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Abstract 
 

The classical Newton’s direction and spectral conjugate gradient direction are the prominent directions in solving large-scale uncon-

strained optimization problems. Using the standard secant equation, a modified spectral CG method (MSCG) is proposed, the scheme is a 

modification of Birgin and Martinez spectral CG method (SCG). Sufficient descent property as well as global convergence has been 

proved by strong Wolfe line search. Numerical outcome shows that the method is practically effective when compared with classical 

PRP, FR and spectral CG methods. 
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1. Introduction 

A modified spectral CG method was proposed using standard 

secant equation to outperform the prominent classical CG methods 

and recent spectral CG method. A spectral conjugate gradient 

method proposed originally by Barzilai and Borwein [7]. Raydan 

[1] introduce the spectral CG method (SGM) which was the com-

bination of Barzila and Borwein (spectral) nonmonotone tech-

niques with classical projected gradient ideas for solving large-

scale or many variables problems. Recently, Birgin and Martinez 

[3] purposed a spectral CG method (SCG) which combined the 

spectral gradient and conjugate gradient ideas leading to efficient 

algorithm that performed excellently on advanced CG algorithms 

in many unconstrained optimization problems. Moreover, Perry 

[5] combining the classical CG search direction and the quasi-

Newton direction. In our research, the new direction has been 

suggested by equating the spectral CG direction and Newton’s 

direction which produce a new parameter named MSCG. The 

exhibited numerical results clearly indicated that the method was 

more efficient compared to classical and spectral CG methods for 

minimizing the general function. However, the new method has 

merged the advantages of spectral CG method and the classical 

method. A twenty eight standard test functions has been consid-

ered to test the practical effectiveness of the proposed method. 

Therefore, the nonlinear CG method is designed to solve this un-

constrained optimization problem: 

 

 
 

where  is continuous as well as differentiable function, 

 is a gradient vector of a function  and initial point  is 

normally solved iteratively according to the recurrence expression 

 

 

where  is a current iteration,  is a step size obtained by 

line search procedure. However,  is a search direction defined 

as 

 

 
 

also , parameter  are the gradient vector and 

CG coefficient respectively. Some classical CG and spectral CG 

coefficients are given below, see also [6, 8, 11-12, 18-19], for 

further advance studies on properties of classical CG methods: 

 

 

 

   

   

  

     

 
 

Therefore, in the above equations , are gradient vectors of 

function  at a point  respectively. Denoting 

 and , also this notation 

 represent a Euclidian norm. Generally, consideration has been 

established on a global convergence of CG methods. Zoutendijk 

[4] proved that FR method on exact line search  converges global-
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ly. Later, Powell [6] disproved the result and noted clearly that the 

method has demonstrated a poor practical behaviour and its con-

vergence is not global. PRP method is more dependable and au-

thentic CG method among others [9]. However, a spectral CG 

method is more effective in terms of a numerical execution than 

the other methods because it comprises the advantages of a spec-

tral parameter to the CG method by constructing a new search 

direction in [1]. Nowadays, the CG methods has a very good repu-

tations and advantages for solving relatively large-scale problems. 

Nevertheless, Perry [5] proposed a modified conjugate gradient 

algorithm, the result shows that their method is encouraging. See 

[3, 10, 12-17], for advance studies on CG methods. Consequently, 

in this research we prompted by [3] and determine to modify the 

direction by employing the standard secant condition and compare 

its performances with classical CG and spectral CG method with 

less iterations and CPU time in second respectively. This paper is 

coordinated as follows: Section 2 demonstrates our new method. 

Section 3 shows a convergence result. Numerical experiments are 

presented in Section 4. Finally, conclusions follows in Section 5. 

2. Description of the New Method 

A spectral CG method are proposed originally by Barzilai and 

Borwein [7], the direction is generated as , 

where   and is a spectral parameter. The de-

tails analysis of asymptotic behaviour of [7] and related tech-

niques is presented in Dai and Fletcher (2005). Birgin and Mar-

tinez [3] purposed a spectral CG method and they computed spec-

tral parameter as ; which derived by approximating 

the secant condition given in [7], see Raydan [1] for more details. 

Moreover, in our new direction we equate the spectral CG direc-

tion and Newton’s direction generated by   

 

 

 
 

Besides, since the parameter  is any scalar, this little change or 

modification of a spectral CG method does not alter the signifi-

cance of the parameter Andrei [14]. 

Recall that from the prominent Newton’s direction, 

 

 
 

Considering equation    then we have  

 

 
 

From  it implies   and to have a better ap-

proximation, we multiply both sides by   

 

 
 

From the secant equation, we know that 

 

 
     

 

It is very important to note that  in this particular case is sym-

metric matrix for all value of . Hence equation  can be writ-

ten as  

 

 
 

Substituting equation  into  imply  

where  

 
 

Also substitute  in  this gives   

 

 
 

Conventionally, we assumed that . Having deduced the 

CG parameter  in (19), we then present our new direction as  

 

 

 
 

Algorithm 2.1 (MSCG Method) 

 

Consider the following steps below: 

Step 1: Given a starting point , compute and 

set  

Step 2: Compute 
 
as given in formula  above 

Step 3: Compute , if 

, then stop. 

