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Abstract 
 
Background/Objectives: Monte Carlo renderings, which are recently used in animation and visual effects, produce realistic images but 
noise occurs during the ray tracing process.  
Methods: In this paper, the learning is performed with only RGB channel without an auxiliary buffer such as normal, albedo, and diffuse. 
The performance was improved by modifying the Densely Connected Convolutional Networks, which shows excellent performance. The 
transition layer which has the pooling layer is removed, and the last convolution layer is used to produce a denoised image because the 
final layer is intended for denoising rather than classification. 

Findings: It is difficult to distinguish the detail from the noise without special information during the denoising process, thus the learning 
convergence speed is slowed down. However, in this paper, we found that it is possible to preserve detail while removing noise by using 
the Densely Connected Convolutional Network to preserve the high and low features. Even if the feature map is increased, batch 
normalization and bottleneck layers can resolves this problem and even increases the speed of learning. As a result, our method denoised 
better than state-of-the-art base-filter denoiser with only the RGB channel. 
Improvements: It was implemented by Tensor flow with Python on CPU i5 6600, and GTX 1080 Ti. After approximately 24 hours, it 
showed similar performance than the filter-based algorithm. 
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1. Introduction 

Multi-dimensional computation of each pixel of the image is 
required to render realistic images. Monte Carlo(MC) rendering 
technology can produce high-quality images using methods to 
estimate and approximate the scene function through tracing light 
rays for these complex computations.[1] However, when the 

number of samples(rays) is too small, an unacceptable noise will 
occur and  an immense computational cost are required for noise-
free images, as shown Figure 1. This eventually leads to a very 
long rendering time. Recently, many denoising algorithms have 
been researched to address this problem by rendering at a low 
sampling rate and removing noise through post processing.  

 

Figure 1:.The amount of noise according to the number of samples 

One of these methods is denoising with the use of filters, which 
removes the noise by using various auxiliary buffers(normal, 
depth, albedo, etc.).A number of filter-based methods have been 

proposed, including the joint bilateral filtering method[2], the 

method to estimate filter error by SURE metric[3], and the 
asymptotic bias analysis method[4], and these methods have 
shown good performances as they filter with information about the 
scene. However, the parameter setting requires manual 
configuration due to the use of fixed filters, which limits the 
ability to find optimal parameters. Thus, the failure to obtain 
optimal parameters resulted in overblurring or underblurring. 

Recently, a learning-based method was proposed to obtain the 

parameters through machine learning, which not only produces 
good quality results but also quickly finds a filter to obtain the 
denoised image, once the learning process is over. However, it 
uses the multi-layer perceptron rather than the convolutional 
network for image processing and uses a very small amount of 
dataset. Hence, it still had the existing problems due to the partial 
use of fixed filters such as cross non-local means filter.[5] 

The deep learning method, which can learn the complex 

relationship between input and output, can certainly obtain more 
optimal parameters over other methods, and most of all is fast 
during runtime. Therefore, a method was proposed to apply this to 
the Convolutional Neural Network(CNN), which is recently 
showing high performance in image processing and is highly 
capable of extracting image features. After learning in two 
different networks of diffuse and specular, the results are 
combined. Instead of using raw inputs, the diffuse is divided by 

albedo, logarithmic transformations for specular, and the gradient 
of each auxiliary buffer is obtained and entered as input. As a 
result, although it showed a good performance, it uses the naïve 
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convolutional network, and overblurring occurs when attempts are 
made to output the denoised image as it is, and it takes about a 
week to get a good result.[6] 

In this paper, our proposed model learns only by RGB channel for 

various noise applications. However, unlike the conventional RGB 
channel, which has a specific range of values between 0 and 255, 
the learning process is unstable and color artifacts or overblurring 
occurs because of the high dynamic range of values, which 
declines the learning convergence speed. To solve this problem, 
the image patch size was set to a suitable small size, and used the 
Densely Connected Convolutional Network to preserve the high 
and low features of the RGB image as much as possible. As a 

result, it was possible to obtain results with faster learning speed 
while preserving more detail and removing noise than the naïve 
Convolutional Neural Network. 

