ηi,j is the desirability of edge i, j (typically 1/di,j)

β is a parameter to control the influence of ηi,j

Amount of pheromone is updated according to the equation

i,j = (1 − ρ)τi,j + ∆τi,j

Where

τi,j is the amount of pheromone on a given edge i, j

ρ is the rate of pheromone evaporation

∆τi,j is the amount of pheromone deposited, typically given by

Where Lk is the cost of the kth ant’s tour (typically length).

4. Experimentation and results

We considered Jureczko datasets [23] obtained from PROMISE

repository [24] shown in Table 1 for experimentation.

Table 1: Sample Datasets

Name of the Dataset Number of attributes Number of records

CM1 38 369

KC1 95 145
KC2 22 522

KC3 40 194

MC2 40 125
PC1 38 705

PC3 38 1077

PC4 38 1458

From these datasets, we selected nine common attributes as pre-

dictor attributes and one class label attribute. The class label at-

tribute in different datasets contain different values like YES or

NO, TRUE or FALSE, 0 OR 1 etc. We replaced all YES and

TRUE values to 1 and all NO and FALSE values to 0. The metrics

chosen are then normalized by using the following min-max nor-

malization equation which maps each metric value in to the range

of 0 and 1.

Zi =
Xi−min(X)

max(X)−min(X)

This normalized dataset is used for training and testing the model.

The dataset is tested using the models trained by different datasets.

For example, the dataset CM1 is tested with the models trained by

KC1, KC2, KC3, MC2, PC1, PC3, and PC4. After testing, we

create a confusion or error matrix shown in Table 2 to know the

values for True-Positives (TP), False-Positives (FP), True-

Negatives (TN) and False-Negatives (FN).

Table 2: Confusion Matrix

 Real Class
 Defective Non-Defective

Predicted Class
Defective TP FP

Non-Defective FN TN

These values are used in the calculation of geometric mean, sensi-

tivity, specificity, precision, F-measure and accuracy by using the

following formulas.

Geometric Mean Sencitivity Specificity=

Re TPSencitivity call
TP FN

= =
+

TNSpecificity
TN FP

=
+

; Pr TPecision
TP FP

=
+

2 Pr Re
Pr Re

ecision callF Measure
ecision call

 − =
+

()
()

TP TN
Accuracy

FP FN TP TN
+

=
+ + +

7070 International Journal of Engineering & Technology

The results are depicted in table 3 to table 10 shows that cross

project data can be used to predict the defects.

Table 3:

Testing:CM1

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

KC1 0.955533 1 0.913043 0.684211 0.8125 0.926829
KC2 0.955533 1 0.913043 0.684211 0.8125 0.926829

KC3 0.940244 1 0.884058 0.619048 0.764706 0.902439

MC2 0.932505 1 0.869565 0.590909 0.742857 0.890244
PC1 0.963087 1 0.927536 0.722222 0.83871 0.939024

PC3 0.932505 1 0.869565 0.590909 0.742857 0.890244

PC4 0.947919 1 0.898551 0.65 0.787879 0.914634

Table 4:

Testing:KC1
Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.946864 1 0.896552 0.727273 0.842105 0.918919

KC2 0.964901 1 0.931034 0.8 0.888889 0.945946

KC3 0.946864 1 0.896552 0.727273 0.842105 0.918919

MC2 0.946864 1 0.896552 0.727273 0.842105 0.918919

PC1 0.909718 1 0.827586 0.615385 0.761905 0.864865
PC3 0.982607 1 0.965517 0.888889 0.941176 0.972973

PC4 0.946864 1 0.896552 0.727273 0.842105 0.918919

Table 5:

Testing:KC2

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.966092 1 0.933333 0.980583 0.990196 0.984733

KC1 0.966092 1 0.933333 0.980583 0.990196 0.984733

KC3 0.926329 0.990099 0.866667 0.961538 0.97561 0.961832
MC2 0.930949 1 0.866667 0.961905 0.980583 0.969466

PC1 0.912871 1 0.833333 0.95283 0.975845 0.961832

PC3 0.926329 0.990099 0.866667 0.961538 0.97561 0.961832
PC4 0.930949 1 0.866667 0.961905 0.980583 0.969466

Table 6:

Testing:KC3

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.952353 1 0.906977 0.6 0.75 0.918367
KC1 0.869376 0.833333 0.906977 0.555556 0.666667 0.897959

KC2 0.880451 0.833333 0.930233 0.625 0.714286 0.918367

MC2 0.964486 1 0.930233 0.666667 0.8 0.938776
PC1 0.952353 1 0.906977 0.6 0.75 0.918367

PC3 0.964486 1 0.930233 0.666667 0.8 0.938776

PC4 0.952353 1 0.906977 0.6 0.75 0.918367

Table 7:

Testing:MC2
Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.930484 0.909091 0.952381 0.909091 0.909091 0.9375

