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Abstract 

 

Static analysis is valuable because it imparts the ability to examine all program paths. However, many of these paths are classified as 

infeasible paths, which signify that these paths will fail to execute. In static analysis, these paths will lead to results that are high false 

positive. Because static analysis has a vital part in the detection of vulnerabilities and threats in the software as well as in program analy-

sis, improving static analysis is necessary to obtain accurate results and lessen the occurrence of false positive results. Being able to de-

tect infeasible paths is useful in the improvement and development of the results of static analysis. However, the process that is used to 

identify these infeasible paths is not simple, especially because numerous tools and methods still do not have the efficiency in detecting 

these kinds of paths within the static analysis. This paper will review the infeasible paths problem in the static analysis, the new methods 

of solving this problem, and the reassessment of this vital issue in software testing. This paper will also discuss the importance of expos-

ing and getting rid of these paths. 
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1. Introduction 

TATIC analysis is seen as one of the most essential methods for 

source code analysis because it can detect security problems and 

vulnerabilities even before the program is executed for the first 

time [1]. Static analysis encompasses the entire source code, mak-

ing it the most effective tool for detecting threats and security 

vulnerabilities in the source code [2]. However, false positive 

results are often obtained in static analysis, because static analysis 

sometimes analyses paths that are considered infeasible paths, or 

the paths that fail to execute. This is why the false positive results 

problem is a major issue in static analysis that needs to be exam-

ined and addressed. Eliminating infeasible paths from the paths 

that will undergo static analysis will lower the rate of false posi-

tives in the results [3].  

According to Hedley and Hennell [4], 12.5% of the whole paths 

can be classified as infeasible paths, signifying that they will not 

execute regardless of the type of input data. Eliminating these 

paths will improve static analysis since its results will be im-

proved by the reduction of the false positive rate, which consti-

tutes a major static analysis limitation. 

Numerous methods and tools have been utilised to identify infea-

sible paths, but these tools and methods still do not have enough 

efficiency for the detection of these paths. Symbolic execution is 

one of the techniques for the detection of infeasible paths within 

the source code [5,6]. However, the utilisation of symbolic execu-

tion raises the cost for sharper analytical results. Furthermore, it 

can detect a small amount of infeasible paths since it lessens sym-

bolic evaluation in function calls and arrays.  

 

Other researchers utilised genetic algorithm to generate only fea 

sible paths and avoid infeasible paths [7,8,9]. They were able to 

achieve promising results since the infeasible paths were avoided. 

However, certain instruments within their genetic algorithm func-

tion manually, which uses up a significant amount of time and 

manpower. Their approach is therefore not appropriate for the 

large and complex program. One can also utilise dynamic test data 

generation algorithms to detect infeasible paths. It does this by 

monitoring the program’s execution [10,11]. However, symbolic 

execution is often utilised for test data generation making it almost 

as costly as symbolic execution. 
It should be noted that identifying a solution to detect all the in-

feasible paths within the source code is difficult. This paper dis-

cusses static analysis and its main issue, which is infeasible paths. 

It will also talk about the proposed approaches for discovering the 

infeasible paths. 

The succeeding parts of the paper will be organised in the follow-

ing manner. Section II focused on the related approaches for de-

tecting infeasible paths. Section III and section IV will discuss the 

concept and the strategy behind the static analysis as well as the 

infeasible paths. Section V will talk about the recent methods that 

have been utilised for detecting the infeasible paths and discusses 

the advantages that come with detecting infeasible paths. Conclu-

sion and future works are discussed in section VI. 

2. Static Analysis  

Static analysis is used in the analysis of source code for programs 

and for finding and identifying weaknesses within the source 

code. Static analysis has the capacity to view all the possible pro-

gram paths found within the application, which helps in determin-

ing the coverage for all the paths of the program [12]. Static anal-

ysis has been widely used to analyse programs and applications so 
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that gaps and the weaknesses can be found. The data analysis pro-

cess in the static analysis has its basis on the control flow graph 

and the code’s data flow analysis. This process does not need any 

real implementation of the program.  

The standard way of representing the data program’s flow is the 

Control Flow Graph (CFG) [13]. Every sentence is represented 

using a node that is linked together by edges so that the program’s 

data flow can be represented. A starting node starts the process. 

