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Abstract 
 

In the absence of a universal consensus governing the use of models, the IDM has led to the creation of a large number of heterogeneous 

(distinct) meta-model systems with similar or complementary uses and objectives. To solve this problem of increasing heterogeneity of 

meta-models, we proposed an approach that we named generative automatic matching GAM. In this approach, we have dealt with the 

problem of the heterogeneity of meta-models in a new way that uses automatic matching, the alignments found are then took into profit 

to facilitate generation between source and target models which are conform to the linked meta-models.  

 

This article presents an application of our GAM approach on a case study composed of heterogeneous meta-models of relational data-

bases and big data, we specially treat the application of lexical automatic matching based on hybrid meta-heuristic. We have selected 

three types of databases and big data based on NoSql: Key Store, Document Store and Columnar Store; at the end of our article we pre-

sent an evaluation of the results found based on quality mathematical measurements. 
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1. Introduction 

Although model driven engineering has greatly propelled software 

engineering, our TSMR review and our multi-criteria comparative 

study of generation and automation approaches in software engi-

neering [1, 2], allowed us to detect that the absence of a universal 

consensus governing the creation of models has led to the emer-

gence of a large number of systems based on heterogeneous meta-

models, with similar or complementary uses and objectives, lead-

ing to a problem of increasing heterogeneity of created meta-

models.  

In this context, we have proposed in [3, 4] the architecture and 

implementation of our approach called GAM (generative automat-

ic matching), which is particularly useful as a palliative measure 

to this major disadvantage. This approach, which consists in com-

bining the automatic matching of meta-models with the generation 

of models is, in fact, new and novel in the literature. Among other 

things, it will make it possible to overcome the many existing gaps 

in matching approaches [5, 6, 7, 8, 9, 10, 11, and 12]. 

In this article, we will apply GAM's automatic lexical matching on 

a case study composed of heterogeneous meta-models of relational 

databases and big data, the ultimate goal is to test the results of the 

lexical heuristics used in our GAM approach on a promising and 

in full expansion domain, namely big data systems; first of all, we 

will present a reminder of our GAM approach in section 2, then in 

section 3 we continue with our Big Data Meta-models (BDM) 

case study, after that, in section 4 we will sum up the results of the 

application of different hybrid lexical heuristic of our GAM ap-

proach on the case study, in section 5 we will end up with the 

conclusion and future works. 

2. Recall: Generative Automatic Matching 

Approach (Gam) 

In this section, we will present a reminder of our GAM approach. 

First of all, we will present the architecture of GAM as well as the 

matching meta-model MMG (meta-model of generative matching). 

The latter helps to identify the basic concepts treated by our ap-

proach, for example, the various elements of a meta-model as well 

as the relationship between them, the types of connections or pos-

sible alignments between two or more elements of the different 

meta-models, the management of the matching versions and also 

the matching history.  

Fig.1 shows the overall architecture of our approach. 

http://creativecommons.org/licenses/by/3.0/
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Fig 1: Global architecture of the generative matching approach 

As shown in Fig.2, the set of platforms are seen as a heterogene-

ous global system, consisting of exogenous meta-models repre-

senting various domains.  

The first step of the approach is to constitute a universal virtual 

meta-model consisting of source meta-models SMM1 ... SMMi, 

which will be matched with TMM1 ... TMMj target meta-models 

using hybrid heuristics. The resulting matching will allow de-

scending to layer 1; Indeed, the approach will allow, from source 

input models SM1 .. SMi conform to the source meta-models, to 

generate target models TM1 .. TMj conform to the target meta-

models. 

Fig.2 introduces key notions of the meta-model MMG (Generative 

Matching Meta-Model): 

 
Fig 2: Core of the Generative Matching Meta-Model 

In section 3, we will present our BDM case study of meta-models 

compliant to the MMG. 

3. Case Study: Bdm 

To test our GAM approach, especially the meta-models’ automatic 

lexical matching part, we have designed the Big Data Meta-

models (BDM) case study, which represents a heterogeneous da-

tabase system, in fact we have developed four meta-models which 

represent four important types of database, namely relational data-

bases and three types of NoSql big data [13, 14]: Key Value Store, 

Document Store and Columnar Store. 

Fig.3 represents the source meta-model that is a relational SQL 

database.  

 

Fig 3: Source meta-model: Relational Database 

Fig.4, Fig.5 and Fig.6 respectively represent the meta-models of 

the Big Data Key Value Store, Columnar Store and Document 

Store. 

