

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.28) (2018) 151-154

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

An Empirical Study with Function Point Analysis for Require-

ment Changes During Software Development Phase

Jalal Shah*1, Nazri Kama2, Amelia Zahari3

1,2,3UTM AIS

*Corresponding author E-mail: engrjalalshah7@gmail.com

Abstract

Software Requirement Changes (SRC) take place at any stage during the development of a software system. Allowing for too many

changes may increase in price and period of the development of a software system. On the other hand, denying changes may increase

consumer unhappiness. Software Change Effort Estimation (SCEE) is one of these techniques that can help software development team

in accepting or rejecting a change. At present many SCEE techniques have been introduced and Function Point Analysis (FPA) is one of

them. FPA commonly used for SCEE during the early phases of software development cycle. Our previous works have shown that it is a

challenging task to implement FPA technique in Software Development Phase (SDP) due to the inconsistent states of software artifacts

such as (1) some are fully developed, (2) some are partially and (3) some are not developed yet. Hence, an empirical study is conducted

on FPA to analyze the capability of the FPA technique to support SCEE in the context of software development phase. From the study,

we found that the FPA technique is not able to present the: (1) current state of software artifacts; and (2) impact of SRC on software arti-

facts. As a result, we recommended in our future works that the integration of FPA with Impact Analysis (IA) technique that can over-

come the limitations and potentially giving higher accuracy of SCEE results.

Keywords: Software Change Effort Estimation; Function Point Analysis; Software Requirement Changes; Software Development Phase.

1. Introduction

Software Requirement Changes (SRCs) may occur at any time and

phase of the Software Development Life Cycle (SDLC)[1] Ac-

commodating many SRCs may increase the development period

and budget of the software. While rebuffing SRCs may raise client

disappointment. Hence, it is very crucial for a Software Develop-

ment Team (SDT) to change the requirements and take the best

decisions for the success of software projects. SCEE technique is

one of the inputs that can assist and support SDT in taking best

decisions during software development phase [2, 3].

Software Change Effort Estimation is the process of predicting

how much work and how many hours of work are required for a

particular change request implementation [4, 5]. The purpose of

the software effort prediction is to evaluate the volume of effort

and time required in implementing the particular SRC [4-6].

There are two types of SCEE techniques that have been widely

used are: (1) Algorithmic and (2) Non-algorithmic techniques.

Algorithmic techniques that are usually used for SCEE are: Con-

structive Cost Method (COCOMO II)[7], FPA [8] and Use-Case

Points (UCP) [9]. Alternatively, previous studies highlighted that

Non-Algorithmic techniques such as Expert Judgement (EJ) [10],

Analogy Based Estimation (ABE) [11] and Delphi [12]. Although

several extensions have been developed based on the current effort

estimation techniques [13-16]. But, these extensions are still lack-

ing in considering the SCEE during SDP.

According to Sufyan, et al. [17], in software development phase,

requirements might change due to the dynamic nature of the soft-

ware projects. These changes will give an impact to software de-

velopment team in controlling the software effort estimation. Fur-

thermore, software development phase includes an important fac-

tor i.e. inconsistent states; that need to be considered in estimating

the required effort. The inconsistent states are: (1) the existence of

partially developed artifacts; (2) the existence of artifacts that have

been developed conceptually but not practically been implement-

ed; and (3) the existence of fully developed artifacts. On the other

hand, the failure of these considerations will lead to inaccuracy of

estimation and results in project delay or customer dissatisfaction.

Therefore, SCEE is a challenging task for SPT for SRCs during

SDP [18].

In this study, we have used FPA technique in an empirical study

for SRCs during SDP. The results of the empirical study are high-

lighted the key problems which are faced by using FPA technique

for SRCs during SDP.

This study is structured as: Section (2) Literature Review, section

(3) Methodology, section (4) Discussion, and section (5) Conclu-

sion and Future Works.

2. Literature Review

There are two most related keywords involve in this research are:

Software Change Effort Estimation and Function Point Analysis.

2.1 Software Change Effort Estimation

SCEE is a technique that forecasts the amount of work and the

number of hours which are required for the implementation of a

SRC. The results of SCEE can be used in project plans, budgets,

iteration plans, investment analyses, bidding rounds and risk

management [16]. Several types of SCEE techniques are discussed

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

152 International Journal of Engineering & Technology

in the literature. While, some of them are very famous and used

widely such as; (1) EJ [9]; (2) ABE[16]; (3) FPA[8]; (4)

Regression Analysis [7, 19]; and (5) Model Based [20].

Expert Judgement is a very famous technique mostly used for

SCEE till today. Most of the SPT selects EJ due to its flexibilty

and less complication as compare to other SCEE techniques.

