

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 412-417

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

The Problems and Challenges of Infeasible Paths in

Static Analysis

Abdalla Wasef Marashdih1, Zarul Fitri Zaaba 1, Saman M. Almufti 2

1School of Computer Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

2College of Computer Science and Information Technology, Department of Computer Science, Nawroz University

*Corresponding Author Email: a.w.marashdih@gmail.com

Abstract

Static analysis is valuable because it imparts the ability to examine all program paths. However, many of these paths are classified as

infeasible paths, which signify that these paths will fail to execute. In static analysis, these paths will lead to results that are high false

positive. Because static analysis has a vital part in the detection of vulnerabilities and threats in the software as well as in program analy-

sis, improving static analysis is necessary to obtain accurate results and lessen the occurrence of false positive results. Being able to de-

tect infeasible paths is useful in the improvement and development of the results of static analysis. However, the process that is used to

identify these infeasible paths is not simple, especially because numerous tools and methods still do not have the efficiency in detecting

these kinds of paths within the static analysis. This paper will review the infeasible paths problem in the static analysis, the new methods

of solving this problem, and the reassessment of this vital issue in software testing. This paper will also discuss the importance of expos-

ing and getting rid of these paths.

Keywords: Infeasible Paths; Path Testing; Static Analysis; Software Testing, Security; Vulnerabilities.

1. Introduction

TATIC analysis is seen as one of the most essential methods for

source code analysis because it can detect security problems and

vulnerabilities even before the program is executed for the first

time [1]. Static analysis encompasses the entire source code, mak-

ing it the most effective tool for detecting threats and security

vulnerabilities in the source code [2]. However, false positive

results are often obtained in static analysis, because static analysis

sometimes analyses paths that are considered infeasible paths, or

the paths that fail to execute. This is why the false positive results

problem is a major issue in static analysis that needs to be exam-

ined and addressed. Eliminating infeasible paths from the paths

that will undergo static analysis will lower the rate of false posi-

tives in the results [3].

According to Hedley and Hennell [4], 12.5% of the whole paths

can be classified as infeasible paths, signifying that they will not

execute regardless of the type of input data. Eliminating these

paths will improve static analysis since its results will be im-

proved by the reduction of the false positive rate, which consti-

tutes a major static analysis limitation.

Numerous methods and tools have been utilised to identify infea-

sible paths, but these tools and methods still do not have enough

efficiency for the detection of these paths. Symbolic execution is

one of the techniques for the detection of infeasible paths within

the source code [5,6]. However, the utilisation of symbolic execu-

tion raises the cost for sharper analytical results. Furthermore, it

can detect a small amount of infeasible paths since it lessens sym-

bolic evaluation in function calls and arrays.

Other researchers utilised genetic algorithm to generate only fea

sible paths and avoid infeasible paths [7,8,9]. They were able to

achieve promising results since the infeasible paths were avoided.

However, certain instruments within their genetic algorithm func-

tion manually, which uses up a significant amount of time and

manpower. Their approach is therefore not appropriate for the

large and complex program. One can also utilise dynamic test data

generation algorithms to detect infeasible paths. It does this by

monitoring the program’s execution [10,11]. However, symbolic

execution is often utilised for test data generation making it almost

as costly as symbolic execution.
It should be noted that identifying a solution to detect all the in-

feasible paths within the source code is difficult. This paper dis-

cusses static analysis and its main issue, which is infeasible paths.

It will also talk about the proposed approaches for discovering the

infeasible paths.

The succeeding parts of the paper will be organised in the follow-

ing manner. Section II focused on the related approaches for de-

tecting infeasible paths. Section III and section IV will discuss the

concept and the strategy behind the static analysis as well as the

infeasible paths. Section V will talk about the recent methods that

have been utilised for detecting the infeasible paths and discusses

the advantages that come with detecting infeasible paths. Conclu-

sion and future works are discussed in section VI.

2. Static Analysis

Static analysis is used in the analysis of source code for programs

and for finding and identifying weaknesses within the source

code. Static analysis has the capacity to view all the possible pro-

gram paths found within the application, which helps in determin-

ing the coverage for all the paths of the program [12]. Static anal-

ysis has been widely used to analyse programs and applications so

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 413

that gaps and the weaknesses can be found. The data analysis pro-

cess in the static analysis has its basis on the control flow graph

and the code’s data flow analysis. This process does not need any

real implementation of the program.