 

Fig 4: Target meta-model 1: Key Value Store 

 

 

Fig 5: Target meta-model 2: Columnar Store 

 

 

Fig 6: Target meta-model 3: Document Store 
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In the next section we will present the various automatic lexical 

matching heuristics applied to our case study, namely Name-

Matching hybrid meta-heuristic.  

4. Automatic Lexical Matching Results 

In this section, we will present the lexical heuristic named Name-

Matching, it allows the generation of lexical alignments between 

the elements of the meta-models; we will also present the results 

of its application on the BDM case study. 

4.1 Namematching meta-heuristic  

The nameMatching heuristic aims calculating the lexical similarity 

between two elements of MMG by comparing their names, this 

hybrid meta-heuristic is based on two sub heuristics: 

• PSN heuristic (name similarity permutations): this heuristic takes 

a value between 0 and 1; it is equal to 1 if the names of two ele-

ments are composed of the same permuted words, for example: 

“superElement” and “Elementsuper”, the value tends to 0 when 

the two elements differ too much. 

• The heuristic LSN (Levenshtein Similarity of Names): this heu-

ristic compares the two elements based on a metric called the Le-

venshtein distance:  the Levenshtein distance between two labels 

is given by the minimum number of operations needed to trans-

form a label into the other, where an operation is an insertion, 

deletion or substitution of a character. 

In Table 1 and Table 2 we recall the Algorithms which implement 

the PSN and LSN heuristics: 

Table 1: Computing Permutation name similarity PSN 

 

Table 2: Recursive Computing Levenshtein Similarity of names RLS 

 
To normalize the heuristic of levenshtein we applied the following 

formula which allows having a final value between 0 and 1: 

 

LevNameSimilarity = 1−lev(element1, element2)/max( 

len(element1), len(element2)) 

To compute the final hybrid nameMatching similarity, we first 

apply the PSN heuristic, if the value is greater than a threshold 

“Threshold1”, we take  the similarity value found and consider it 

as the final similarity, otherwise we apply a linear interpolation 

using two weights w1 and w2 allocated respectively to the heuris-

tics PSN and LSN :  

nameMatching = w1 * PSN + w2 * LSN 

Where w1 + w2 = 1 

For further calculations, we took the values w1 = 0, w2 = 1 and 

Threshold1=1.  

4.2 Namematching results between sql and key value 

metamodels 

The application of the NameMatching heuristic on the meta-

models, source SQL and Target Key Value, gave the following 

results (Table 3) 

 

 

 

 

 

 

 
Table 3: Lexical heuristic NameMatching results between SQL and Key Value Store 

SQL Elements 

Lexical 

NameMatching 

Value 

Key Value Elements 

Kind 0,1666667 Entity 

Kind 0,25 Key 

Kind 0,1333333 KeyStoreElement 

Kind 0,125 KeyValue 

Kind 0,3333333 String 

Name 0,1333333 KeyStoreElement 

Name 0,25 KeyValue 

Name 1 Name 

Name 0,4 Value 

SQLColumn 0,2666667 KeyStoreElement 

SQLColumn 0,2222222 KeyValue 

SQLColumn 0,1111111 Name 

SQLColumn 0,1111111 String 

SQLColumn 0,2222222 Value 

SQLElement 0,5333334 KeyStoreElement 

SQLElement 0,1 KeyValue 

SQLElement 0,2 Name 

SQLElement 0,2 String 

SQLElement 0,2 Value 

SQLTable 0,2 KeyStoreElement 

SQLTable 0,25 KeyValue 

SQLTable 0,25 Name 

SQLTable 0,125 String 

SQLTable 0,25 Value 

String 0,1666667 Entity 

String 0,2666667 KeyStoreElement 

String 1 String 

Type 0,1333333 KeyStoreElement 

Type 0,25 KeyValue 

Type 0,25 Name 

Type 0,2 Value 
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SQLElement 0,1 Entity 

SQLElement 0,1 Key 
 

 

In order to refine the results found, we will apply the threshold of 

0.4 to the matching values found, Tab.4 illustrates the remaining 

matching. 