Currently, there is not a single SCEE technique that clamis for

hundrade percent precise results [13].

Whereas, ABE technique uses the data or information which is

experienced from related projects. The knowledge behind ABE

attainment for SCEE is based on the previous information of inter-

related projects. Probably, due to simplicity and flexibility the

ABE is frequently used as hybrid model for combination with

other techniques to increase its accuracy such as, Particle Swarm

Optimization (PSO), Grey Relational Analysis (GRA), regression

and rough set theory [11, 21].

Source Lines of Code (SLOC) measures the size of software. In

SLOC technique number of lines of cod are countined for

estimating required effort. However, SCEE can be possible with

SLOC once the code developed for said SRC. Some studies [3,

22] specify that the moment of SLOC will be decreced for large

size development projects and also providing different SCEE

values for different programming languages. Therefore, it is a

challenging task for SPT to get accurate SCEE results with SLOC

[9]. Later on Allan Albrecht introduced FPA technique and tried

to solve SCEE problems that were faced during SLOC tecchnique

[23, 24].

Normally, Software size can be measured with Source Lines of

Code (SLOC), Function Point Analysis (FPA) and Use Case Point

(UCP), [15]. However, in this study we will try to identify the

problems of FPA technique when it is used for SRCs during SDP.

Therefore, a brief description of FPA is given in section 2.2.

2.2 Function Point Analysis

Function Point Analysis (FPA) method is developed by Allan

Albrecht in 1979. It measures the size and complexity of a soft-

ware by calculating its functionality [23, 25]. The main goals of

FPA method are: (1) independent of development technology, (2)

simple to apply, (3) can be estimated from requirements specifica-

tions and (4) meaning full to end users [8]. Furthermore, a system-

atic literature review is conducted on software effort estimation

by [25] in which they stated that FPA is one of the most useable

and reliable estimation technique.

In FPA technique, Function Points (FPs) of a software are calcu-

lated by adding Unadjusted Function Points (UFP) with Value

Adjustment Factor VAF [26] as shown in Equation 1.

FPs = UFP * VAF (1)

Where

FP stands for Function Points

UFP stands for Unadjusted Function Point

VAF stands for Value Adjustment Factor

Value Adjustment Factor (VAF) can be calculated from fourteen

General System Characteristics (GSC) [26] as shown in Equation

2.

VAF = 0.65 + [(∑n
i=1Ci) *0.1] (2)

Where:

i = GSC from 1 to 14.

Ci = degree of influence for each General System Characteristic.

∑ = summation of 14 GSC.

So after getting the value of VAF from Equation 2 the final value

of FPs can be calculated [26].

3. Methodology

This section describes the method that has been adopted for the

calculation of SCEE from the selected case study. During this

process three key elements are considered for the assessment of

the case study. These elements are; (I) Case Selection (II) Change

Requests and (III) Results and Findings.

3.1 Case Selection

Course Registration System (CRS) software is a development

project which selected as a case study from postgraduate students

of software engineering at Advanced Informatics School (AIS), at

Universiti Teknologi Malaysia (UTM). During this study five

cases are selected from different SDLC stages during SDP as

shown in the Table 1.

Table 1: Case Studies

Cases Stages States of Software artifacts

C1 Analysis Software Requirements Specifi-

cation is completed

C2 Design Software design is completed.

C3 Coding Some classes are partially de-
veloped.

C4 Testing All classes are developed

C5 Deployment All classes are fully developed.

3.2 Change Requests

We have selected fifteen change requests (CR) in five cases with

three Change Request Types (CRTs) i.e. Addition, Deletion and

Deletion in SDP as shown in Table 2.

Table 2: Change Requests

CRTs Case1 Case2 Case3 Case4 Case5

CRT1-Addition CR1 CR4 CR7 CR10 CR13

CRT2-Deletion CR2 CR5 CR8 CR11 CR14

CRT3-

Modification

CR3 CR6 CR9 CR12 CR15

4. Results and Findings

We have followed the rules of IFPUG manual [26] for calculating

function points. As we are using three Case types i.e. addition,

deletion and modification, for fifteen change requests. The values

of UFP for the change requests is shown in Table 3.

Table 3: Value of Unadjusted Function Points

Function

Types

Function Com-

plexity

Complexity

Total

Function Type

Total

ILF

1 Low * 7

1Average *10

0 High *15

= 7

= 10

= 0

17

EIF 1 Low * 5
1 Average *7

0 High *10

= 5
= 7

= 0

12

EI 1 Low *3
0 Average *4

0 High *6

= 6
= 0

= 0

6

EO 0 Low *4

2 Average *5
0 High *7

= 0

= 10
= 0

10

EQ 1 Low *3

1 Average *4
0 High *6

= 3

= 4
= 0

7

 UFPs

=

17+12+6+10+4=52

After calculating UFPs the next step is the calculation of VAF.

