

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.31) (2018) 113-117

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Improving the Governance of Software Maintenance Process for

Agile Software Development Team

Salfarina Abdullah
1
*, Mangaiarasi Subramaniam

2
, Sazly Anuar

3

1,2Faculty of Computer Science and Information Technology, UPM

3Universiti Kuala Lumpur Malaysia France Institute, Bangi
*Corresponding author E-mail: salfarina@upm.edu.my

Abstract

Software maintenance is one of the most debated phases in software development process for so many years. Having reputed as the most
expensive phase of software development life cycle (SDLC), it utilizes the maximum share of the overall project costs as well as time.
Agile software development provides opportunities to assess the direction of a project throughout the development lifecycle. However, it

does not ideally map with the existing software maintenance process. One of the highlighted issues is the difficulty for searching of in-
formation as well as lack of knowledge to solve the maintenance problems within certain time frame. Thus, the main objective of this
study is to improve the governance of software maintenance process in an Agile development team. In doing so, a tool named Axita is
developed to assist the software maintenance team for storing of information in central data repository and managing projects in more
efficient and timely manner. Based on the literature review as well as mapping between the agile software development and the existing
ISO software maintenance process, we also proposed six best practices to better govern the software maintenance process in an Agile
development team, to overcome the difficulty of information finding and reduce the time spent to solve the maintenance issues. We be-
lieve that our study and findings complement the efforts that have been put forth in improving the way we manage software maintenance

thus enhance the efficiency of the software development process.

Keywords: Agile; Best practices; Software Maintenance

1. Introduction

Software maintenance is one of the most important phases in the

Software Development Life Cycle (SDLC). It plays an essential
role in providing service to the client after the software product
has been delivered. In general, there are four types of software
maintenance namely, Adaptive, Perfective, Preventive and Correc-
tive. Adaptive maintenance is modification of a software product
performed after delivery to keep it usable in a changed or chang-
ing environment. Perfective maintenance is modification of a
software product after delivery to improve performance or main-

tainability. Preventive maintenance is modification of a software
product after delivery to detect and correct latent faults in the
software product before they become effective faults. Finally,
adaptive maintenance is modifying the system to cope up with
changes in the software environment. There are always debates
going on about software maintenance after the development is
completed. It is an expensive activity that consumes a major por-
tion of the cost of the total project [1]. The time spent, and the
effort required to fix the defects at this phase consumes about 40-

70% of the cost of the entire SDLC. [2] adds by saying “Agile
Methods only apply to the Software Development portion of the
lifecycle and not apply to the Software Maintenance portion of the
lifecycle”. A better way to conduct the process of maintenance
should be practiced throughout the Agile software development
life cycle to overcome the maintenance problems, bugs and en-
hancement after the development.
This study focuses on improving the governance of software de-

velopment process (SDP) for Agile software development team.

Our strategy is by mapping the existing software maintenance

process with IEEE ISO software maintenance standard and other
suggested processes from the literature review. A maintenance
tool, namely Axita will be developed to assist the Agile mainte-
nance team. It aims to improve the task management during
maintenance process as well as issue of time consumption in per-
forming maintenance activity.

2. Literature Review

Many researches have been invested in software maintenance
issues and solutions. [7] conducted a research that optimizes the
agile development practices for maintenance operation with nine
heuristics. The research was cooperation between the maintenance
unit at Aveva and the information system group at Aolborg Uni-
versity. According to them, to maintain an iterative connection

between theoretical literature and action research study is by en-
couraging the literature study to influence under consideration in
action research project and vice-versa.
It is generally accepted that agile methods share a group of com-
mon characteristics [18, 19], which include an iterative develop-
ment process, focused work objectives around delivery points,
small teams working closely together, close customer involvement,
face-to-face communication, light documentation, frequent testing,
intrinsic motivation through collective ownership, knowledge

transfer through openness, and a focus on a high quality of code
and product. These characteristics are also understood to function
well, at least in some kinds of development situations [7]. Some
challenges associated with agile maintenance were also high-

http://www.sciencepubco.com/index.php/IJET

114 International Journal of Engineering & Technology

lighted. As we all know, the Agile development is the iteration
development where the common changes and task list is missing
on the maintenance [20]. Maintenance sprints are subject to inter-
ruption by urgent client’s demands and there are few common
delivery points or integrated releases making as another challenge
in agile maintenance. In addition to this, the maintenance team
must work closely with many different systems and always rely on
customer involvement. Maintenance engineers have less face-to-