The flow then starts and each node (statement) is represented until 

the program ends. Every path that goes from the starting node all 

the way to the end node is taken as the data’s logic path in the 

program. In order for the path to be implemented in the CFG, the 

inputs have to satisfy the conditions that all the branches of the 

path impose. Figure 1 illustrates an example of the PHP source 

code and the CFG for that example. 

 
Fig. 1: Example of PHP Source Code and CFG 

The PHP begins by giving a definition to the two variables ($a = 5 

and $b = 10). The condition given at line 4 then makes a compari-

son between the two variables ($b > $a). The statement (echo $b) 

found at line 6 will be executed if the condition is TRUE. Other-

wise, it would execute the statement (echo $a) at line 10.  

Because static analysis tools are able to detect errors within the 

paths that were made from the control flow graph, there is a great 

chance for these paths to not be executable (infeasible paths). 

These lower the accuracy of the results, especially the ones that 

are assumed to have errors. These paths are often infeasible, 

which means that the tool does not need to consider them or allot 

time for their analysis. The following section will talk about the 

infeasible paths within the static analysis. It will also discuss how 

it works. 

3. Infeasible Paths  

One can define the infeasible path as any path within the CFG that 

is not executable under any input values or any test cases [13,16]. 

Figure 2 illustrates an example of the PHP source code with its 

control flow graph and shows how some paths end up being clas-

sified as infeasible paths. 

 
Fig. 2: PHP Source Code and the Infeasible Paths in CFG 

Figure 2 shows that the static analysis begins by analysing the 

PHP source code and creating the source code’s control flow 

graph so that the program’s data flow can be determined. The PHP 

source code begins with the initialisation of the two variables 

found in line 2 and 3 ($x = 20 and $y = 40). Then, a condition 

specified in line 4 will check if ($x < 20) and ($y > 60). The 

statement in line 6 (echo $x + $y) is implemented if the condition 

is true. It then ends at line 8 (echo $y - $x). However, if the state-

ment presented in line 6 (echo $x + $y) is an infeasible statement, 

there will be no probability for the given condition to be true at 

all. Thus, every path that has the line 6 implementation will be 

considered an infeasible path.  

Infeasible paths can exist because of several reasons [13], one of 

which is the existence of dead code, which means that it is not 

possible to implement a certain sentence within the code. Conse-

quently, they result into unimplementable paths because accessi-

bility for this data does not exist. Another cause of infeasible paths 

is the conflicting clauses that are contained within certain paths, 

such as: (A <= 10 && B > 20 || C == 40). Infeasible paths may 

also be present as a result of the existence of correlated condition-

al statements in terms of a given variable (which is considered as 

one of the main reasons for the absence of access in the programs 

[14, 15]).  

To enhance the results of the static analysis, one should remove 

infeasible paths from the entire path of the control flow graph [3, 

13, 16, 17]. One can define the infeasible path as any path that is 

not executable under any test cases [13]. Conversely, Ball, T. and 

Balakrishnan, et al. [16,17] stated that developers need to distin-

guish these infeasible paths from the other paths of the entire con-

trol flow graph. The following section will provide a description 

of the detection of infeasible paths as well as the methods that 

were used to identify these infeasible paths. 

4. Detection of Infeasible Paths  

It is very important to detect infeasible paths. Furthermore, instead 

of trying to test them, discovering these paths will help conserve 

time and resources [13]. The presence of these infeasible paths 

influences numerous fields of software engineering. Detecting 

these paths will improve the analysis and detection process of 

security vulnerabilities [3,18], help conserve time, and improve 

accuracy.  

 

It also helps in checking the web application [19,20,21,22,23] as 
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well as the database applications design [14,24], which are both 

valuable in the detection of these infeasible paths. 

Complex data structures and dependencies need to be dealt with 

when detecting infeasible paths. Numerous tools and methods 

have been utilised for the detection of infeasible paths. However, 

these methods and tools still do not have enough efficiency to 

detect these paths. Table 1 shows the approaches used to detect 

infeasible paths. 