VAF is calculated from the fourteen GSCs with its degree of inter-

ference by using the rules of IFPUG [26] as shown in Table 4.

International Journal of Engineering & Technology 153

Table 4: General System Characteristics

General System Char-
acteristics

Degree-of
Inference

General System
Characteristics

Degree-of
Inference

1.Data Communica-

tions

3 8.Online Update 2

2.Distributed Data
Processing

2 9.Complex Pro-
cessing

0

3.Performance 3 10.Reusability 2

4.Heavily Used Con-

figuration

2 11.Installation

Ease

3

5.Transaction Rate 2 12.Operational

Ease

2

6.Online Data Entry 2 13.Multiple Sites 3

7.End-User Efficiency 3 14.Facilitate
Change

3

 Total Degree of Influence (TDI)

=32

VAF = (TDI * 0.01) + 0.65

VAF= (32* 0.01) + 0.65 =0.97

FP= UFP* VAF

FPs= 52 *0.97 = 50.44

Whereas Development Projects Function Point shown in Equation

(3).

DPF = (FPs +CEP) * VAF (3)

Where:

DFP is the development project function point count

UFP is the unadjusted function point count

CFP is the function points added by the conversion unadjusted

function point count

 DPF= (49+3) * 0.98 = 51.94 FPs

5. Discussion

To review the results of analysis of the empirical study, we have

identified the limitations in FPA technique which are: (1) FPA

technique cannot trace a requirement change in software artifacts

(2) FPA cannot predict the impact of a requirement change on

software artifacts.

5.1 Function Point Analysis Technique cannot trace a

requirement change in software artifacts

In software development phase software artifacts are in incon-

sistent states. Before, estimating the accurate amount of required

effort for implementing a change request it is necessary to know

the actual states of the software artifacts. Requirements traceabil-

ity can help SDT in knowing the actual states of software artifacts.

Whereas, FPA technique is not using any proper method for re-

quirements traceability. Therefore, during the implementation of

SRCs in software artifacts we faced the problem of requirements

traceability

5.2 Function Point Analysis Technique cannot predict

the impact of a requirement change on software arti-

facts

However, before accepting or rejecting a change request, it is nec-

essary for SDT to know the impact of the particular SRC on soft-

ware artifacts. While, FPA technique cannot predict the impact of

SRC on software artifacts. Therefore, it becomes critical for SPT

to accept or reject a change request while using FPA technique for

requirements change during software development phase.

6. Conclusion

This paper presents an empirical study on the capability analysis

of FPA technique to calculate the SCEE during SDP. Usually,

FPA technique used for early phase SCEE when the requirements

are predefined. The novelty of this study is that we have imple-

mented the FPA method for SRCs during SDP in the existence of

inconsistent states of software artifacts. We have selected a small

case study namely Course Registration System (CRS) to analyze

the capability of estimation performed by the FPA technique. Our

results have shown that there are some challenges facing by the

FPA technique which are: (1) Tracing of requirement changes in

software artifacts and (2) Impact of requirement changes on soft-

ware artifacts. Therefore for future work, we intend to integrate

the FPA technique with software change impact analysis tech-

nique. The selected software change impact analysis technique

should be able to consider the inconsistent states of software arti-

facts in its implementation.

Acknowledgements:

The study is financially supported by Contract Research Grant

(Vote No: 4C124) and Research University Grant (Vote No:

16H68) under Universiti Teknologi Malaysia.

References:

[1] J. Shah and N. Kama, "Extending Function Point Analysis Effort

Estimation Method for Software Development Phase," in

Proceedings of the 2018 7th International Conference on Software
and Computer Applications, 2018, pp. 77-81.

[2] B. Sufyan, K. Nazri, H. Faizura, and A. I. Saiful, "Predicting effort

for requirement changes during software development," presented
at the Proceedings of the Seventh Symposium on Information and

Communication Technology, Ho Chi Minh City, Viet Nam, 2016.

[3] J. Shah and N. Kama, "Issues of Using Function Point Analysis

Method for Requirement Changes During Software Development

Phase.," presented at the Asia Pacific Requirements Engeneering

Conference, Melaka Malaysia, 2018.
[4] M. H. Asl and N. Kama, "A Change Impact Size Estimation

Approach during the Software Development," in Software

Engineering Conference (ASWEC), 2013 22nd Australian, 2013,
pp. 68-77.