Table 4: NameMatching results SQL/ Key Value - Threshold :0.4 

SQL ElemEnts 

Lexical 

NameMatching 

Value 

Key Value Elements 

Name 1 Name 

SQLElement 0,5333334 KeyStoreElement 

String 1 String 

Table 5 shows all the real matching that exist between the two 

meta-models SQL and Key Value, this table of real values will 

allow us in section 5 to calculate the different mathematical met-

rics that will determine the precision of automatic matching heu-

ristics. 

Table 5: SQL/ Key Value - All real matches 
SQL Elements Key Value Elements 

SQLElement KeyValueElement 

SQLTable Entity 

SQLcolumn KeyValue 

String String 

Name Name 

4.3 NameMatching results between SQL and Columnar 

Store Metamodels 

Table 6 shows all the results of the application of the NameMatch-

ing heuristic on both meta-models: source SQL and target Colum-

nar Store. 

 

Table 6. Lexical heuristic NameMatching results between SQL and Columnar Store 

SQL Ele-

ments 

Lexical NameMatch-

ing 

Value 

Columnar Store Ele-

ments 

Kind 0,07692308 ColumnElement 

Kind 0,0625 ColumnStoreTable 

Kind 1 Kind 

Kind 0,3333333 String 

Name 0,1666667 Column 

Name 0,1538462 ColumnElement 

Name 0,125 ColumnStoreTable 

Name 1 Name 

Name 0,09090909 SuperColumn 

Name 0,25 Type 

SQLColumn 0,6666667 Column 

SQLColumn 0,2307692 ColumnElement 

SQLColumn 0,1875 ColumnStoreTable 

SQLColumn 0,1111111 Name 

SQLColumn 0,1111111 String 

SQLColumn 0,6363636 SuperColumn 

SQLElement 0,3 Column 

SQLElement 0,5384616 ColumnElement 

SQLElement 0,0625 ColumnStoreTable 

SQLElement 0,1 Kind 
 

SQLElement 0,2 Name 

SQLElement 0,2 String 

SQLElement 0,1818182 SuperColumn 

SQLElement 0,1 Type 

SQLTable 0,1538462 ColumnElement 

SQLTable 0,375 ColumnStoreTable 

SQLTable 0,25 Name 

SQLTable 0,125 String 

SQLTable 0,1818182 SuperColumn 

SQLTable 0,25 Type 

String 0,07692308 ColumnElement 

String 0,1875 ColumnStoreTable 

String 0,3333333 Kind 

String 1 String 

String 0,1818182 SuperColumn 

Type 0,07692308 ColumnElement 

Type 0,125 ColumnStoreTable 

Type 0,25 Name 

Type 0,1818182 SuperColumn 

Type 1 Type 
 

 

In order to refine the results found, we will apply the threshold of 

0.4 to the matching values found, Table 7 shows the remaining 

results. 

Table 7: NameMatching results SQL/ Columnar - Threshold :0.4 

SQL Elements 

Lexical 

NameMatching 

Value 

Columnar Store Elements 

Kind 1 Kind 

Name 1 Name 

SQLColumn 0,6666667 Column 

SQLColumn 0,6363636 SuperColumn 

SQLElement 0,5384616 ColumnElement 

String 1 String 

Type 1 Type 

 

Table 8 shows all the real alignments that exist between the two 

meta-models SQL and Columnar Store. 

Table 8: SQL/ Columnar - All real matches 

SQL Elements Columnar Elements 

SQLElement ColumnElement 

SQLTable ColumnStoreTable 

SQLcolumn Column 

SQLcolumn SuperColumn 

String String 

Name Name 

Type Type 

Kind Kind 

4.4 NameMatching results between SQL and Document 

Store Metamodels 

Table 9 shows the results of the application of the NameMatching 

heuristic on both the two meta-models SQL and Columnar Store. 

 

Table 9. Lexical heuristic NameMatching results between SQL and Document Store 

SQL Elements 

Lexical 

NameMatching 

Value 

Document Store Elements 

Kind 0,125 Document 

SQLElement 0,1 Field 

SQLElement 0,1 Kind 

SQLElement 0,2 Name 

SQLElement 0,2 String 
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Kind 0,05 DocumentStoreElement 

