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Abstract 
 
Simulated Kalman filter (SKF) is an optimization algorithm which is inspired by Kalman filtering method. SKF was introduced as syn-
chronous population-based algorithm. This work introduced a new variation of SKF which is SKF with asynchronous update mechanism, 

asynchronous-SKF (ASKF). In contrast to the synchronous implementation where the whole population go through each optimization 
step as a group, in ASKF an agent starts its optimization steps only after its preceding agent has completed all optimization steps. The 
performance of ASKF is compared against SKF using CEC2014 benchmark functions, where the ASKF is found to perform significantly 
better than the original SKF. 
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1. Introduction 

A metaheuristic is an iterative generation process which guides a 
subordinate heuristic by combining intelligently different concepts 
for exploring and exploiting the search space so that a near-
optimal solution can be obtained [1]. In 2015 a new metaheuristic 
algorithm, SKF, had been proposed for continuous unimodal op-
timization problems [2]. It was introduced as population-based 

metaheuristics, where the search for optimal solution is conducted 
by a group of agents. The agents of SKF work like Kalman filters, 
where they go through prediction, measurement, and estimation 
process in every iteration. The measurement in SKF is a simulated 
measurement which is obtained using mathematical equation. 
Many works had been conducted on SKF, where it had been modi-
fied for binary optimization problems [3] and combinatorial opti-
mization problems [4-7]. Hybridization of SKF with particle 

swarm optimization (PSO) [8-9] and gravitational search algo-
rithm (GSA) [10-11] had also been proposed with better perform-
ance reported. A parameterless SKF algorithm is proposed in [11]. 
SKF has also been applied for real world problems like, the adap-
tive beamforming in wireless cellular communication [12-13], 
airport gate allocation problem [14-15], feature selection of EEG 
signal [16], ARX system identification [17] and PCB drill path 
optimization [18]. 

As a population-based metaheuristic algorithm, the SKF’s agents 
conduct the search for optimal solution through information shar-
ing. The evaluation of the candidate solutions found by SKF 
agents and the Kalman filter’s procedure of predict, measure and 
estimate are done iteratively. How the agents move from evalua-
tion to the Kalman procedure, either as a group or individually is 
determined by the iteration strategy. The group-oriented iteration 
strategy is known as synchronous update while the individual-

oriented iteration strategy is known as asynchronous update. So 
far, studies on SKF have been carried out based on synchronous 

update implementation, where every agent of the population need 
to complete the evaluation phase before the Kalman phase can 
begin. In this work, an asynchronous SKF (ASKF) is introduced. 
An agent in ASKF is evaluated and the agent completes all three 
Kalman phases, which are predict, measure, and estimate, before 
another agent begins its evaluation, prediction, measurement, and 

estimation. An iteration of ASKF completes after the whole popu-
lation has completed these phases. The performance of ASKF is 
compared with the original SKF using CEC2014 benchmark func-
tion, where it is found that statistically ASKF is better than the 
original SKF. 

2. The Original SKF Algorithm 

The SKF algorithm follows the pseudocode shown in Figure 1. It 
starts with random initialization of the agents’ estimated values, 
     . The estimated values represent candidate solutions of the 

problem to be solved. 
In each iteration the fitness of the agents’ estimate is evaluated 
using the problem to be solved such as the CEC2014’s benchmark 
problems. Once the evaluation is completed, the agent with the 
best fitness value is identified as the best solution of the current 

population,         . Next, the best          from the first itera-
tion is selected as      .  

The agents are then updated following the Kalman filter procedure 

of predict, measure and estimate. During the prediction phase, the 
current predicted state,           , is assumed to be the estimated 

value;  
 
                                                                                    (1) 

 
The error covariant is also updated as follows; 
 
                                                                              (2) 
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where       and           denote the current error covariant 

estimate and current transition error covariant estimate, respec-
tively. Note that the error covariant estimate is influenced by the 
process noise,  . 

In SKF, measurements are simulated using an agent’s prediction 
and      . The dimensional wise calculation of measured value 

for dimension jth of agent ith is calculated as follows; 
 

  
       

                 
                        (3) 

 

The   
     is a random value within the range of [0,1]. The estima-

tion phase follows the measurement phase and the estimated next 
value is updated using (4); 
 

  
          

                  
       

               (4) 

 
where      is the Kalman gain, which is calculated as follows; 

 
                                                                     (5) 

  
In (5), R is the measurement noise, which is suggested to be set to 
0.5. Then, the current error covariant estimate is updated in esti-
mation phase using (6); 
 

                                                                   (6) 

 
These steps continue until the maximum iteration is reached.  

