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Abstract 
 
Solid-State Disk (SSD) is a semiconductor storage device and it has become a preferred choice for many storage sub-systems solutions to 
replace the classical hard drives due to its high performance and durability. Moreover, NAND flash memory has become cheaper in 
costs. However, this flash memory type has its own limitations due to its erase-before-write operations nature. This limitation will cause 
the memory to wear faster and consuming higher cost when initiating the cleaning process. To overcome the limitation, an address 

mapping in NAND flash memory namely Flash Translation Layer (FTL) plays important role in handling I/O operations. Several studies 
on the FTL have been carried out to manage the IO operations in NAND flash device efficiently. This paper proposed an optimized 
address-mapping scheme called Optimized Real-Time Flash Translation Layer (ORFTL). In order to increase the NAND flash space 
utilization, the proposed scheme reduces idle buffer blocks and reassigns the blocks as new Logical Block Addressing (LBA) in order to 
optimize blocks in flash memory for more space utilization. In addition, the scheme introduces a pool of buffer blocks with the same 
bandwidth throughput size of IO interface that connects the SSD to the host system in order to guarantee available free spaces to serve 
write operations. By optimizing both types of blocks, the proposed scheme has shown significant increases in the NAND flash memory 
space utilization as compared to the existing FTL schemes. 
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1. Introduction 

Solid-State Disk (SSD), a semiconductor storage device has 

become the primary solution of the storage subsystem by 
replacing the classical hard drives in computer systems. This is 
due to NAND flash memory in the SSD has dropped in costs. 
Furthermore, it offers high performance and durability as 
compared to the hard drives since it does not suffer from the 
mechanical latencies as well as high tolerable to the shock and the 
vibration. Therefore, flash memory is suitable for wide range of 
uses ranging from portable to mobile devices even for primary 
storage solutions in datacenters [1], [2]. 

However, NAND flash memory has its own disadvantages. Due to 
the nature of erase-before-write characteristic, the memory could 
wear out easily and leads to its end lifetime as compared to the 
SATA hard drives. To increase its lifetime, many researchers and 
storage device manufacturers have come up with many solutions 
in order to manage the read and the write operations efficiently. 
One of the solutions is so-called Flash Translation Layer (FTL). 
The FTL consists of three major inter-related components (address 

translator, garbage collector and wear leveler) that play important 
roles to ensure the memory’s lifetime get an increase. The idea 
behind all these components is to delay the erase operation 
(hereafter-called garbage collection) as much as possible due to 
the erase-before-write nature. In NAND flash memory, the 
garbage collection refers to the time costly operation that can 
disrupt the performance of the device. This is because the process 
needs to reclaim the invalid pages reside in a block to be erased. 

To do that, it has to count the valid pages that still exist, copy 
them to another free block and perform the erase operation. While 

the garbage collection initiated, targeted blocks will not be 

available until the process complete, thus increase the latency of 
write operations. To improve this latency, buffer blocks are used 
to guarantee the free spaces to serve the write operations [3], [4]. 
This will incur the cost of an SSD since additional flash memories 
are required to provide the buffer mechanism to improve the 
performance. 
This paper proposed an address-mapping scheme named 
Optimized Real-Time Flash Translation Layer (ORFTL). It is a 
hybrid-FTL address-mapping scheme that reduces the static 

random-access memory (SRAM) size dependency in storing the 
mapping information between the Logical Block Address (LBA) 
and the Physical Block Address (PBA). Unlike existing hybrid-
FTL types, by taking advantage of the limitation bandwidth 
throughput of IO interface, the proposed scheme reduces idle 
buffer blocks and reassigns the blocks as new LBAs in order to 
optimize the physical blocks in flash memory for more space 
utilization. Although all idle blocks have been reduced, the 

scheme introduces a pool of buffer blocks in order to guarantee 
available free spaces to serve write operations when the garbage 
collection process initiated on the existing block. The pool size of 
the buffer blocks is optimized as same as bandwidth throughput 
size of IO interface that connects the SSD to the host system. 
From the conducted simulation results, the proposed scheme has 
shown approximately 16% increases of space utilization as 
compared to the existing scheme when the idle buffer blocks are 

fully utilized for data block purpose. Results also shown that the 
space utilization of flash memory in various sizes of SSD devices 
ranging from 200GB to 1200GB has consistently increased 
compared to the existing scheme since the percentage of space 
capacity used for a pool of buffer blocks has decreased in various 
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sizes of SSDs. The remainder of this paper has been organized as 
follows. The background and the related works of the FTL are 
discussed in Section II. Section III discusses the proposed work. 
Section IV discusses the simulation and results of the proposed 
scheme. Section V presents the summary and the future work. 

2. Background and Related Work 

This section presents the FTL architecture, its overheads and the 
types of the FTL. Then, we review the related work of the RFTL 
[3], [4], a well-known work related to the hybrid-FTL type 
recently.  