Step 4: Compute  by strong Wolfe line search 

 

 

 
 

where  

Step 5: Update the new point as given in the recurrence expres-

sion . 

Step 6: If  then stop, otherwise go to 1 

above with . 

3. Global Convergence Analysis 

3.1. Sufficient descent condition 

In this section, we illustrates a sufficient descent property of 

MSCG method. 

 

 
 

Theorem 3.1: Suppose a CG method generated by  as a 

search direction and  is given as , and satisfies any line 

search then  holds . 

 

Proof: We proceed by induction, since , the con-

dition  is satisfied as . Now, assume it is true for . 

Condition  as well hold, and then from equation  by mul-

tiplying both sides by , we have 

 

 

 

 

 
 

Therefore, the search direction satisfied the descent proper-

ties . Hence,  is true for .  

3.2. Global convergence properties 

To analyze global convergence properties of MSCG, we will show 

 and   are bounded.  
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Assumptions 3.1 

 

i) A level set  is bounded, the 

function  is continuously differentiable in a neighborhood  

of the level set  and  is a starting point. 

ii) is globally Lipschitz continuous in  that is  a con-

stant  such that  for any 

. 

 

The assumptions on the function imply that  a positive constant 

 such that  

 

for all  

                                         Lemma 3.1. Suppose the assumptions 3.1 holds. Consider a recurrence expression  and direction ,  satisfies . Then Zoutendijk condition below holds. 

 
 

Proof of this lemma is in [4].  

 

Lemma 3.2: Suppose the assumptions 3.1 holds. Let the sequenc-

es  and  given by the MSCG method. If there exist a con-

stant  such that  

 

 for all  

 

Then, we have 

 

 
 

Based on  and , we can prove easily.   

 

Theorem 3.2: Suppose the assumptions 3.1 holds. Consider a CG 

method  and ,  satisfies ,  and is given 

by . Then  

 

 
 

Proof: From the search direction (20), we 

have   square both sides of 

the equation, we have 

 

 

 
 

Substituting   and   into , we obtain the following 

 

 

 

 
 

Recall that from  above  which  is bounded for 

some constant . Therefore, 

 

 

 
 

Multiply both side of  with  , then we have 

 

 
 

From the Lemma 3.1 above, . It implies that 

Theorem 3.2 does not hold true, then the  and 

from equation  this is true . So Theorem 3.2 is 

true for a sufficient large  

An alternative proof of Zoutendijk condition of the MSCG method. 

 

Theorem 3.3: Suppose the assumptions 3.1 holds. Consider a CG 

method ,  and assume  is a descent direction  satis-

fies  and is given by . If    

 
then we have 

 
  

Proof: Suppose by contradiction  does not hold, that is  

 s.t  for all  Also, by strong Wolfe condition 

using Lipschitz continuity and uniform convexity, we have from 

equation  by multiplying both sides with  

 

 

 

 

 

 

 
 

which means that  is bounded above, since  for 

all  it follows that  contradicts with  implies 

that .  

4. Results and Discussion 

We proceed with numerical experiments to test Algorithm 2.1 and 

make a comparison of the performance of MSCG with PRP, FR 

and SCG methods. For both algorithms, codes were written in 

MatlabR2012 subroutine programming using Intel® Core™ i5-

3317U, 1.7GHz with 4 GB RAM memory. We consider 

  as a stopping criteria as suggested by Hillstrom for 

each of the problems and .  We represents failure due to; 

(i) Memory requirement (ii) Number of iterations exceed 1000 

(iii) If  is not a number (NaN). The methods were tested on 

28 test problems functions by employing test problems in [10] as 

shown in Table 1 with 4 different initial values. The results in 

Figure 1 and 2 were obtained using the performance profile ac-

quainted by [2]. Performances are established on CPU time as 

well as number of iterations respectively. The highest value of 

Ps(t) and the method reached the top foremost will be regarded as 

a best performing method. We can boldly say that our modified 

spectral CG method has performed very good since it solved all 

the test problems functions, the method also has absolute poten-

tials when compared with PRP, FR and SCG methods. Figure 1 

and 2 show that MSCG, SCG, and PRP methods successfully 

reach the solution points. Note that by referring the “successful” 

in Table 2 and 3 means that MSCG method has less number of 

iterations and less CPU time when compared to SCG, FR and PRP 

while denoting of “unsuccessful” means that MSCG produce more 

iterations and CPU time. If MSCG provide same iterations or 
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CPU time with other methods, then its equivalent. For both Table 

2 and 3, the results presented are in percentage.  