The standard way of representing the data program’s flow is the

Control Flow Graph (CFG) [13]. Every sentence is represented

using a node that is linked together by edges so that the program’s

data flow can be represented. A starting node starts the process.

The flow then starts and each node (statement) is represented until

the program ends. Every path that goes from the starting node all

the way to the end node is taken as the data’s logic path in the

program. In order for the path to be implemented in the CFG, the

inputs have to satisfy the conditions that all the branches of the

path impose. Figure 1 illustrates an example of the PHP source

code and the CFG for that example.

Fig. 1: Example of PHP Source Code and CFG

The PHP begins by giving a definition to the two variables ($a = 5

and $b = 10). The condition given at line 4 then makes a compari-

son between the two variables ($b > $a). The statement (echo $b)

found at line 6 will be executed if the condition is TRUE. Other-

wise, it would execute the statement (echo $a) at line 10.

Because static analysis tools are able to detect errors within the

paths that were made from the control flow graph, there is a great

chance for these paths to not be executable (infeasible paths).

These lower the accuracy of the results, especially the ones that

are assumed to have errors. These paths are often infeasible,

which means that the tool does not need to consider them or allot

time for their analysis. The following section will talk about the

infeasible paths within the static analysis. It will also discuss how

it works.

3. Infeasible Paths

One can define the infeasible path as any path within the CFG that

is not executable under any input values or any test cases [13,16].

Figure 2 illustrates an example of the PHP source code with its

control flow graph and shows how some paths end up being clas-

sified as infeasible paths.

Fig. 2: PHP Source Code and the Infeasible Paths in CFG

Figure 2 shows that the static analysis begins by analysing the

PHP source code and creating the source code’s control flow

graph so that the program’s data flow can be determined. The PHP

source code begins with the initialisation of the two variables

found in line 2 and 3 ($x = 20 and $y = 40). Then, a condition

specified in line 4 will check if ($x < 20) and ($y > 60). The

statement in line 6 (echo $x + $y) is implemented if the condition

is true. It then ends at line 8 (echo $y - $x). However, if the state-

ment presented in line 6 (echo $x + $y) is an infeasible statement,

there will be no probability for the given condition to be true at

all. Thus, every path that has the line 6 implementation will be

considered an infeasible path.

Infeasible paths can exist because of several reasons [13], one of

which is the existence of dead code, which means that it is not

possible to implement a certain sentence within the code. Conse-

quently, they result into unimplementable paths because accessi-

bility for this data does not exist. Another cause of infeasible paths

is the conflicting clauses that are contained within certain paths,

such as: (A <= 10 && B > 20 || C == 40). Infeasible paths may

also be present as a result of the existence of correlated condition-

al statements in terms of a given variable (which is considered as

one of the main reasons for the absence of access in the programs

[14, 15]).

To enhance the results of the static analysis, one should remove

infeasible paths from the entire path of the control flow graph [3,

13, 16, 17]. One can define the infeasible path as any path that is

not executable under any test cases [13]. Conversely, Ball, T. and

Balakrishnan, et al. [16,17] stated that developers need to distin-

guish these infeasible paths from the other paths of the entire con-

trol flow graph. The following section will provide a description

of the detection of infeasible paths as well as the methods that

were used to identify these infeasible paths.

4. Detection of Infeasible Paths

It is very important to detect infeasible paths. Furthermore, instead

of trying to test them, discovering these paths will help conserve

time and resources [13]. The presence of these infeasible paths

influences numerous fields of software engineering. Detecting

these paths will improve the analysis and detection process of

security vulnerabilities [3,18], help conserve time, and improve

accuracy.

It also helps in checking the web application [19,20,21,22,23] as

414 International Journal of Engineering & Technology

well as the database applications design [14,24], which are both

valuable in the detection of these infeasible paths.

Complex data structures and dependencies need to be dealt with

when detecting infeasible paths. Numerous tools and methods

have been utilised for the detection of infeasible paths. However,

these methods and tools still do not have enough efficiency to

detect these paths. Table 1 shows the approaches used to detect

infeasible paths.