face communication and often work side-by-side with customer.
The necessary documentation is often neglected and incomplete,
as well as gap in interaction that complicates the maintenance
problem solving.
Based on [7] research analysis, the key issues derived from Aveva
is looser relationships with customers compared with earlier work
practice. For example, when the process is getting closer towards
maintenance, the customer often prefers fast and easy exit. Be-

sides, the mixture of emergency and difficulty with estimation
causes inconsistence and unfinished work. The feedback from
customer causes less confident while the incomplete documenta-
tion from the development team has causes a delay to understand
the issue. The frequent change of resource in maintenance also
causes impact in maintenance process. The less helpful use case
with low communication value from customer also causing this
issue not to get fixed and maintenance were unable to complete

fixing on time. Besides, there is another researcher, [18] who did a
research on agile support and maintenance of IT service. Accord-
ing to him, agile approaches considered fit with maintenance
process and activities. He introduced a support and maintenance
control framework which supported the Agile practices and ap-
proaches.
As we all know, Agile development is the iteration development
where the common changes and task list is missing on the mainte-
nance [20]. Maintenance sprints are subject to interruption by

urgent customer demands and there are few common delivery
points or integrated releases which make another challenge in
agile maintenance.
Techniques and practices are concrete steps how to implement a
principle in the real life. Agile practices are implemented incre-
mentally according to our need aiming to achieve and contribute
to enterprise business goals and to cover a gap in the principles. It
is neither mandatory to implement all practices, nor to do it at the

same time as a big bang. The result of the described approach
(Production Phase, principles, practices) is an effective (not bu-
reaucratic) maintenance process supporting objectives of delivery
(project or IT service [14].
From the author’s research, the empirical evaluation from the
survey from service X – forest and service-telecommunication
show that the 13 approaches (as per Agile manifesto) have im-
proved the maintenance activities. Based on the results, we can

state that described approach can mitigate problems of traditional
methods (low innovativeness, creativity and motivation; process,
not value oriented measures; quality problems). Maintenance is
not a prescribed detailed process; appropriate process is built up
from practices and differs in every team (different focus, practices
to be implemented). The critical success factor mentioned by the
team members and managers is hands on support by mentor
(skilled and experienced person with agile approaches) helping to

identify the root causes and implement principles and proper prac-
tices.
However, when we compare between [7] and [18] research, both
have implied the Agile practices differently. [7] proposes the nine
heuristics to improve the situational in software maintenances
activity meanwhile, [18] introduces a new control framework for
software maintenance. One thing common between these two is
both only proposing practices which are more to the individual

basic in the maintenance process. The solutions still depend
whether the maintenance engineer decides to follow the practice.
There are no proper tools that reflect the agile maintenance prac-
tices.
According to the IEEE standards of software maintenance, a

proper process has been designed for widespread use of the main-
tenance team in any software development team. The main main-
tenance processes in this ISO software maintenance is process
implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration, and
retirement (Refer Figure 1).

Fig. 1: ISO Software Maintenance Process.

From the literature review, we have identified six aspects that
need to be considered to improve the software maintenance proc-
ess in the Agile software development team.
1) Communication – an effective communication will ensure an

effective solution to be delivered. Example, when an incident
is reported, the software maintainer will discuss with the cli-

ent and solve the issue fasten and effectively.
2) Repository, Knowledge management and Training – In order

to work effectively, all the information of the application in-
cluding requirement, design and implementation document
must store in a repository. This is to improve the information
seeking during the maintenance activity. Besides, the devel-
opment team must provide regulate knowledge transfer and
training whenever a new release deployment completed.

3) Documentation – Software maintainer must document all the
changes that been done in the production and update in the
repository for reference. Besides, the incident solutions also
will be helpful to overcome reoccurring issue.

4) Cost effective maintenance and task management – from the
existing paper, it is clear maintenance consume excessive cost
and time. Thus, it is one of the main aspects we need to con-
sider improving how we govern software maintenance pro-

cess. Example is prioritizing the critical incident and allocat-
ing how much resource is needed.

5) Modification, impact analysis and testing - To solve any issue,
software maintainer must make changes in production envi-
ronment. Thus, modification and impact analysis are crucial
factor to be considered.

6) Maintenance Tool – software maintenance tool plays signifi-
cant role in improving the software maintenance process. For
example, when all the information regarding the application,

pass incident information and team information stored in one
place, time taken for solve an issue is faster and effective

3. Methodology

This section describes the research method, which will be used in
this study to accomplish the objectives (in section 1.2) of the re-

search. The selection of research method is motivated. It also de-
scribes, which type of study is used to answer the research ques-
tions.