Table 1: Approaches Employed for Detecting Infeasible Paths 

Author Approach Description Results Supported 

Language 

Ngo and Tan [25] 

(2007) 

An innovative method for determining infeasible paths in four 

common code patterns 

Detects 82.3% of all infeasible paths XML 

Ngo and Tan [14] 

(2008) 

A heuristics-based methodology for infeasible path detection 

and dynamic test data generation 

Detects 96.02% of all infeasible paths JAVA 

Papadakis and 

Malevris[5] (2010) 

An automated symbolic implementation tool Detects 93% of 50 program paths per 

branch 

Delphi, C/C++ 

Gong and Yao [15] 

(2010) 

Automatic static analysis and dynamic techniques; identifies the 

brunch correlations for ascertaining infeasible paths 

Detects 99.81% of all infeasible paths C 

Yano, et al., [26] 

(2011) 

The MOST method utilises a multi-objective evolutionary algo-

rithm and an objective function 

Can effectively ensure path feasibility JAVA 

Wong, et al., [28] 

(2013) 

Modified breadth first search with conflict checker Promising outcomes for determining path 

feasibility 

C++ 

Jayaraman and 

Tragoudas [29] 

(2013) 

Control as well as data dependency are taken into account for 

determining the infeasible paths. 

Not effective in determining infeasible 

paths 

C++ 

Hermadi, et al., 

[30] (2014) 

Genetic algorithm with decision rules The recommended methodology appears to 

be helpful with few missed feasible paths 

C 

Ruiz, and Cassé 

[31] (2015) 

Depiction of program states as labelled sets of predicates with 

Satisfiability Modulo Theories (SMT) solver 

Not effective in covering the whole infeasi-

ble paths in the program 

C++ 

Delahaye, et al., [6] 

(2015) 

Generalise infeasible paths from the uncovering of a single 

infeasible path with DSE-based automated test input generation 

The method can save substantial computa-

tion time during test generation 

C 

Ruiz, et al., [32]  

(2017) 

An infeasible path lookup analysis which benefits from being 

composed and split, and the SESE regions comprising the bod-

ies of subroutines and loops 

Diminution of the WCET by more than 

10%; many kinds of infeasible paths remain 

untraceable 

C 

Marashdih, et al., 

[18] (2017) 

Manual removal of infeasible paths in control flow graph More precise outcomes in software testing; 

eliminating infeasible paths should be made 

automatic 

PHP 

Table 1 shows that numerous research works are still focused on 

removing these infeasible paths from the control flow graph. De-

spite this, these approaches still do not have adequate efficiency to 

detect these kinds of paths. Conversely, the removal of infeasible 

paths is seen as a vital stage in improving the result of static anal-

ysis. The approach developed by Marashdih et al. [18] serves as a 

real example of how software testing can be improved once the 

infeasible paths are removed. They were able to achieve accurate 

results without having any incidence of false positives. They stat-

ed that they were able to produce these results mainly because the 

infeasible paths have been removed.  

 

Majority works for eliminating infeasible paths emphasise the C, 

C++, Java programming languages. However, the removal of in-

feasible paths is vital for the other programming languages like 

ASP.Net, PHP and Python. More importantly, programming lan-

guages that are utilised for building applications make use of static 

analysis for the detection of any security vulnerability within these 

applications. The following section will present more details re-

garding the approaches that were utilised to detect infeasible 

paths. 

5. Related Work  

A number of works have been previously published regarding the 

topic of detecting infeasible paths. Ngo and Tan [25] formulated a 

method to detect infeasible paths. Binomial tests were performed 
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and these tests gave strong statistical proof that supported the va-

lidity of the empirical properties. Based on their experimental 

results on XML, they discovered despite certain limitations in the 

present prototype tool that the proposed approach was able to 

detect 82.3% of all the infeasible paths accurately. In 2008, Ngo 

and Tan suggested a heuristics-based approach that can be used to 

detect any infeasible path for the generation of dynamic test data. 

Their experiments, which were performed on Java source code, 

revealed that the proposed approach was able to detect majority of 

the infeasible paths efficiently, with an average precision value of 

96.02% and a recall value that is at 100% for all the cases. 