3. The Proposed Asynchronous SKF (ASKF) 

The pseudocode of the proposed ASKF is presented in Figure 2. 
Similar to the original SKF, ASKF starts with random initializa-

tion of the population according to the problem’s search space. 
However, the steps within the iteration are individually executed 
for ASKF. Therefore, in an iteration of ASKF, as soon as an agent 
is evaluated, its fitness is compared with      . If the agent has 

found a better solution, then the       is immediately updated 

according to the estimated value of the agent. Thus, in ASKF, 
         is not needed.  

After the       comparison, the agent’s state is immediately pre-

dicted. This is followed by the agent’s measurement and state 
estimation. The prediction, measurement and estimation are car-
ried using the same set of equations like the original SKF. When 
an agent completed its Kalman filter’s procedures, next agent is 
selected to go through the same steps. 

 
Table 1: The CEC2014 benchmark test suite (source: [17]) 

Types N

o. 

Functions Ideal 

Fitness 

Unimodal 

functions 

f1 Rotated High Conditioned Elliptic func-

tion 

100 

f2 Rotated Bent Cigar function 200 

f3 Rotated Discus function 300 

Simple  

multimodal 

functions 

f4 Shifted and Rotated Rosenbrock’s func-

tion 

400 

f5 Shifted and Rotated Ackley’s function 500 

f6 Shifted and Rotated Weierstrass function 600 

f7 Shifted and Rotated Griewank’s function 700 

f8 Shifted Rastrigin’s function 800 

f9 Shifted and Rotated Rastrigin’s function 900 

f1

0 

Shifted Schwefel’s function 1000 

f1

1 

Shifted and Rotated Schwefel’s function 1100 

f1

2 

Shifted and Rotated Katsura  

function 

1200 

f1

3 

Shifted and Rotated HappyCat function 1300 

f1

4 

Shifted and Rotated HGBat  

function 

1400 

f1

5 

Shifted and Rotated Expanded 

Griewank’s plus Rosenbrock’s function 

1500 

f1

6 

Shifted and Rotated Expanded Scaffer’s 

F6 function 

1600 

Hybrid  

functions 

f1

7 

Hybrid function 1 (N=3) 1700 

f1

8 

Hybrid function 2 (N=3) 1800 

f1

9 

Hybrid function 3 (N=4) 1900 

f2

0 

Hybrid function 4 (N=4) 2000 

f2

1 

Hybrid function 5 (N=5) 2100 

f2

2 

Hybrid function 6 (N=5) 2200 

Composition 

functions 

f2

3 

Composition function 1 (N=5) 2300 

f2

4 

Composition function 2 (N=3) 2400 

f2

5 

Composition function 3 (N=3) 2500 

f2

6 

Composition function 4 (N=5) 2600 

f2

7 

Composition function 5 (N=5) 2700 

f2

8 

Composition function 6 (N=5) 2800 

f2

9 

Composition function 7 (N=3) 2900 

f3

0 

Composition function 8 (N=3) 3000 

4. Experiment, Results & Discussion 

The performance of the proposed ASKF is compared with the 
original SKF using CEC2014 Benchmark Test Suite for single-
objective optimization. The test suite comprises of 30 functions 
consisting mixture of; three unimodal test suite, 13 simple multi-
modal test suite, six hybrid test suite, and eight composition test 
suites. The test functions are tabulated in Table 1. 

The comparison is conducted using population of 100 agents, 
dimension size of 30, and maximum iteration of 3000. Each of the 
experiment is run 30 times.  
 
1  : 

2  : 

3  : 

4  : 

5  : 

6  : 

7  : 

8  : 

9  : 

10: 

11: 

12: 

13: 

Initialization of agents 

Do{ 

 For every agents 

  Evaluate fitness 

 End for 

 Identify          
 Update       

 For every agent 

  Predict 

  Measure 

  Estimate 

 End for  

}While not maximum iteration 
 

Fig. 1: The original simulated Kalman filter algorithm. 

 

1  : 

2  : 

3  : 

4  : 

5  : 

6  : 

7  : 

8  : 

9  : 

10: 

Initialization of agents 

Do{ 

 For every agents 

  Evaluate fitness 

  Update       

  Predict 

  Measure 

  Estimate 

 End for  
}While not maximum iteration 

Fig. 2: The asynchronous simulated Kalman filter algorithm. 



46 International Journal of Engineering & Technology 

 
The averaged error value of the solution obtained by the algorithm 
with the ideal solution for each benchmark function is tabulated in 
Table 2. Better values are written in bold. The ASKF able to find 
better performance for 23 functions from the 30 test functions.  
The boxplots for ASKF and the original SKF (labelled as S-SKF) 
are presented in Figures 3-6. The boxplots of ASKF are at lower 
position than the original SKF. The original SKF’s boxplots also 
have bigger distribution than ASKF’s. These boxplots illustrate 

the better consistency in the solutions’ quality found by ASKF 
compared to the original SKF. The original SKF also produced 
more outliers in unimodal, hybrid, and composite functions. There 
are no outliers for both SKF and ASKF for the case of simple 
multimodal functions 
The Wilcoxon signed rank test with significance level, α = 0.05 is 
chosen to provide an unbiased observation. The test gives statisti-
cal value of 122 which is smaller than 137, thus the null hypothe-

sis of equivalent performance is rejected and ASKF is concluded 
to be significantly better than the original SKF.  