Table 1: Approaches Employed for Detecting Infeasible Paths

Author Approach Description Results Supported

Language

Ngo and Tan [25]

(2007)

An innovative method for determining infeasible paths in four

common code patterns

Detects 82.3% of all infeasible paths XML

Ngo and Tan [14]

(2008)

A heuristics-based methodology for infeasible path detection

and dynamic test data generation

Detects 96.02% of all infeasible paths JAVA

Papadakis and

Malevris[5] (2010)

An automated symbolic implementation tool Detects 93% of 50 program paths per

branch

Delphi, C/C++

Gong and Yao [15]

(2010)

Automatic static analysis and dynamic techniques; identifies the

brunch correlations for ascertaining infeasible paths

Detects 99.81% of all infeasible paths C

Yano, et al., [26]

(2011)

The MOST method utilises a multi-objective evolutionary algo-

rithm and an objective function

Can effectively ensure path feasibility JAVA

Wong, et al., [28]

(2013)

Modified breadth first search with conflict checker Promising outcomes for determining path

feasibility

C++

Jayaraman and

Tragoudas [29]

(2013)

Control as well as data dependency are taken into account for

determining the infeasible paths.

Not effective in determining infeasible

paths

C++

Hermadi, et al.,

[30] (2014)

Genetic algorithm with decision rules The recommended methodology appears to

be helpful with few missed feasible paths

C

Ruiz, and Cassé

[31] (2015)

Depiction of program states as labelled sets of predicates with

Satisfiability Modulo Theories (SMT) solver

Not effective in covering the whole infeasi-

ble paths in the program

C++

Delahaye, et al., [6]

(2015)

Generalise infeasible paths from the uncovering of a single

infeasible path with DSE-based automated test input generation

The method can save substantial computa-

tion time during test generation

C

Ruiz, et al., [32]

(2017)

An infeasible path lookup analysis which benefits from being

composed and split, and the SESE regions comprising the bod-

ies of subroutines and loops

Diminution of the WCET by more than

10%; many kinds of infeasible paths remain

untraceable

C

Marashdih, et al.,

[18] (2017)

Manual removal of infeasible paths in control flow graph More precise outcomes in software testing;

eliminating infeasible paths should be made

automatic

PHP

Table 1 shows that numerous research works are still focused on

removing these infeasible paths from the control flow graph. De-

spite this, these approaches still do not have adequate efficiency to

detect these kinds of paths. Conversely, the removal of infeasible

paths is seen as a vital stage in improving the result of static anal-

ysis. The approach developed by Marashdih et al. [18] serves as a

real example of how software testing can be improved once the

infeasible paths are removed. They were able to achieve accurate

results without having any incidence of false positives. They stat-

ed that they were able to produce these results mainly because the

infeasible paths have been removed.

Majority works for eliminating infeasible paths emphasise the C,

C++, Java programming languages. However, the removal of in-

feasible paths is vital for the other programming languages like

ASP.Net, PHP and Python. More importantly, programming lan-

guages that are utilised for building applications make use of static

analysis for the detection of any security vulnerability within these

applications. The following section will present more details re-

garding the approaches that were utilised to detect infeasible

paths.

5. Related Work

A number of works have been previously published regarding the

topic of detecting infeasible paths. Ngo and Tan [25] formulated a

method to detect infeasible paths. Binomial tests were performed

International Journal of Engineering & Technology 415

and these tests gave strong statistical proof that supported the va-

lidity of the empirical properties. Based on their experimental

results on XML, they discovered despite certain limitations in the

present prototype tool that the proposed approach was able to

detect 82.3% of all the infeasible paths accurately. In 2008, Ngo

and Tan suggested a heuristics-based approach that can be used to

detect any infeasible path for the generation of dynamic test data.

Their experiments, which were performed on Java source code,

revealed that the proposed approach was able to detect majority of

the infeasible paths efficiently, with an average precision value of

96.02% and a recall value that is at 100% for all the cases.