Kind 0,4 Field 

Kind 1 Kind 

Kind 0,3333333 String 

Name 0,25 Document 

Name 0,1 DocumentStoreElement 

Name 1 Name 

Name 0,4 Value 

SQLColumn 0,2222222 Document 

SQLColumn 0,2 DocumentStoreElement 

SQLColumn 0,1111111 Field 

SQLColumn 0,1111111 Name 

SQLColumn 0,1111111 String 

SQLColumn 0,2222222 Value 

SQLElement 0,4 Document 

SQLElement 0,4 DocumentStoreElement 
 

SQLElement 0,2 Value 

SQLTable 0,15 DocumentStoreElement 

SQLTable 0,125 Field 

SQLTable 0,25 Name 

SQLTable 0,125 String 

SQLTable 0,25 Value 

String 0,125 Document 

String 0,2 DocumentStoreElement 

String 0,3333333 Kind 

String 1 String 

Type 0,125 Document 

Type 0,05 DocumentStoreElement 

Type 0,25 Name 

Type 0,2 Value 
 

 

The refinement of the results by applying the thresholds: 0.4 gives 

the following results (Tab.10). 

 
Table 10: NameMatching results SQL/ Document - Threshold :0.4 

SQL  

Elements 

Lexical Matching 

Value 
Document Store Elements 

Kind 1 Kind 

Name 1 Name 

SQLElement 0,4 DocumentStoreElement 

String 1 String 

 

Tab.11 shows all the actual matching that exist between the two 

SQL and Document Store meta-models. 

Table 11 : SQL/ Document Store - All real matches 

SQL Elements Document Sore Elements 

SQLElement DocumentStoreElement 

SQLTable Document 

SQLcolumn Field 

String String 

Name Name 

 

In the next section, we will present an evaluation of the results of 

the application of lexical heuristics on the BDM case study, using 

a set of reliable mathematical measures. 

5. Evaluation Based on Reliable Mathematical 

Measurements 

We evaluated the automation aspect of our GAM approach based 

on four mathematical metrics: Recall, Precision, F-Measure and 

Overall. To define these metrics, we will present the following 

sets of matching:  

• Set A (false negatives): contains the correct alignments, but not 

found automatically by our approach. 

• Set B (true positives): contains the correct alignments that are 

found automatically. 

• Set C (false positives): contains the false matching links pro-

posed by our approach. 

In the following sections we will present the quality metrics used, 

we consider |A| = cardinal (A), |B| = cardinal (A), |C| = cardinal 

(A), where cardinal represents the number of elements of the 

treated set. 

5.1 The Recall metric 

The Recall reflects the part of the actual matching among the real 

global matching. His mathematical formula is presented as follows: 

 

This metric is between 0 and 1, its value tends to 1 if the number 

of matching links not detected is minimal. 

5.2 The precision metric 

It reflects the share of real matching among all those found, its 

mathematical formula is the following one: 

 

This metric is between 0 and 1; its value tends to 1 if the matching 

errors are minimal. 

5.3 The f-measure metric 

It represents the harmonic average of the Precision and Recall 

metrics. the harmonic mean is the arithmetic mean of the inverse 

of the terms, defined by the following formula: 

 

The mathematical formula of the F-Measure is therefore: 

 

This metric is between 0 and 1, it can be considered as a global 

metric of quality matching calculation. 

5.4 The overall metric 

It quantifies the effort needed to add false negatives and remove 

false positives. His formula is:  

 

5.5 The evaluation of results 

The following table 12 shows the results of the metrics found after 

the generation of lexical matching by the NameMatching heuristic 

following the BDM case study. 

Table 12. Quality Measures results 

 Measures 

Meta-model’ 

Couples 
Recall 

Preci-

sion 

F-

Measure 
Overall 

(SQL, Key Value) 0,6 1 0,75 0,6 

(SQL, Document-
Store) 

0,8 1 
0,8888888

9 
0,8 
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(SQL, Columnar) 0,875 1 
0,9333333

3 
0,875 

FINAL Values 
0,8571428

6 
1 

0,9230769
2 

0,8571428
6 

Figure 7 shows the histogram explaining the reliable values found, 

this diagram shows that the metrics all have values that tend to-

wards 1 which shows the good quality of the matching found. 

 

 

Fig.7: Measures results Histogram 

6. Conclusion  

In conclusion, we have presented in this article the results of our 

work consisting in the automatic generation of lexical matching 

applied on a case study composed of a heterogeneous system of 

SQL and NoSql databases. The final evaluation of the results 

found using mathematical metrics showed the validity of our heu-

ristics. 

Currently we are working on the evaluation of structural matching 

heuristics between heterogeneous meta-models, we are also work-

ing on the implementation of the GAM approach using .NET plat-

form and based on M.A.S (Multi-Agents System). 
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