The convergence of ASKF and the original SKF (labelled as S-
SKF) are presented in Figures 7-10. For both algorithms, the fit-
ness error rate decreased exponentially, but the original SKF’s 
fitness error decreased more rapidly than ASKF’s. In several func-
tions, namely f6, f9, f11, f12, f16, f25, and f28, the ASKF 
achieved a lower error value. 

5. Conclusion  

A SKF algorithm that operates asynchronously is proposed in this 
work. In an iteration the agents of ASKF algorithm perform fit-
ness evaluation and the Kalman procedure one after another. This 
is different than the original SKF where these steps are done si-
multaneously. Based on the experiment conducted using the 
CEC2014’s benchmark suite, ASKF is found to perform signifi-

cantly better than the original SKF. This finding shows the poten-
tial of ASKF as an efficient optimizer.  

 

 
Fig. 3: Fitness error distribution of unimodal functions. 

 

Table 2: Average error  

Functions Average Error (SKF) Average Error (ASKF) 

f1 486000 11000000 

f2 2.45E+08 1290000 

f3 18410 9901 

f4 36.46 117.7 

f5 20.02 20.01 

f6 21.95 18.17 

f7 0.1635 0.08444 

f8 5.878 5.473 

f9 90.87 75.26 

f10 226.3 162 

f11 2640 2585 

f12 0.3592 0.2099 

f13 0.4443 0.3567 

f14 0.2593 0.2273 

f15 21.92 16.4 

f16 10.6 10.67 

f17 105000 1170000 

f18 11500000 8560000 

f19 20.5 19.85 

f20 29840 24150 

f21 261000 555000 

f22 621.7 497.3 

f23 318.1 316.1 

f24 231 229.2 

f25 215.1 214.3 

f26 120.4 120.4 

f27 598.5 547.6 

f28 1574 1610 

f29 2477 1189 

f30 5438 3848 

 
The number of applications for optimization algorithm such as the 
ASKF is huge. For example, in computational science, SKF could 
optimizes the advanced system hardware, software, networking, 
and data management components needed to solve computation-
ally demanding problems. In control engineering, tuning of PID 
controller parameters for an optimized control performance is a 

multi-objective optimization problem. The problem becomes par-
ticularly difficult if the plant to be controlled is an unstable, 
nonlinear and under actuated plant. Thus, ASKF could be used as 
multi-objective optimization tools for tuning of PID controller 
parameters. In economics, most of the optimization problems in 
economics are problems of constrained optimization: maximizing 
or minimizing some objective function subject to one or more 
constraints. One example is profit maximization problem for the 
competitive firm. Constraints handling can be integrated in ASKF 

and these economic problems can be solved using ASKF. In 
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chemistry, ASKF could be used to find the global minimum, that 
is the lowest value of Potential Energy Surface (PES) in an N-
atomic molecule. In mathematics, gradient-based approach could 
be replaced with population-based approach of ASKF for solving 
constrained, non-linear optimization problems.  
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Fig. 4: Fitness error distribution of simple multimodal functions. 

0

50

100

150

200

 

S-SKF
A-SKF

f4

20

20.05

20.1

 

S-SKF
A-SKF

f5

10

15

20

25

30

 

S-SKF
A-SKF

f6

0

0.1

0.2

0.3

0.4

 

S-SKF
A-SKF

f7

0

5

10

15

 

S-SKF
A-SKF

f8

0

50

100

150

 

S-SKF
A-SKF

f9

0

200

400

600

 

S-SKF
A-SKF

f10

1500

2000

2500

3000

3500

4000

 

S-SKF
A-SKF

f11

0

0.2

0.4

0.6

0.8

 

S-SKF
A-SKF

f12

0.2

0.3

0.4

0.5

0.6

0.7

 

S-SKF
A-SKF

f13

0.1

0.15

0.2

0.25

0.3

0.35

 

S-SKF
A-SKF

f14

0

10

20

30

40

50

 

S-SKF
A-SKF

f15

9

10

11

12

13

 

S-SKF
A-SKF

f16



48 International Journal of Engineering & Technology 

 

 
Fig. 5: Fitness error distribution of hybrid functions. 

 

 
Fig. 6: Fitness error distribution of composite functions for S-SKF and A-SKF. 

 
Fig. 7: Fitness error rate of unimodal functions. 
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Fig. 8: Fitness error rate of simple multimodal functions. 

 

 
Fig. 9: Fitness error rate of hybrid functions. 

 

 
Fig. 10: Fitness error rate of composite functions. 
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