KC1 0.9759 1 0.952381 0.916667 0.956522 0.96875

KC2 0.95119 1 0.904762 0.846154 0.916667 0.9375

KC3 0.95119 1 0.904762 0.846154 0.916667 0.9375

PC1 0.930484 0.909091 0.952381 0.909091 0.909091 0.9375
PC3 0.9759 1 0.952381 0.916667 0.956522 0.96875

PC4 0.906924 0.909091 0.904762 0.833333 0.869565 0.90625

Table 8:

Testing:PC1

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.923404 0.933333 0.91358 0.5 0.651163 0.915254

KC1 0.907672 0.933333 0.882716 0.424242 0.583333 0.887006

KC2 0.942809 1 0.888889 0.454545 0.625 0.898305
KC3 0.942809 1 0.888889 0.454545 0.625 0.898305

MC2 0.894887 0.933333 0.858025 0.378378 0.538462 0.864407

PC3 0.904493 0.933333 0.876543 0.411765 0.571429 0.881356
PC4 0.949334 1 0.901235 0.483871 0.652174 0.909605

Table 9:

Testing:PC3

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.921266 0.964286 0.880165 0.482143 0.642857 0.888889
KC1 0.940371 1 0.884298 0.5 0.666667 0.896296

KC2 0.935966 1 0.876033 0.482759 0.651163 0.888889

KC3 0.951293 1 0.904959 0.54902 0.708861 0.914815
MC2 0.89271 0.892857 0.892562 0.490196 0.632911 0.892593

PC1 0.944755 1 0.892562 0.518519 0.682927 0.903704

PC4 0.964237 1 0.929752 0.622222 0.767123 0.937037

International Journal of Engineering & Technology 7071

Table 10:

Testing:PC4

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy

CM1 0.953162 1 0.908517 0.623377 0.768 0.920548

KC1 0.923322 0.958333 0.88959 0.567901 0.713178 0.89863

KC2 0.9399 0.979167 0.902208 0.602564 0.746032 0.912329
KC3 0.921684 0.958333 0.886435 0.560976 0.707692 0.89589

MC2 0.943181 1 0.88959 0.578313 0.732824 0.90411

PC1 0.926661 0.979167 0.876972 0.546512 0.701493 0.890411
PC3 0.931401 1 0.867508 0.533333 0.695652 0.884932

5. Conclusions and future work

In this paper, we tested the each dataset against the models trained

using different datasets. We applied novel bio-inspired meta-

heuristic Ant Colony Optimization (ACO) technique to train and

test the models. The results show that cross project defect predic-

tion with ACO giving improved performance. In future, we im-

plement various meta-heuristic algorithms in defect prediction.

References

[1] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict
component failures," in International Conference on Software En-

gineering, 2006, pp. 452-461.

https://doi.org/10.1145/1134285.1134349.
[2] B. Kitchenham, E. Mendes, and G. H. Travassos, "Cross- vs. within

company cost estimation studies: A systematic review," IEEE

Transactions in Software Engineering, vol. 33, pp. 316-329, 2007.
https://doi.org/10.1109/TSE.2007.1001.

[3] F. Porto and A. Simao, "Feature Subset Selection and Instance Fil-

tering for Cross-project Defect Prediction - Classification and
Ranking", CLEI electronic journal, vol. 19, no. 3, pp. 4:1-4:17,

2016. https://doi.org/10.19153/cleiej.19.3.4.

[4] X. Yang, D. Lo, X. Xia and J. Sun, "TLEL: A two-layer ensemble
learning approach for just-in-time defect prediction", Information

and Software Technology, vol. 87, pp. 206-220, 2017.

https://doi.org/10.1016/j.infsof.2017.03.007.
[5] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the rel-

ative value of cross-company and within-company data for defect

prediction,” Empirical Software Engineering, vol. 14, no. 5,
pp.540–578, 2009. https://doi.org/10.1007/s10664-008-9103-7.

[6] C. Ni, W. Liu, Q. Gu, X. Chen, and D. Chen, “FeSCH: A Feature

Selection Method using Clusters of Hybrid-data for Cross-Project
Defect Prediction,” in Proceedings of the 41st IEEE Annual Com-

puter Software and Applications Conference, COMPSAC2017,

pp.51–56, ita, July2017.
https://doi.org/10.1109/COMPSAC.2017.127.

[7] Peng He, Yao He, Lvjun Yu, and Bing Li, “An Improved Method
for Cross-Project Defect Prediction by Simplifying Training Data,”

Mathematical Problems in Engineering, vol. 2018, Article ID

2650415, 18 pages, 2018. https://doi.org/10.1155/2018/2650415.
[8] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on

software defect prediction with a simplified metric set,” Infor-

mation and Software Technology, vol.59, pp.170–190,2015.
https://doi.org/10.1016/j.infsof.2014.11.006.

[9] D.Ryu and J.Baik, “Effective multi-objective naive Bayes learning

for cross-project defect prediction”, Applied Soft Computing,
vol.49, pp.1062–1077, 2016.

https://doi.org/10.1016/j.asoc.2016.04.009.