International Journal of Engineering & Technology 115

Fig. 2: Research methodology.

4. Analysis and Interpretation

The ISO software maintenance processes [4] have been compared
with the four core principles of the Agile development [3]. The
main objective to make this comparison is to identify what are the
differences between software maintenance process and Agile de-
velopment team. It also helps to identify what is the lacking on

applications handover to maintenance team by Agile team.

Table 1: Properties Comparison between Agile principle and ISO software

maintenance.

Agile Principle ISO practice Mapping Finding

Individuals and

Interactions Over

Processes and

Tools

ISO applies to planning,

execution and control,

review and evaluation,

and closure of the Mainte-

nance.

Agile Principle depends on

individual more than process

where else ISO software

maintenance have list of

process.

Working Soft-

ware Over Com-

prehensive Doc-

umentation

The maintainer has to

document the prob-

lem/modification request,

the analysis results, and

implementation options.

Agile Principle encourages

light documentation where

else in ISO software mainte-

nance documentation is a core

activity with configuration

management.

Customer Col-

laboration Over

Contract Nego-

tiation

An estimate of mainte-

nance costs. To provide

cost-effective support to a

software system

Agile Principle encourage

iterations delivery approach

over contracts where else in

ISO software maintenance

encourage cost estimation in

any maintenance task

Responding to

Change Over

Following a Plan

ISO applies maintenance

six main processes to

follow. Process Imple-

mentation, Problem and

Modification Analysis,

Modification Implementa-

tion, Maintenance Re-

view/Acceptance, Migra-

tion and Retirement.

In Agile principle, changes

can be accepted at any stage,

over the project plan where

else ISO maintenance process

need to follow the 6 primary

stages.

To support our argument, we mapped the aspects with the related
existing research papers and returned the following result.

Table 2: The mapping of six identified aspects with existing research.

Au-

thors

Documenta-

tion

Reposito-

ry/

KM/

Training

Team-

work

Cost

estima-

tion

Modifica-

tion/

Impact/

analysis/

testing

Too

l

[1] Y Y Y

[5] Y Y Y Y

[8] Y Y Y Y

[21] Y Y Y Y

[10] Y Y Y

[9] Y Y Y

[11] Y Y Y

[12] Y Y

[13] Y Y Y

[14] Y Y

[15] Y Y Y

[2] Y Y Y

[16] Y Y Y

[17] Y Y

[20] Y Y

As depicted in Table 2, we can conclude that team communication
and task management are definitely very important aspects in
software maintenance. Testing and impact analysis also received
many attentions which show its importance. Some researchers also
agreed on the role played by knowledge transfer, handover process
and training to be similarly important in maintenance activity. One
of the Agile approach principle is working software over compre-

hensive documentation, hence there is no surprise to see less au-
thors discussed about documentation. The least aspect studied is
tool development for the maintainers. Thus, in this research, our
interest would be to improve the way maintenance process in Ag-
ile development team is governed which comprises of all these
highlighted aspects: documentation, repository /knowledge man-
agement or training, team work and communication, cost estima-
tion /task management, testing and tool development.

5. Results

In this research, we have provided two contributions. Firstly, the
Axita tool that is developed to assist the software maintainers in
doing their maintenance activity.

Fig. 3: The Axita tool main page.

Fig. 4: The Axita tool interface.

There are few main modules in the Axita Tool which includes
home, task, project, report, repository, contacts, register, and cal-
endar. The tool has 3 types of user, where end-user, administrator
and maintainer. The task module is where incidents are logged and

maintained. Project module is for the administrator to create new
project and resource assigned. Report module to view the current
reports for the incidents and repository to upload files and store
information. Finally, calendar to remind about team activities, like
meeting and events.
A case study has been conducted in operation team in Hewlett
Packard Enterprise to test on the system. One incident from soft-
ware maintenance team who adopt Agile during a project devel-
opment in Hewlett-Packard Enterprise participates in the experi-

ment. The team is supporting few finance application and a repre-
sentative from the team is supported to test the Axita Tool. The

116 International Journal of Engineering & Technology

team currently is using 4 tools to manage the maintenance task
which include HPSM for ticketing, Sharepoint to store infor-
mation, Runbook to keep pass tickets information and SVN to
store the code. The incident that has been chosen to test the exist-
ing systems and Axita Tool is a data missing in application front
end for Getpaid application.
The steps to solve the incident using existing Systems:
1. Login into the HPSM to check for the incident reported and

assign to a resource.
2. Login into the Runbook to check is the incident is a re-

occurrence issue.
3. Login into the SharePoint to check documents which are the

table involve in the business process.
4. Login into application server to check the missing data in

the database.
5. If still not able to check on the data, check into SVN and

check the code for the front-end interface and process.
The steps taken to solve the incident using Axita Tool:
1. Login into Axita Tool. Check on the new incident reported

in Task Tab and assign to a resource.
2. Filter closed incident in Task tab to check on re-occurrence

issue.
3. Click on Repository Tab to get to check documents which

are the table involve in the business process.