[5] C. Bee Bee, "Rework Requirement Changes in Software

Maintenance," in Software Engineering Advances (ICSEA), 2010
Fifth International Conference on, 2010, pp. 252-258.

[6] B. B. Chua and J. Verner, "Examining requirements change rework

effort: A study," arXiv preprint arXiv:1007.5126, 2010.
[7] A. Hira, S. Sharma, and B. Boehm, "Calibrating COCOMO® II

for projects with high personnel turnover," presented at the

Proceedings of the International Conference on Software and
Systems Process, Austin, Texas, 2016.

[8] A. Hira and B. Boehm, "Function Point Analysis for Software

Maintenance," presented at the Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and

Measurement, Ciudad Real, Spain, 2016.

[9] K. Usharani, V. V. Ananth, and D. Velmurugan, "A survey on
software effort estimation," in 2016 International Conference on

Electrical, Electronics, and Optimization Techniques (ICEEOT),

2016, pp. 505-509.
[10] M. Jorgensen, "Practical guidelines for expert-judgment-based

software effort estimation," IEEE software, vol. 22, pp. 57-63,

2005.
[11] A. Idri, F. a. Amazal, and A. Abran, "Analogy-based software

development effort estimation: A systematic mapping and review,"

Information and Software Technology, vol. 58, pp. 206-230, 2//
2015.

[12] R. Britto, V. Freitas, E. Mendes, and M. Usman, "Effort Estimation

in Global Software Development: A Systematic Literature
Review," in 2014 IEEE 9th International Conference on Global

Software Engineering, 2014, pp. 135-144.

154 International Journal of Engineering & Technology

[13] A. Idri, M. Hosni, and A. Abran, "Systematic literature review of

ensemble effort estimation," Journal of Systems and Software, vol.
118, pp. 151-175, 8// 2016.

[14] M. d. F. Junior, M. Fantinato, and V. Sun, "Improvements to the

Function Point Analysis Method: A Systematic Literature Review,"
IEEE Transactions on Engineering Management, vol. 62, pp. 495-

506, 2015.

[15] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "Change effort
estimation based on UML diagrams application in UCP and

COCOMOII," in 2015 10th International Joint Conference on
Software Technologies (ICSOFT), 2015, pp. 1-8.

[16] B. Chinthanet, P. Phannachitta, Y. Kamei, P. Leelaprute, A.

Rungsawang, N. Ubayashi, et al., "A review and comparison of
methods for determining the best analogies in analogy-based

software effort estimation," presented at the Proceedings of the 31st

Annual ACM Symposium on Applied Computing, Pisa, Italy, 2016.
[17] B. Sufyan, K. Nazri, A. Saiful, and H. Faizura, "Using static and

dynamic impact analysis for effort estimation," IET Software, vol.

10, pp. 89-95, 2016.
[18] S. Basri, N. Kama, and R. Ibrahim, "COCHCOMO: An extension

of COCOMO II for Estimating Effort for Requirement Changes

during Software Development Phase," 2016.

[19] C. A. L. Garcia and C. M. Hirata, "Integrating functional metrics,

COCOMO II and earned value analysis for software projects using

PMBoK," presented at the Proceedings of the 2008 ACM
symposium on Applied computing, Fortaleza, Ceara, Brazil, 2008.

[20] I. Attarzadeh, A. Mehranzadeh, and A. Barati, "Proposing an

Enhanced Artificial Neural Network Prediction Model to Improve
the Accuracy in Software Effort Estimation," in Computational

Intelligence, Communication Systems and Networks (CICSyN),

2012 Fourth International Conference on, 2012, pp. 167-172.
[21] V. K. Bardsiri, D. N. A. Jawawi, A. K. Bardsiri, and E. Khatibi,

"LMES: A localized multi-estimator model to estimate software

development effort," Engineering Applications of Artificial
Intelligence, 2013.

[22] B. W. Boehm, "Software cost estimation meets software diversity,"

presented at the Proceedings of the 39th International Conference
on Software Engineering Companion, Buenos Aires, Argentina,

2017.

[23] A. J. Albrecht, "AD/M productivity measurement and estimate
validation," IBM Corporate Information Systems, IBM Corp.,

Purchase, NY, 1984.

[24] M. Saroha and S. Sahu, "Tools & methods for software effort
estimation using use case points model — A review," in

Computing, Communication & Automation (ICCCA), 2015

International Conference on, 2015, pp. 874-879.
[25] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, "Web Effort

Estimation: Function Point Analysis vs. COSMIC," Information

and Software Technology, vol. 72, pp. 90-109, 4// 2016.
[26] D. Longstreet, "Function points analysis training course,"

SoftwareMetrics. com, October, 2004.