Papadakis and Malevvris [5] formulated an automated symbolic 

execution tool that can be used for the detection of infeasible 

paths. The tool makes use of an efficient path heuristic, which is 

then integrated with random testing so that test cases can be pro-

duced. The tool is able to efficiently handle the explosion of the 

path and the constraint of solving problems. This is attained by 

targeting specific paths that are likely to be feasible and then uti-

lising a linear programming approach to determine their feasibil-

ity. The preliminary results they obtained have shown great prom-

ise as they revealed that one can obtain high coverage for a limited 

amount of time-effort. Their results revealed that the tool they 

developed is able to detect 93% of the 50 program paths for every 

brunch. 

Gong and Yao [15] formulated a tool for automatically identifying 

the branch correlations of various conditional statements, which in 

turn helps detect infeasible paths. In this technique, the advantages 

of dynamic techniques and static analysis are combined. This 

method also identifies the branch correlations of various condi-

tional statements by using the maximum likelihood estimation. 

First, it provides some theorems that can be used to identify 

branch correlations that are based on the probabilities that the 

conditional distribution will correspond to the outcomes of differ-

ent branches (i.e. true or false); then, it uses maximum likelihood 

estimation to obtain values for these probabilities; lastly, it detects 

infeasible paths based on branch correlations. The proposed meth-

od was applied in some typical C programs, with the results re-

vealing that the proposed method is capable of accurately detect-

ing infeasible paths. The achievement is able to offer an automatic 

and effective method of infeasible path detection, which is im-

portant in enhancing the efficiency of software testing. 

To avoid the generation of an infeasible path, Yano, et al. [26] 

proposed the MOST approach. This approach is a search-based 

testing technique for the generation of a test case from Extended 

Finite State Machines (EFSM). MOST makes use of a multi-

objective evolutionary algorithm so that the generation of test 

cases will be able to cover a given transition (test purpose). It can 

then find more than one successful path to cover the proposed test. 

To serve as a guide to the search for a test purpose, an objective 

function was proposed. This function makes use of information 

that has been obtained from a dependence analysis of the model. 

This makes sure that the solution formulated is able to cover most 

of the transitions that the test purpose is dependent on. They take 

both control and data dependence analysis into consideration. The 

results obtained from MOST were then compared to the results 

obtained from another search based testing approach for EFSM 

[27]. The MOST results obtained generally similar or even better 

results. 

Wong, et al. [28] suggested a method that utilises the modified 

breadth first search with conflict checker so that a set of minimum 

Feasible Transition Path (FTP) can be generated for each transi-

tion. They developed an EFSM executable model for algorithm 

modelling, algorithm verification, and performance assessment. 

Experimental results that were performed on two EFSM models 

revealed that their proposed approach is capable of generating 

feasible transition paths that have at least 18% reduction in path 

length.  

Jayaraman and Tragoudas [29] proposed a new algorithm to rec-

ognise unfeasible pathing in the behavioural code. The initial step 

of the proposed strategy partitions behavioural codes into seg-

ments. For every segment, it implicitly stores every possible path. 

Similarly, it stores input assignment sets that derive from certain 

statements in the segments of code. The technique requires ad-

vanced data structures for storing possible paths and necessary 

functions. Experimental findings have established the scalability 

of this approach. 

Hermadi, et al. [30] presented and evaluated a technique for de-

termining when further searches for test data that covers exposed 

target paths are no longer worthwhile. The main parameters as 

well as uses in various decision rulesets for advance terminations 

of searches of the approach are outlined. The key advantage of 

their recommended strategy is that arbitrary parameters (the num-

ber of generations to be searched) are substituted with a technique 

that accords with search history, while the researcher’s decision 

on when to halt tests can accord instead with the likelihood those 

additional tests will not contain further pathing, to include the 

stability of the probability. A twenty-one test program set from 

SBSE path-testing studies was utilised to assess the technique. In 

comparison to searches comprising standard number of genera-

tions, 30% to 75% of the computational burden on average was 

evaded in program tests with unfeasible pathing, with no possible 

pathing missed as a result of early terminations. Additional com-

putation including unfeasible pathing was insignificant; the ap-

proach is efficient and successful. It circumvents the requirement 

for specifying limits to the number of search generations and can 

assist in overcoming difficulties due to unfeasible pathing in 

search-based generation of data in tests for paths. 