2. Deep learning Architectures and Techniques 

We focuses on the deep learning model and its techniques, as the 

area of rendering technology and auxiliary buffer(normal, depth, 
albedo, etc.) for preprocessing is too large to cover in this paper. 
The model in this paper is based on the Convolutional Neural 
Network(CNN) and uses batch normalization as a way to improve 
learning speed and accuracy. And also modified the Densely 
Connected Convolutional Network(DenseNet), which recently 
shows excellent performance in classification, for denoising and 
describes how the modification is constructed.  

2.1. Convolutional Neural Network and Technic 

Deep learning algorithms are already used in many fields and the 
technique is still under study. Especially in image processing 
fields such as classification, detection, and segmentation, deep 
learning can perform similar or better than humans and the model 
used to do such work is the Convolutional Neural Network. It 
consists of basic elements such as the convolution layer, the 
pooling layer, and the fully connected layer. 

2.1.1. Convolution Layer 

The convolution layer is a key component of the CNN, a 
technique which is already used in image processing and signal 
processing. It operates the element-wise sum of product by sliding 
the k x k size kernel to the image in a horizontal/vertical 
dimension. It can extract various features from the image 
according to the kernel value. Although the multi-layer, in which 

the neuron of each layer is fully-connected, is likely to cause 
overfitting of the image, since CNN has the characteristics of local 
connectivity, it can reduce overfitting by taking advantage of the 
information in the receptive field of the image. In addition, the 
parameter values are much lower than that of the fully connected 
layer because the kernel values are shared. 

2.1.2. Pooling Layer 

The pooling layer reduces the amount of computation by reducing 
the size of the feature map, which is increased by the convolution 
layer. In general, a 2 x 2 kernel slides in a horizontal/vertical 
dimension and selects a value by a certain rule such as max 
pooling which selects the maximum value, average pooling which 
obtains the average value, and max pooling is widely used in CNN 
currently. 

2.1.3. Fully Connected Layer 

The fully connected layer is used for classification by placing it on 
the last layer of CNNs in the same form as the MLP. The three-
dimensional feature map, which is drawn through the convolution 
layer and the pooling layer, is spread out into one dimension and 
to obtain the sum of product, and the final predict value is 
obtained after applying the activation function. 

2.2. Batch Normalization 

Every time the deeper model is applied to learning, the gradient 
vanishing/exploding problems arise, and there were efforts to 
solve this problem in various ways. For instance, there were 
methods that initialized the weight or learning rate well, used 
ReLU function as activation function, and regularization such as 
dropout or weight decay to prevent weight values from being 
concentrated on one side. However, the learning speed would slow 

down or gradient vanishing/exploding would occur again since the 
fundamental problem was not solved. This instability occurs 
because of the internal covariance shift, and as the value is 
transferred to the layer, the distribution of each activation input is 
changed. This becomes more biased as the layer is transferred, 
resulting in the overfitting. To resolve this problem, each layer is 
normalized by calculating the moving average to remove this bias. 
Eventually, it does not fall into the local minima even if the 

learning rate is set to high through normalization, and it learns 
well without dropout because of the self- regularization effect. [7] 

2.3. Deep Residual Network 

However, there was no way to get any deeper than this due to the 
Vanishing/Exploding Gradient problem. Of course, this problem 
was solved by various methods, but if a certain layer is passed the 
learning process doesn’t work well. But it’s not overfitting 

because training error increases by degradation problem. In order 
to solve this problem, a shortcut connection is designed directly 
from the input to the output to learn the difference between the 
input and the output as shown in Figure 2, so that even small 
fluctuations can be easily detected. This is called residual learning, 
and deep networks can be easily optimized while performance can 
be improved because the depth can be increased easily. As a result, 
it became possible to increase the number of layers to more than 

100 showing better performance than humans.[8] 

 

Figure 2:.TheConnectityof Deep Residual Networks 

2.4. Densely Connected Convolutional Network 

Although ResNet has already shown sufficient performance, a 
model has emerged that retains the performance while the size of 

the model is smaller and narrower. This is called the Densely 

Connected Convolutional Network(DenseNet), and DenseNet-
BC(DenseNet + Bottleneck + Compression) has only 1/3 of the 
parameters compared to ResNet. Unlike ResNet, which adds the 
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block input values and operation result values, DenseNet 
concatenates all previous blocks, as shown in Figure 3.Other than 
this, bottleneck layers are used to reduce the computational 
complexity for a similar channel reduction. And to make the 

model more compact, convolution 1 x 1 and pooling operation are 
performed to reduce the amount of feature map. Finally, 
classification is performed by average pooling.[9] 

 

Figure 3:.TheConnectity of densely connected Convoutional Network (Dense Block) 

3. Proposed Method 

In this paper proposes a model that performs better than the 
conventional naïve CNNs by modif-ycationsDenseNet properly 
for denoising and faster learning convergence speed. And we also 
design loss function by using gradients of RGB channels. And 
finally we describe used parameters of our mod-el. 