Papadakis and Malevvris [5] formulated an automated symbolic

execution tool that can be used for the detection of infeasible

paths. The tool makes use of an efficient path heuristic, which is

then integrated with random testing so that test cases can be pro-

duced. The tool is able to efficiently handle the explosion of the

path and the constraint of solving problems. This is attained by

targeting specific paths that are likely to be feasible and then uti-

lising a linear programming approach to determine their feasibil-

ity. The preliminary results they obtained have shown great prom-

ise as they revealed that one can obtain high coverage for a limited

amount of time-effort. Their results revealed that the tool they

developed is able to detect 93% of the 50 program paths for every

brunch.

Gong and Yao [15] formulated a tool for automatically identifying

the branch correlations of various conditional statements, which in

turn helps detect infeasible paths. In this technique, the advantages

of dynamic techniques and static analysis are combined. This

method also identifies the branch correlations of various condi-

tional statements by using the maximum likelihood estimation.

First, it provides some theorems that can be used to identify

branch correlations that are based on the probabilities that the

conditional distribution will correspond to the outcomes of differ-

ent branches (i.e. true or false); then, it uses maximum likelihood

estimation to obtain values for these probabilities; lastly, it detects

infeasible paths based on branch correlations. The proposed meth-

od was applied in some typical C programs, with the results re-

vealing that the proposed method is capable of accurately detect-

ing infeasible paths. The achievement is able to offer an automatic

and effective method of infeasible path detection, which is im-

portant in enhancing the efficiency of software testing.

To avoid the generation of an infeasible path, Yano, et al. [26]

proposed the MOST approach. This approach is a search-based

testing technique for the generation of a test case from Extended

Finite State Machines (EFSM). MOST makes use of a multi-

objective evolutionary algorithm so that the generation of test

cases will be able to cover a given transition (test purpose). It can

then find more than one successful path to cover the proposed test.

To serve as a guide to the search for a test purpose, an objective

function was proposed. This function makes use of information

that has been obtained from a dependence analysis of the model.

This makes sure that the solution formulated is able to cover most

of the transitions that the test purpose is dependent on. They take

both control and data dependence analysis into consideration. The

results obtained from MOST were then compared to the results

obtained from another search based testing approach for EFSM

[27]. The MOST results obtained generally similar or even better

results.

Wong, et al. [28] suggested a method that utilises the modified

breadth first search with conflict checker so that a set of minimum

Feasible Transition Path (FTP) can be generated for each transi-

tion. They developed an EFSM executable model for algorithm

modelling, algorithm verification, and performance assessment.

Experimental results that were performed on two EFSM models

revealed that their proposed approach is capable of generating

feasible transition paths that have at least 18% reduction in path

length.

Jayaraman and Tragoudas [29] proposed a new algorithm to rec-

ognise unfeasible pathing in the behavioural code. The initial step

of the proposed strategy partitions behavioural codes into seg-

ments. For every segment, it implicitly stores every possible path.

Similarly, it stores input assignment sets that derive from certain

statements in the segments of code. The technique requires ad-

vanced data structures for storing possible paths and necessary

functions. Experimental findings have established the scalability

of this approach.

Hermadi, et al. [30] presented and evaluated a technique for de-

termining when further searches for test data that covers exposed

target paths are no longer worthwhile. The main parameters as

well as uses in various decision rulesets for advance terminations

of searches of the approach are outlined. The key advantage of

their recommended strategy is that arbitrary parameters (the num-

ber of generations to be searched) are substituted with a technique

that accords with search history, while the researcher’s decision

on when to halt tests can accord instead with the likelihood those

additional tests will not contain further pathing, to include the

stability of the probability. A twenty-one test program set from

SBSE path-testing studies was utilised to assess the technique. In

comparison to searches comprising standard number of genera-

tions, 30% to 75% of the computational burden on average was

evaded in program tests with unfeasible pathing, with no possible

pathing missed as a result of early terminations. Additional com-

putation including unfeasible pathing was insignificant; the ap-

proach is efficient and successful. It circumvents the requirement

for specifying limits to the number of search generations and can

assist in overcoming difficulties due to unfeasible pathing in

search-based generation of data in tests for paths.