4. Login into application server to check the missing data in
the database.

5. If still not able to check on the data, check into repository
tab and check the code for the front-end interface and process.

We have done five rounds of test and eventually were able to
come out with the following result.

Table 3: The result average time taken for round case study.

Steps

Time taken using

current system

(minutes)

Time taken using new

system

(minutes)

Step 1 3.5 7

Step 2 5.8 2

Step 3 5.1 3

Step 5 7.24 5

From the case study above, we can conclude that the Axita tool
has improved the maintenance process by time taken to solve any
incident. By reducing the time taken, the cost for the maintenance
process also improved as cost is depending on the time. Axita
Tool also has overcome the issue of the maintainer to refer many
systems to solve any incident. The information can be found in
one system, Axita Tool.
Secondly, we propose six best practices to improve the govern-

ance of software maintenance in Agile software development team.
The best practices are as the following:
A. Communication between maintenance team, development

team and customer.
Weekly sync up meeting between the maintenance team and
development team will help the teams to perform better. The
30 minutes meeting is mainly for maintainer to raise the con-
cerns and doubts to the development team to understand the

application better and satisfy customer needs. This can solve
the time and cost problem in software maintenance process.
Besides, maintainer also needs to communicate with customer,
if possible face to face or through phone calls to better under-
stand the user’s need.

B. Training, Knowledge management and documentation from
both development and maintainers team.
Since agile development method encourages light documenta-

tion, software maintainers often facing difficulties to get the
required information in solving any incidents. Thus, training
and knowledge transfer modules must be planned and docu-
mented to avoid the missing information problem faced by
maintainer. This included code storage and code with com-
ments for the new comers to understand the application easier

and faster. Pair programming also helps the understanding on
the application.

C. Task management.
This is to measure the progress of the team. These will ensure
every maintainer, developer and management to see in real
time exactly what is being done and who is assigned to what.
This will help to prioritize the capacity of team on the task as-
signed. Task management also helps the team by estimating

the time and cost spent through the maintenance service.
Example:

60% planned incident: approved enhancement work in the project.
20% ad-hoc customer requests: slight changes and specific con-
figurations.
20% other support and maintenance activity. (training and man-
agement).
D. Software maintenance management tool

Having an incident management tools can help to store infor-
mation and conduct report on the performance of the team.
This can help to solve the maintainer’s information seeking is-
sues. All the documentation and project related information
can be stored in the tool. This will also save a lot of time in
solving the issue. The incident records will be stored as well in
the tool for future reference. It can be a center point to gather
all information.

6. Conclusion

The main objective of this research is to improve the governance
of software maintenance process in Agile development team. The
first part of the research is focusing on the maintenance process
challenges and issues in Agile maintenance team. The main paper

referred for software maintenance is international standard ISO /
IEC Software Engineering — Software Life [4]. The main aspects
to be improved have been identified from the literature which
includes communication, repository, knowledge management,
training, documentation, cost-effective maintenance, task man-
agement, modification, impact analysis, testing and maintenance
tool. These aspects have been mapped with 15 existing research
papers whose contribution was mainly in proposing solutions for
agile maintenance. From the analysis, the result shows that most

of the researchers focused in communication, repository,
knowledge management, training, modification, impact analysis
and testing. Meanwhile, lesser attention was given to documenta-
tion, task management and maintenance tool. Thus, this research is
geared in improving the way maintenance process should be gov-
erned with all the aspects and the development of the Axita tool.
The second part of the research was the development and testing
of Axita tool. This tool is designed with the aim to establish a

centralize data repository that makes reaching of information easi-
er and faster. It also promotes an efficient task management that
shorten the duration of solving the maintenance problems.

7. Future Work

There are several recommendations for improving the governance

of software maintenance process in Agile software development
team. Currently, the Axita tool was developed to support only web
based. Hence, future work would be to expand its usage to mobile
platform. The case study used to test out the tool was focused at
only one maintenance team’s experience. Therefore, we believe by
extending the research case study to multiple teams can help to
understand the maintenance process better in other contexts as
well.

