

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

High Performance Controller for 100HP Grade Agricultural Vehicles

Ki-Bum Suh¹

¹Dept. Of Rail Electrical System, Woosong University,171 dong-dae-jeun-Ro,Dong-Ku,Deajeon Korea 34606 ^{*}Corresponding author E-mail: kbsuh@wsu.ac.kr

Abstract

Background/Objectives: In this paper, the high performance controller design which can handle all the electric components in agricultural vehicle is proposed and implemented.

Methods/Statistical analysis: To test the controller, we made the environment for testing the developed controller and monitored the responses using CAN Bus.

Findings: By introducing RTOS, simultaneous response of all 12 inputs is possible. By introducing the power management module, standby current is maintained in the unit of uA.

Improvements/Applications: It can be used for agricultural tractor for any vendor.

Keywords: Single controller, ECU, TCU, protection circuit technology, Noise Reduction

1. Introduction

components in agricultural vehicle is needed. So we developed the controller which can act as ECU and TCU, and handle all the electric component as shown figure 1.

single controller which can control all the individual electrical

As shown in Figure 1 below, the main controller process is becoming more complicated as more and more convenience and safety devices are added to an agricultural machine, so that a

There are several works for vehicles controller[1-8]. Model model-based diagnostic development process for automotive engine control systems is proposed[1]. This process seamlessly employs a graph-based dependency model and mathematical

models for online/offline diagnosis. Multi-input and multi-out (MIMO) approach based on model predictive control (MPC) was presented for the automatic cruise system of automotive engine[2]. We adopted the MPC based MIMO approach to get the ECU

Copyright © 2018 Authors. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

control and TCU control.

2. The Proposed Design and Algorithm

2.1. Proposed Architecture

Figure 2 shows the architecture of the proposed agricultural tracker controller, which can control all the individual electrical

components of tracker. All the individual components are connected with CAN Bus. Infineon 16bit SAK-XC2387A CPU is adopted for main controller. PCB is designed to accommodate the interface for connecting the all the device using CAN Bus. To reduce the standby current, power management module is introduced. Microprocessor handles the all the digital input and analog input data simultaneously using the real-time operating system.

Figure 2: The architecture of the proposed agricultural tractor controller

2.1.1. Adopted Algorithms

In the proposed architecture, FreeRTOSTM is used for efficient scheduler management[9]. FreeRTOSTM is one of the real-time operating systems. It allows simplicity, excellent portability,

simplicity and enables to execute several tasks at the same time. It is structured programming that does not actually perform multiple tasks at the same time. Instead, it executes multiple tasks in a very short time interval, so that it looks like the user is doing real time processing.

Figure 3: Parallel programing using FreeRTOSTM

As shown in figure 3, seven analog inputs and five digital inputs signal are simultaneously sensed using the FreeRTOS. At the same time, the output gives the appropriate response. All input and output process are scheduled and parallelized using the RTOS. For the sensor and analog input signal, we adopted the Kalman

filtering to reduce the noise generated from the engine.

2.2. Power Management and Short Circuit Protection

Unlike passenger cars, the operation and frequency of use of

agricultural machinery is not used for winter season due to the characteristics of agricultural machinery. Therefore, the importance of the standby current is required, and the power management circuit as shown in figure 4, which removes the power supply at all times according to the key input state is constructed, and the standby current is designed to manage in the unit of uA.

Figure 4: Power management Circuit

In case of solenoid valve and relay power supply output, short circuit protection circuit design was applied to prevent secondary failure due to short circuit of tractor as shown figure 5.

3. Results and Discussion

Figure 6 shows the interface of controller. Analog input and digital input is listed as shown in the left of figure (a), and for the output control signal, PWM control method is used. Figure 6(b) shows the implemented controller, which adopted automotive Infineon® 16bit MCU. 48-pin waterproof connector is adopted for connection and EMC proof design is applied. To meet the need of other companies, controller has spare ports and other interfaces as shown in figure 6(c).

(a) Input and output interface

(b) Implemented design

Figure 7 shows the Test Environment for the developed controller. We developed the Test bench circuit and monitored the response using CAN BUS and power shuttle value.

A DTC (Diagnostic Trouble Code) was sent to the parts in question to identify the problem with the part. In order to avoid the risk of breakage of the controller, it was developed to cut off

the output because problems might occur in long term use. Figure 8 show the example of CAN analyzer output for DTC of ECU.

	Annual
Elle View Start Mode Configuration Window Help	_11 ×
📗 🗅 😂 🔐 😾 🖾 🖄 🌜 🖗 🔍 👯 🔍 10 💽 sun 🔤 Simulated bus 🗾 🤗 🧶 📗	
Malfunction Stop Waining Protection	
Node ~ Address CAN MIL Stop Warn Prot	
EngineECU1 0x0 CAN 1	
上 ECU 3 0×3 CAN 1	
P ECU 23 0x17 CAN 1	
• ECU 35 0x23 CAN 1 O	
<u>• CU 39</u> 0%27 CMNT	
JDiagnostic Trouble Code	
Node - SPN FMI OC	
ECU 35 0x335E0 0x3 126	12
	\times
	×
	-
	фΞ
	1
DTC History Active DTC DTC Freeze Frame Settings	
K T N Kotup A Measurement A Diagnostics /	

Figure 8: DTC(Diagnostic Trouble Code) Transmission using CAN BUS

The controller communicates the current state of the controller periodically to the other controller to share the data of all the controllers of the vehicle. This controller analyzes the DTC signal to recognize the danger and improves the stability by performing the prescribed treatment according to the risk factors. By parsing the data shown in figure 9, the system can determine the state of devices in the vehicle.