Ruiz, and Cassé [31] presented a new strategy for discovering

unfeasible pathing in binary programs. Their approach consists of

static analyses of (a) a CFG with blocks composed of machine

instructions (abstracted via semantic instruction sets) and (b) of a

programmatic data state symbolised by register and memory pred-

icates. SMT unsatisfiability in predicates enables identification of

unfeasible pathing, resulting in a listing of edges from the program

CFG that are prohibited on possible execution paths. Such infor-

mation is normally utilised to enhance the accuracy of WCET

computations. Nevertheless, certain unfeasible paths will not be

discovered due to (a) overly coarse states that join operators and

(b) exploding time calculations.

Delahaye, et al. [6] explain a new approach to generalised unfea-

sible pathing from detections of single unfeasible paths, as well as

a method for exploiting this unfeasible-path generalisation tech-

nique, for DSE-based automated input generation in testing. The

technique comprises three steps. Firstly, it derives explanations of

infeasibility; Secondly, it determines dependencies in the data that

associate with given explanations; Thirdly, it constructs automa-

tions that generalise fed unfeasible paths, allowing users to detect

early on other unfeasible paths that share similar explanations.

The recommended approach has been applied to common DSE-

based input generation testing processes. Generic processes were

used so as to evaluate the technique apart from particular con-

straint solvers or descriptive methods. Experimental findings ob-

tained through this method demonstrated that this unfeasible path

generalisation strategy compares favourably with that of exhaus-

tive unfeasible path detections, in that the method can accelerate

DSE when generating test inputs.

Ruiz, et al. [32] presented a reasonably scalable strategy for un-

feasible path detection in binary programs that handle loop and

function call processes, using a method that stores sufficient in-

formation about the programmatic state for the detection of signif-

icant unfeasible pathing within loops. The analytical framework

416 International Journal of Engineering & Technology

relies on composed representations of the states of programs. It

can be applied to localised code segments, including subroutine

and loop parts. Analysis can also assist in outputting unfeasible

pathing of the greatest possible scope in general, therefore ampli-

fying the effect on WCET estimations. Experimental tests using

Malardalen benchmarks [33] showed conclusive outcomes, such

as a decrease of over 10% in the burden of WCET estimations, as

conducted in three large benchmarks. Nevertheless, various types

of unfeasible pathing remain indiscernible to their analytical ap-

proach. This limitation includes inter-loop conflicts, as in the in-

stance of paths that are not resolvable within two successive itera-

tions.

Marashdih, et al. [18] proposed a strategy for identifying cross site

scripting (XSS) in PHP in accordance with genetic algorithms and

static analyses, and another strategy to remove the detected XSS

vulnerability from the source code [34,35]. The technique im-

proves on the previous strategy of Ahmad and Ali [36] by elimi-

nating unfeasible pathing from control flow graphs. This assists in

enhancing findings and leads to more accurate outcomes than that

of Ahmad and Ali [36]. But as unfeasible pathing was eliminated

manually, the strategy applies only to smaller programs. Some

method for automatically removing every unfeasible path must be

determined for their strategy to apply to larger programs as well.

6. Conclusion

Static analysis is termed as one of the most vital methods for scru-

tinising the source code. It has the capability to view all likely

program paths in the application; this aids in determining the cov-

erage for the entire paths of the program. Because static analysis

tools are able to detect errors within the paths that were made

from the control flow graph, there is a great chance for these paths

to be not executable (infeasible paths), which make the outcomes

not precise, particularly those which are presumed to have errors.

These paths are often infeasible, which means that the tool does

not need to consider them or allot time for their analysis. Thus, we

have elucidated the infeasible path problem in static analysis ac-

companied by examples. Furthermore, we outline the detection

and the methodologies deployed for determining infeasible paths.

It is noteworthy that all current approaches cannot determine most

of the infeasible paths effectively. The majority of the approaches

on eliminating infeasible paths emphasise on C, C++, Java pro-

gramming languages. However, eliminating infeasible paths is

vital for all programming languages like Python, PHP, and

ASP.net.

Acknowledgement

"This research is fully supported by University Research Grant

from Sultan Idris Education University under the grant number of

2018-0134-109-01."