[10] Y. Li, Z.Huang, Y. Wang, and B. Fang, “Evaluating Data Filter on
Cross-Project Defect Prediction: Comparison and Improvements,”

IEEEAccess, vol.5, pp.25646–25656, 2017.

https://doi.org/10.1109/ACCESS.2017.2771460.
[11] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building

a universal defect prediction model,” in Proceedings of the 11th In-

ternational Working Conference on Mining Software Repositories,
MSR2014, pp.182–191, ind, June2014.

https://doi.org/10.1145/2597073.2597078.

[12] J. Nam and S. Kim, “Heterogeneous defect prediction,” in Proceed-
ings of the 10th Joint Meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering, ESEC/FSE 2015, pp. 508–519,
September 2015. https://doi.org/10.1145/2786805.2786814.

[13] Christian Blum, “Ant colony optimization: Introduction and recent

trends”, Elsevier, Physics of Life Reviews 2 pp. 353–373, 2005

https://doi.org/10.1016/j.plrev.2005.10.001.
[14] Ramakanta Mohanthy, Venkateshwarlu Naik, Azmath Mubeen,

“Predicting Software Reliability Using Ant Colony Optimization

Technique” 2014 Fourth International Conference on Communica-
tion Systems and Network Technologies, pp. 496-500, 2014.

https://doi.org/10.1109/CSNT.2014.105.

[15] D Martens, T Van Gestel, M De Backer, R Haesen, J Vanthienen
and B Baesens, “Credit rating prediction using Ant Colony Optimi-

zation” Journal of the Operational Research Society (2010) 61, pp.
561-573, 2010. https://doi.org/10.1057/jors.2008.164.

[16] Bo Liu, Hussein A. Abbass, and Bob McKay, “Classification Rule

Discovery with Ant Colony Optimization”, IEEE Computational
Intelligence Bulletin, Vol.3, No.1, pp. 31-35, February 2004.

[17] Wei Gao, “Improved Ant Colony Clustering Algorithm and Its Per-

formance Study”, Computational Intelligence and Neuroscience,
Volume 2016, Article ID 4835932, 14 pages

https://doi.org/10.1155/2016/4835932.

[18] Christian Blum, “Ant colony optimization: Introduction and recent
trends”, Physics of Life Reviews 2 (2005) 353–373.

https://doi.org/10.1016/j.plrev.2005.10.001.

[19] M. Dorigo et al., “Ant Colony Optimisation-Based Classification
Using Two-Dimensional Polygons”, Springer International Publish-

ing Switzerland, pp. 53–64, 2016. https://doi.org/10.1007/978-3-

319-44427-7_5.
[20] David Martens et. al., “Classification with Ant Colony Optimiza-

tion”, IEEE transactions on evolutionary computation, vol. 11, no.

5, pp. 651-664, October 2007.
https://doi.org/10.1109/TEVC.2006.890229.

[21] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a

search strategy” Dipartimento di Elettronica e Informatica, Politec-
nico di Milano, Milano, Italy, Tech. Rep. 91016, 1991.

[22] M. Dorigo ; V. Maniezzo ; A. Colorni, “Ant system: Optimization

by a colony of cooperating agents,” IEEE Trans. Syst., Man, Cy-
bern. Part B, vol. 26, no. 1, pp. 29–41, Feb.1996.

https://doi.org/10.1109/3477.484436.

[23] M. Jureczko and L. Madeyski, "Towards identifying software pro-
ject clusters with regard to defect prediction", Proceedings of the

6th International Conference on Predictive Models in Software En-

gineering - PROMISE '10, 2010.

https://doi.org/10.1145/1868328.1868342.

[24] T. Menzies, B. Cagayan, Z. He, E. Kocaguneli, J. Krall, F. Peters,

et al., The PROMISE Repository of empirical software engineering
data, 2012 http:// openscience.us/repo/.

https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1109/TSE.2007.1001
https://doi.org/10.19153/cleiej.19.3.4
https://doi.org/10.1016/j.infsof.2017.03.007
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1109/COMPSAC.2017.127
https://doi.org/10.1155/2018/2650415
https://doi.org/10.1016/j.infsof.2014.11.006
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.1109/ACCESS.2017.2771460
https://doi.org/10.1145/2597073.2597078
https://doi.org/10.1145/2786805.2786814
https://doi.org/10.1016/j.plrev.2005.10.001
https://doi.org/10.1109/CSNT.2014.105
https://doi.org/10.1057/jors.2008.164
https://doi.org/10.1155/2016/4835932
https://doi.org/10.1016/j.plrev.2005.10.001
https://doi.org/10.1007/978-3-319-44427-7_5
https://doi.org/10.1007/978-3-319-44427-7_5
https://doi.org/10.1109/TEVC.2006.890229
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Dorigo.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Maniezzo.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Colorni.QT.&newsearch=true
https://doi.org/10.1109/3477.484436
https://doi.org/10.1145/1868328.1868342