 

  

Table 1: Test Problems functions 

Functions Dimensions Initial Points 

Trecanni 2 (2,2), (11,11), (17,17),  (-17,-17) 

Booth 2 (4,4), (-4,-4), (21,21), (109,109) 

Tree hump Camel 2 (3,3), (-3,-3), (7,7), (51,51) 

Six hump Camel 2 (11,11), (41,41), (51,51), (61,61) 

Zettl 2 (-3,-3), (5,5), (100,100), (200,200) 

Leon 2 (2,2), (4,4), (25,25), (-25,-25) 

Quartic 4 (10,.,10), (25,.,25),(100,.,100),(-100,.,-100) 

Colville 4 (-2,.,-2), (4,.,4), (7,.,7), (9,.,9) 

Wood 4 (7,.,7), (9,.,9),  (-9,.,-9), (-16,.,-16) 

Gen. Tridiagonal 1 10 (7,.,7), (-7,.,-7), (14,.,14), (-14,.,-14) 

Gen. Tridiagonal 2 10 (3,.,3), (5,.,5), (7,.,7), ), (14,.,14), 

Fletcher 10 (3,.,3), (-10,.,-10), (13,.,13), (-13,.,-13) 

Hager 50 (2,.,2), (5,.,5), (8,.,8), (10,.,10) 

Quadratic Penalty QP1 100 (50,.,50),(100,.,100),(200,.,200),(300,.,300) 

Dixon and Price 100 (49,.,49), (-49,.,-49), (81,.,81), (-81,.,-81) 

Quadratic QP1 100 (40,.,40), (-40,.,-40),49,.,49), (-49,.,-49) 

Quadratic QP2 100 (8,.,8), (-8,.,-8), (11,.,11), (-11,.,-11) 

Raydan 1 2,4,10,100 (8,.,8), (14,.,14), (20,.,20), (30,.,30) 

Ext. Tridiagonal 1 100,1000 (10,., (-10,.,-10), (100,.,100), (-100,.,-100) 

Quadratic QF2 100,1000 (100,100),(-100,-100),(200,200),(-200,200) 

Extended Penalty 2,4,10,100,1000 (50,.,50),(100,.,100),(200.,,200),(500,.,500) 

Ext. Maratos 2,4,10,100,1000 (2,.,2), (10,.,10) (25,.,25), (49,.,49) 

Freud. and Roth 100,1000,10000, 

100000 

(2,.,2), (3,.,3), (-5,.,-5), (-10,.,-10) 

Himmelblau 100,1000,10000, 

100000 

(8,.,8), (-14,.,-14),(-50,.,-50), (55,.,55) 

White and Holst 100,1000,10000, 

100000 

(2,…,2), (-2,..,-2), (4,..,4), (13,..,13) 

shallow 100,1000,10000, 

100000 

(11,.,11), (-11,.,-11), (25,.,25), (49,.,49) 

Gen. Quartic 100,1000,10000, 
100000 

(2,…,2), (-2,..,-2), (4,...,4), (-4,..,-4) 

Rosenbrock 100,1000,10000, 

100000, 1000000 

(2,..,2), (5,..,5), (10,..,10), (25,..,25) 
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Fig. 1: MSCG vs SCG, PRP and FR methods on iterations 
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Fig. 2: MSCG vs SCG, PRP and FR methods on CPU time 

 

We can boldly say that our modified spectral CG method  have 

per-formed very good, since it solved all the test problems func-

tions 100%, the method also has absolute potentials when com-

pared with PRP, FR and SCG methods. Figure 1 and 2 show that 

MSCG, SCG, and PRP methods successfully reach the solution 

points.  

Note that by referring the ‘successful’ in Table 2 and 3 means that 

MSCG method has less number of iterations and less CPU time 

when compared to SCG, FR and PRP while denoting of ‘unsuc-

cessful’ means that  MSCG produce results with more iterations 

and CPU time. If MSCG provide same iterations or CPU time 

with other methods, then its equivalent. For both Table 2 and 3, 

the results presented are in percentage. 

 
Table 2: Percentage performance of MSCG vs SCG, PRP and FR on 

number of iterations 

Method  SCG PRP FR 

 Successful 8.47% 94.91% 98.30% 

MSCG Equivalent 91.53% 3.39% 1.70% 

 Unsuccessful 0.0% 1.70% 0.0% 

 

By the comparison above we observed that MSCG method almost 

closely similar as SCG method in Table 2, we see that 91.53% are 

the same pertaining number of iterations, nevertheless in Table 3 

below it has 0.0% equivalence in terms of CPU time. Therefore, 

MSCG solves the test problems with highest percentage of suc-

cess and equivalence of 100% compared with SCG, 100% over 

FR and 98.31% above the famous PRP in terms of number of 

iteration.  

 
Table 3: Percentage performance of MSCG vs SCG, PRP and FR on CPU 

time 

Method  SCG PRP FR 

 Successful 86.44% 77.97% 93.20% 

MSCGG Equivalent 0.0% 0.0% 0.0% 

 Unsuccessful 13.56% 22.03% 6.80% 



International Journal of Engineering & Technology 311 

 
However, percentage of success and equivalence of MSCG based 

on CPU time is 86.44% as compared with SCG, 93.20% over FR 

and 77.97% above PRP. Indeed the MSCG is promising.  

5. Conclusion  

Lastly, the modified spectral CG method satisfies a sufficient 

descent conditions and converges globally. Numerical outcomes 

by employing a set of large-scale test problems indicated that 

MSCG is highly efficient compared to the classical and spectral 

CG methods. 
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