References

[1] Da Fonseca, J. C. C. Martin, and M. P. A. Vieira, “A practical ex-

perience on the impact of plugins in web security,” in 2014 IEEE

33rd International Symposium on Reliable Distributed Systems
(SRDS), pp. 21-30.

[2] A., Avizienis,J. C.Laprie, B.Randell, and C. Landwehr, “Basic con-

cepts and taxonomy of dependable and secure computing,”IEEE
transactions on dependable and secure computing, vol. 1, no. 1, pp.

11-33, Jan. 2004.

[3] A. W.Marashdih, and Z. F.Zaaba,“Cross Site Scripting: Detection
Approaches in Web Application,”(IJACSA) International Journal

of Advanced Computer Science and Applications, vol. 7, no. 10,

Oct. 2016.

[4] D. Hedley, and M. A. Hennell, “The causes and effects of infeasible

paths in computer programs,”in 1985 Proceedings of the 8th inter-

national conference on Software engineering, pp. 259-266.

[5] M., Papadakis, and N. Malevris, “A symbolic execution tool based

on the elimination of infeasible paths,” in 2010 Fifth International

Conference on Software Engineering Advances (ICSEA), pp. 435-
440.

[6] M., Delahaye, B. Botella, and A. Gotlieb, “Infeasible pathgenerali-

zation in dynamic symbolic execution,”Information and Software
Technology, vol. 58, pp. 403-418, Feb. 2015.

[7] A. S.Ghiduk, “Automatic generation of basis test paths using varia-

ble length genetic algorithm,” Information Processing Letters, vol.
114, no. 6, pp. 304-316, Jun. 2014.

[8] M. A., Ahmed, and I.Hermadi, “GA-based multiple paths test data

generator,”Computers & Operations Research, vol. 35, no. 10, pp.
3107-3124, Oct. 2008.

[9] D.Gong, W.Zhang, and X. Yao, “Evolutionary generation of test

data for many paths coverage based on grouping,”Journal of Sys-
tems and Software, vol. 84, no.12, pp. 2222-2233, Dec. 2011.

[10] P. M. S.Bueno, and M. Jino, “Identification of potentially infeasible

program paths by monitoring the search for test data,” in2000 Pro-
ceedings Fifteenth IEEE International Conference on Automated

Software Engineering, ASE, pp. 209-218, Sep. 2011.

[11] N.Gupta, A. P.Mathur, and M. L.Soffa,“Generating test data for
branch coverage,”in 2000 proceedings Automated Software Engi-

neering, ASE, pp. 219-227, Sep. 2000.

[12] V.Prokhorenko, K. K. R.Choo, and H. Ashman, “Web application
protection techniques: A taxonomy,”Journal of Network and Com-

puter Applications, vol. 60, pp. 95-112, Jan. 2016.

[13] B.Barhoush, and I. Alsmadi, “Infeasible Paths Detection Using
Static Analysis,”The Research Bulletin of Jordan ACM, vol. 2, no.

3, pp. 120-126, 2013.

[14] M. N.Ngo, and H. B. K.Tan, “Heuristics-based infeasible path de-
tection for dynamic test data generation,”Information and Software

Technology, vol. 50, no. 7-8, pp. 641-655, Jun. 2008.

[15] D. Gong, and X.Yao,“Automatic detection of infeasible paths in
software testing,” IET software, vol. 4, no. 5, pp. 361-370, Oct.

2010.

[16] G.Balakrishnan, S.Sankaranarayanan, F.Ivančić, O.Wei, and
A.Gupta, “SLR: Path-sensitive analysis through infeasible-path de-

tection and syntactic language refinement,”in 2008 International

Static Analysis Symposium, pp. 238-254.

[17] T. Ball, “Paths between Imperative and Functional Program-

ming,”ACM SIGPLAN Notices, vol. 34, no. 2, pp. 21-25, Feb.

1999.
[18] A. W.Marashdih, Z. F.Zaaba, and H. K.Omer, “Web Security: De-

tection of Cross Site Scripting in PHP Web Application using Ge-

netic Algorithm,”International Journal of Advanced Computer Sci-
ence and Applications (IJACSA), vol. 8, no. 5, May 2017.