3.1. Densenetfor Denoising 

First, the transition layer has been removed to have a bottleneck 
structure, while not reducing the image size and the number of 

feature maps. In addition, the operation of the final layer performs 
convolution, because the final output must be an image since the 

purpose is for denoising rather than classification. For increasing 
learning speed and reduces overfitting, we use 20bottleneck layers 
in a dense block: bottleneck layer consists of Batch 
Normalization(BN)-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3) in 
order. In Figure 4, the important thing is that the proposed model 
has only one dense block for preserving as many feature map as 
possible, and the block operates as shown in Figure 3. The first 
layers(Conv, BN, ReLU) is extract simple features about noisy 

image by convolutioning with 7 x 7 kernel. The last layers(BN, 
ReLU, Conv) outputs the result with RGB channel through 3 × 3 
kernel operation. 

 

 

Figure 4:.The proposed model for denoising 

3.2 Training 

It is also known that using    loss perfo-rms better than    by 

reducing splotchy artifacts[10]  

   
 

 
        

 
                                                                    (1) 

In Equation (1) Where    and    are the ith pixel of denoised 

image and reference image respectively. But if there is only    

loss. There is no way for model to learn where the edge of images 
is. Hence, we input additional 6 channels about gradient of RGB 
channels(x, y). And then another loss is calculated by subtractin 
gradients of denoised images and reference images. In Equation 
(2), g(∙) is computed difference on x, y-axis.  

   
 

 
                    

 
                                                  (2) 

We use these two losses for computing final losses by weighting. 

In Equation (3), we picked     = 0.9/0.1. Adam Optimizer was 

used as the optimization function. Learning rate starts from 0.01, 

decay step 10000, and decay rate 0.9. And kernel initializer is used 
He Initializer.[11] 

3. Experiment 

3.1. Dataset 

To avoid overfitting during the learning process of a large deep 
neural network, a large enough representative dataset is required 
to address the general denoising problem. In this paper, the dataset 
was provided by Pixar research and used about 1,300 rendering 
scenes with the size of 1,280 x 720. Each scene is a rendering of 8 
different scenes(bathroom, staircase, etc.) into different types of 
images by changing various camera angles, textures, etc. For 
instance, same scene of the bathroom  was created into different 

images, as shown in Figure 5. In this paper, these images are 
cropped into 20 slides in a 28 x 28 format, and by excluding 
images with a unique value less than 100, images with no special 
edge were excluded as much as possible. 
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Figure 5:.The various scenes of bathroom 

3.2. Environment 

The learning was conducted with CPU i5 6600, Memory 16MB, 

GPU 1080 Ti, and progressed with python 3.5 tensorflow version 

1.6. The learning time was about 24 hours, and GPU memory of 
8,558MB was used. It was compared with the learning-based 
filtering experiment. All of the inputs were used as 128spp 

rendered images. 

3.3. Result 

 

Figure 6:.The performances of denoisers 

As shown Figure 6. The Result of ours performed better than RPF, 
LBF without auxiliary buffers unlike traditional methods. In 
addition, denoising time is spent only few seconds.  

4. Conclusion 

In this paper, among various algorithms that remove the noise of 
Monte Carlo renderings, a solution that applies deep learning was 
proposed to solve the issue. In particular, unlike the filter-based 
and learning-based methods, sufficient performance has been 
achieved with only RGB channels without special preprocessing 

and the use of information such as auxiliary buffers(diffuse, 
specular, depth).In addition, the slow learning convergence speed 
problem of the existing naïve CNNs and the color artifacts or 
overfitting problems caused by noise were solved by appropriately 
optimizing DenseNet, which preserves features while using layers 
for a long period, for denoising. However, since overblurring still 
exists, better performance improvements are expected if learning-
based filtering is performed by preprocessing using DenseNet and 
auxiliary buffers. 
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