References

[1] Malhotra R & Chug A, (2016), Comparative Analysis of Agile

Methods and Iterative Enhancement Model in Assessment of Soft-

International Journal of Engineering & Technology 117

ware Maintenance. 23rd International Conference on Computing for

Sustainable Global Development.

[2] David FR, “Agile Methods and Software Maintenance”, (2007),

available online: http://davidfrico.com, last visit: 9.7.2018.

[3] Beedle M, Bennekum AV, Cockburn A, Cunningham W, Fowler M,

Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC,

Schwaber K, Sutherland J & Thomas D, “Manifesto for Agile

Software Development”, (2001), available online:

http://agilemanifesto.org/, last visit: 9.7.2018.

[4] International Organization for Standardization, (2006), “ISO/IEC

14764:2006 Software Engineering – Software Life Cycle Processes

– Maintenance, available online:

https://www.iso.org/standard/39064.html, last visit: 9.7.2018.

[5] Cohn-Muroy D & Pow-Sang JA, (2016), Situational Factors Which

Have an Impact on the Successful Usage of an Agile Methodology

for Software Maintenance: An Empirical Study. Advances in Intel-

ligent Systems and Computing 405.

[6] McCalden S, Tumilty M, & Bustard D, (2016), Smoothing the

Transition from Agile Software Development to Agile Software

Maintenance. Proceedings of the International Conference on Agile

Software Development, in Processes in Software Engineering and

Extreme Programming, 209-216.

[7] Heeager LT & Rose J, (2015), Optimising Agile Development

Practices for the Maintenance Operation: Nine Heuristics. Proceed-

ings of the Empirical Software Engineering, 1762-1784.

[8] Harvie DP & Agah A, (2016), Targeted Scrum: Applying Mission

Command to Agile Software Development. IEEE Transactions on

Software Engineering, 42(5), 476-489.

[9] Heeager LT & Rose J, (2015), Optimising Agile Development

Practices for the Maintenance Operation: Nine Heuristics. Proceed-

ings of the Empirical Software Engineering, 1762-1784.

[10] Devulapally GK, “Agile in the Context of Software Maintainabil-

ity: A Case Study”, Blekinge Institute of Technology Thesis, (2015),

available online: http://www.diva-

portal.org/smash/get/diva2:868367/FULLTEXT02, last visit

9.7.2018.

[11] Stettina CJ & Kroon E, (2013), Is There an Agile Handover? An

Empirical Study of Documentation and Project Handover Practices

across Agile Software Teams. Proceedings of 2013 International

Conference on Engineering, Technology and Innovation & IEEE

International Technology Management Conference, 1-12.

[12] Yamato Y, (2015), Software Maintenance Evaluation of Agile

Software Development Method Based on OpenStack. IEICE

Transactions on Information and Systems, 98(7), 1377-1380.

[13] Laanti M, (2013), Agile and Wellbeing - Stress, Empowerment, and

Performance in Scrum and Kanban teams. Proceedings of the 46th

Hawaii International Conference on System Sciences, 4761-4770.

[14] Lang M, (2011), Agile Support and Maintenance of IT Services,

Information Systems Development. Asian Experiences, 461-474.

[15] Hanssen GK, Yamashita AF, Conradi R, & Moonen L, (2009),

Maintenance and Agile Development: Challenges, Opportunities

and Future Directions. Proceedings of IEEE International Confer-

ence on Software Maintenance.

[16] Svensson H & Host M, (2005), Introducing an Agile Process in a

Software Maintenance and Evolution Organization. Proceedings of

Ninth European Conference on Software Maintenance and Reengi-

neering.

[17] de Souza SCB, Anquetil N & de Oliveira KM, (2005), A Study of

the Documentation Essential to Software Maintenance. Proceed-

ings of the 23rd Annual International Conference on Design of

Communication: Documenting & Designing for Pervasive Infor-

mation, 68-75.

[18] Prochazka J, (2011), Agile Support and Maintenance of IT Services.

Proceedings of Information Systems Development, 597–609.

[19] Abrahamsson P, Salo O, Ronkainen J & Warsta J, (2002), Agile

Software Development Methods: Review and Analysis, VTT Tech-

nical Research Centre of Finland.

[20] Poole CJ, Murphy T, Huisman JW, & Higgins A, (2001), Extreme

maintenance. Proceedings of the IEEE International Conference on

Software Maintenance, 301-309.

[21] Tharwani S & Chug A, (2016), Agile Methodologies in Software

Maintenance: A Systematic Review. International Journal of Com-

puting and Informatics (Informatica), 40(4), 415-426.

https://www.iso.org/standard/39064.html