[19] S.Ding, and H. B. K.Tan, “Detection of Infeasible Paths: Ap-
proaches and Challenges,”in International Conference on Evalua-

tion of Novel Approaches to Software Engineering, Jun 2012, pp.

64-78.
[20] H.Liu, and H. B. K. Tan, “Covering code behavior on input valida-

tion in functional testing,” Information and Software Technology,

vol. 51, no. 2, pp. 546-553, Feb. 2009.
[21] H.Liu, and H. B. K. Tan, “Testing input validation in Web applica-

tions through automated model recovery,”Journal of Systems and

Software, vol. 81, no. 2, pp. 222-233, Feb. 2008.
[22] H.Liu, and H. B. K. Tan, “An approach for the maintenance of in-

put validation,”Information and Software Technology, vol. 50, no.

5, pp. 449-461, Apr. 2008.
[23] H.Liu, and H. B. K. Tan, “An approach to aid the understanding

and maintenance of input validation,”in 2006 22nd IEEE Interna-

tional Conference on Software Maintenance, ICSM'06, pp. 370-
379.

[24] M. N.Ngo, and H. B. K. Tan, “Applying static analysis for auto-

mated extraction of database interactions in web applica-
tions,”Information and software technology, vol. 50, no. 3, pp. 160-

175, Feb. 2008.

[25] M. N.Ngo, and H. B. K.Tan,“Detecting large number of infeasible
paths through recognizing their patterns,”in 2007 Proceedings of

the the 6th joint meeting of the European software engineering con-

ference and the ACM SIGSOFT symposium on The foundations of
software engineering, pp. 215-224.

[26] T.Yano, E.Martins, and F. L.de Sousa, “MOST: a multi-objective

search-based testing from EFSM,” in 2011 IEEE Fourth Interna-

International Journal of Engineering & Technology 417

tional Conference on Software Testing, Verification and Validation

Workshops (ICSTW), pp. 164-173.

[27] A. S.Kalaji, R. M.Hierons, and S.Swift, “Generating feasible transi-

tion paths for testing from an extended finite state machine

(EFSM),” in 2009 International Conference on Software Testing

Verification and Validation, ICST'09,pp. 230-239.
[28] S.Wong, C. Y.Ooi, Y. W.Hau, M. N.Marsono, and N.Shaikh-

Husin, “Feasible transition path generation for EFSM-based sys-

tem testing,” in 2013 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1724-1727.

[29] D.Jayaraman, and S.Tragoudas,“Performance validation through

implicit removal of infeasible paths of the behavioral description,”
in 2013 14th International Symposium on Quality Electronic De-

sign (ISQED), pp. 552-557.

[30] I.Hermadi, C.Lokan, and R.Sarker,“Dynamic stopping criteria for
search-based test data generation for path testing,”Information and

Software Technology, vol. 56, no. 4, pp. 395-407, Apr. 2014.

[31] J.Ruiz, and H.Cassé, “Using smt solving for the lookup of infeasi-
ble paths in binary programs,” in OASIcs-OpenAccess Series in In-

formatics, vol. 47, 2015.

[32] J.Ruiz, H.Cassé, and M. de Michiel, “Working Around Loops for
Infeasible Path Detection in Binary Programs,” in 2017 IEEE 17th

International Working Conference on Source Code Analysis and

Manipulation (SCAM), pp. 1-10.
[33] J.Gustafsson, A.Betts, A.Ermedahl, and B. Lisper, “The Mälardalen

WCET benchmarks: Past, present and future,” In OASIcs-

OpenAccess Series in Informatics, vol. 15, 2010.
[34] A. W. Marashdih, and Z. F. Zaaba, “Cross Site Scripting: Remov-

ing Approaches in Web Application,”Procedia Computer Science,

vol. 124, pp. 647-655, Dec. 2017.
[35] A. W. Marashdih, and Z. F. Zaaba, “Detection and Removing Cross

Site Scripting Vulnerability in PHP Web Application,” in 2017 In-

ternational Conference on Promising Electronic Technologies
(ICPET), pp. 26-31.

[36] M. A.Ahmed, and F. Ali, “Multiple-path testing for cross site

scripting using genetic algorithms,” Journal of Systems Architec-
ture,vol. 64, pp. 50-62, Mar. 2016.