Ruiz, and Cassé [31] presented a new strategy for discovering 

unfeasible pathing in binary programs. Their approach consists of 

static analyses of (a) a CFG with blocks composed of machine 

instructions (abstracted via semantic instruction sets) and (b) of a 

programmatic data state symbolised by register and memory pred-

icates. SMT unsatisfiability in predicates enables identification of 

unfeasible pathing, resulting in a listing of edges from the program 

CFG that are prohibited on possible execution paths. Such infor-

mation is normally utilised to enhance the accuracy of WCET 

computations. Nevertheless, certain unfeasible paths will not be 

discovered due to (a) overly coarse states that join operators and 

(b) exploding time calculations.  

Delahaye, et al. [6] explain a new approach to generalised unfea-

sible pathing from detections of single unfeasible paths, as well as 

a method for exploiting this unfeasible-path generalisation tech-

nique, for DSE-based automated input generation in testing. The 

technique comprises three steps. Firstly, it derives explanations of 

infeasibility; Secondly, it determines dependencies in the data that 

associate with given explanations; Thirdly, it constructs automa-

tions that generalise fed unfeasible paths, allowing users to detect 

early on other unfeasible paths that share similar explanations. 

The recommended approach has been applied to common DSE-

based input generation testing processes. Generic processes were 

used so as to evaluate the technique apart from particular con-

straint solvers or descriptive methods. Experimental findings ob-

tained through this method demonstrated that this unfeasible path 

generalisation strategy compares favourably with that of exhaus-

tive unfeasible path detections, in that the method can accelerate 

DSE when generating test inputs. 

 

Ruiz, et al. [32] presented a reasonably scalable strategy for un-

feasible path detection in binary programs that handle loop and 

function call processes, using a method that stores sufficient in-

formation about the programmatic state for the detection of signif-

icant unfeasible pathing within loops. The analytical framework 
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relies on composed representations of the states of programs. It 

can be applied to localised code segments, including subroutine 

and loop parts. Analysis can also assist in outputting unfeasible 

pathing of the greatest possible scope in general, therefore ampli-

fying the effect on WCET estimations. Experimental tests using 

Malardalen benchmarks [33] showed conclusive outcomes, such 

as a decrease of over 10% in the burden of WCET estimations, as 

conducted in three large benchmarks. Nevertheless, various types 

of unfeasible pathing remain indiscernible to their analytical ap-

proach. This limitation includes inter-loop conflicts, as in the in-

stance of paths that are not resolvable within two successive itera-

tions. 

Marashdih, et al. [18] proposed a strategy for identifying cross site 

scripting (XSS) in PHP in accordance with genetic algorithms and 

static analyses, and another strategy to remove the detected XSS 

vulnerability from the source code [34,35]. The technique im-

proves on the previous strategy of Ahmad and Ali [36] by elimi-

nating unfeasible pathing from control flow graphs. This assists in 

enhancing findings and leads to more accurate outcomes than that 

of Ahmad and Ali [36]. But as unfeasible pathing was eliminated 

manually, the strategy applies only to smaller programs. Some 

method for automatically removing every unfeasible path must be 

determined for their strategy to apply to larger programs as well. 

6. Conclusion  

Static analysis is termed as one of the most vital methods for scru-

tinising the source code. It has the capability to view all likely 

program paths in the application; this aids in determining the cov-

erage for the entire paths of the program. Because static analysis 

tools are able to detect errors within the paths that were made 

from the control flow graph, there is a great chance for these paths 

to be not executable (infeasible paths), which make the outcomes 

not precise, particularly those which are presumed to have errors. 

These paths are often infeasible, which means that the tool does 

not need to consider them or allot time for their analysis. Thus, we 

have elucidated the infeasible path problem in static analysis ac-

companied by examples. Furthermore, we outline the detection 

and the methodologies deployed for determining infeasible paths. 

It is noteworthy that all current approaches cannot determine most 

of the infeasible paths effectively. The majority of the approaches 

on eliminating infeasible paths emphasise on C, C++, Java pro-

gramming languages. However, eliminating infeasible paths is 

vital for all programming languages like Python, PHP, and 

ASP.net.  
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