XII AL EL 🔜	E Search I	° <u> </u>	1.000	(IR	Locu	l Nor		
	1 Dir	time diner,	I Can	10	PGN		IName	Nº.
3 E U. U14639	Tx	0.014639	1	18FF9C21x	rrscp	44 03 00 00 12 12 12 12	VSIC	
0.059613	1x	0.050317	1	18FF9L21X	TEST		VLSIG	
	1x	0.052521	1	CHUDZIX	reoup		VLHZELH	
	1x	0.009762	1	00000278	Up	CU 20 IC EI FF FF FF 45	TSCI_VE	
0.065352	1x	0.006898	1	C0001278	ար	CU 40 33 E1 FF 7F 7F 45	TSCI_PE	
- 2 0.03208r	1x	0.032087	1	19013238	runsp		751	
- 20 U. 061889	IX	0.051889	1	187FB423X	FFB4p	03 08 58 85 71 00 83 86	Sensor_State	
0.057305	Tx	0.057305	1	18FF9721x	FF97p		ESCN33_51	
0.056141	TX	0.047905	1	18FEDFOOX	TEDID	87 AO 28 70 70 00 00 FO	ELC3	
0.052118	Tx	0.047905	1	CF00300x	roosp	D1 00 00 FF FF FF 00 32	EEC2	
- E 0.071311	TX	0.019761	1	CFOG 400x	rooap		EECI	
0,073051	Tx	0.001160	<u></u>	18DF23FAx	DF00p	7F FF FF FF FF FF FF FF	DM13	
0.001233	TX	0.001233		18FECA00x	FECAP	03 FF DO OD OO OO FF FF	DML	
0.046914	Tx	0.046914	L	18FFAB03x	FFABp	00 00 00 00 04 64 43 00	CAN_BUZZ	
0.035734	Tx	0.035734	1	18FF6121x	FF61p	TT IT FF FF F3 F7 FF FF	BC2EDC2	
0.041654	Tx	0.041654	1	CFE4523X	FE 45p	75 40 AA 00 00 FF FF FF		
0.053266	Tx	0.049633	L	18FF2100x	FF21p	C3 11 00 07 00 01 10 03		
0.054425	Tx	0.047333	1	18F02300x	F023p	OG OO FF FF FF OC FF FF		
0.060761	Tx	0.060761	1	18FFAB23x	FFABp	00 00 00 00 00 72 7F 94		
· 🖾 0.063D33	Tx	0.052493	1	19FFA010x	1FFA0p	80 31 20 95 87 00 00 83		
0.072471	TX	0.072471	L	18FFAC03x	FFACp	7F 14 00 00 00 00 7E 50		

Figure 9: Detailed DTC

Figure 10: Lab Test and Test vehicle

The proposed design is tested on the Lab level and is adopted for tracker for LS MTRON, which has Tier-4 electronic engine of LS MTRON as shown in figure 10.

4. Conclusion

The high performance controller design for 100HP grade agricultural vehicles is implemented. To test the controller, we made the environment for testing the developed controller and monitored the responses. The mean absolute error (MAE) for engine speed control is 0.034, and the MAE for air fuel ratio is 0.068.

Acknowledgment

This research is based on the support of 2018 Woosong University Academic Research

References

- Jianhui Luo, K.R. Pattipati, Liu Qiao, S. Chigusa. An Integrated Diagnostic Development Process for Automotive Engine Control Systems. IEEE Transactions on Human-Machine Systems, 2007 May; 27(5): 1163-1173.
- [2] Yu-jiaZhai, Yan Sun, Ke-jun Qian, Sang-hyuk Lee. A multi-input and multi-output design on automotive engine management system.science& technology of mining and metallurgy, 2015 Dec; 22(12):4687–4692.
- [3] LixinZhao,Jietai Zhang,Shenglu Wang.Application of Programmable Controller in Precision Seeder,2010 International Conference on Measuring Technology and Mechatronics Automation.2010 May;1:659-662
- [4] S.M. Savaresi, F.L. Taroni, F. Previdi, S. Bittanti. Control system design on a power-split CVT for high-power agricultural tractors. IEEE/ASME Transactions on Mechatronics. 2004 Mar;9(3):569-597
- [5] GuilhermeMarconZago, Edison Pignaton de Freitas. A Quantitative Performance Study on CAN and CAN FD Vehicular Networks. IEEE Transactions on Industrial Electronics.2018 May;65(5):4413-4422
- [6] J. Baerdemaeker, A. Munack, H. Ramon, H. Speckmann. Mechatronic systems, communication, and control in precision agriculture. IEEE Control Systems Magazine. 2001 May;21(5):48-70
- [7] Ali KeymasiKhalaji, S. Ali A. Moosavian. Robust Adaptive Controller for a Tractor–Trailer Mobile Robot.IEEE/ASME Transactions on Mechatronics. 2014 Mar;19(3):943-953
- [8] Yongwei Tang,Maoli Wang,Xiaojie Zhao,FengqiHao. Research and application of intelligent control of agricultural machinery based on hardware and software collaborative design. IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). 2017 Oct;10: 1113-1116
- [9] The Free RTOS Available from : https://www.freertos.org/