2.1. FTL Architecture 

The architecture of a common NAND flash storage device is 

shown in Figure 1. One of the important parts that build the 
storage device is the FTL. The FTL contains three main 
components namely i) Address Translator (used to manage the 
logical-physical address-mapping scheme), ii) Garbage Collector, 
and iii) Wear- Leveler. Another important part of the device is the 
Memory Technology Device (MTD). Depending on the NAND 
flash applications (e.g., USD stick, SSD, CompactFlash, MMCs 
etc.), the MTD may exist in the operating system layer or even in 

the FTL in order to interact with the memory device and only 
supports three simple operations; read, write and erase [5].  
The address translator component provides an address abstraction 
between the LBA to the PBA. It hides the low-level system 
management from the high-level file systems during the IO 
operations execution. Meanwhile, the garbage collector reclaims 
the invalid pages reside in the block to be erased due to the erase-
before-write characteristic. Due to the characteristic, the number 

of invalid pages will be increased substantially since there are 
many IO operations involved. Thus, decreases the available free 
pages in the device. Therefore, the erase operation is necessary for 
the device. However, the erase operation will be performed in 
block unit rather than page unit. Thus, in order to reclaim the 
invalid pages resides in the block to be cleaned, it calculates the 
valid pages that still exists, copy them to another block and only 
then perform the erase operation on the block unit and reclaim it. 
The wear leveler distributes evenly the erasure counts for all 

blocks in order to extend the lifetime of the NAND flash device. 
Without this component, it is possible that a group of blocks in the 
device facing higher erase counts and wear very quickly and thus 
reducing the storage capacity of the sub-system. 

2.2. Overheads in the FTL 

There are three main overheads of the FTL. First, is the erase-
before-write. The write operation in NAND flash requires a time-

consuming erase operation which degrades the overall IO 
performance of the device. Thus, the buffer block has been used in 
order to reduce or avoid the time-consuming erase operations. 
However, allocating the buffer block without limits will decrease 
the available space capacity in storing new data. Second is the out-
of-place-updating policy in the memory device. There is no 
physical rewrite operation in any NAND flash memory device. 
Rewrite operation means the updating request will be stored to a 

new free page while the previous page will be marked as invalid 
or garbage. The garbage collector is being used to reclaim all 
invalid pages in the original block, move or copy the valid pages 
to new free pages in a new block, before erasing the original block 
and return it as a free block. This operation causes the latency of 
write operation in NAND flash device. The third overhead is the 
durability. High erasure counts on a block could wear the block 
and lead to its end of the device lifetime. Hence, it reduces the 

total space capacity of the device from time to time. Moreover, the 
device lifetime also will be degraded. 

2.3. Types of FTL 

The FTL comes in three types, i) page-FTL, ii) block-FTL and iii) 
hybrid-FTL. The page-FTL is a naïve FTL scheme that maps the 
every logical address request to the available physical address 

based on the page unit. The page is the basic accessing unit for 
both read and writes IO operations in the NAND flash device. 
Therefore, it requires a large size of SRAM to store the mapping 
information. Meanwhile, the block-FTL maps the logical address 
to the physical address in a block unit, an accessing unit for the 
erase IO operation. Although the size of the SRAM is being 
minimized, this type of FTL requires additional tasks in handling 
the IO requests. For instance the garbage collection process. It is a 

time-consuming process and needs to be initiated frequently, 
which can cause the degradation in the device performance. The 
hybrid-FTL utilizes both block and page units in mapping the 
logical sector request to the available physical sector. It is being 
introduced to overcome the mapping disadvantages of both page-
FTL and block-FTL. However, the hybrid-FTL requires a slightly 
higher amount of the SRAM as compared to block-FTL type. 
Among these three FTL types, the hybrid-FTL solution is more 

suitable for SSD due to the SRAM capacity requirement and fewer 
overheads in performing the compulsory garbage collection. This 
motivates us to optimize the existing works of the hybrid-FTL in 
the SSD device. 

2.4. Related Work in Hybrid-FTL Types 

Several studies on the hybrid-FTL have been reported so far [3], 
[4], [6]–[15]. Among these, the Real-time Flash Translation Layer 
(RFTL) is a well known and the better hybrid-FTL solution at this 

point in time [3], [4]. It has been proposed to evenly distribute the 
garbage collection time cost and guarantee a near optimum worst-
case response time [3], [4]. This is an address-mapping scheme 
that guarantees physical space to serve IO requests at any window 
time. The optimized garbage collection strategy was being 
introduced to enable the RFTL reclaims the available space and 
serve the IO request simultaneously without interrupting the 
device operations.  

As illustrated in Figure 2, in the RFTL, the block-unit mapping is 
being used to map the logical block with the three types of 
physical blocks, namely i) primary, ii) replacement and iii) buffer 
blocks. The primary block is used to serve handle the normal write 
requests (writing new data) while the buffer block is used to store 
the pending writing request if the primary block is fully being 
occupied. The replacement block is being used to provide the 
space for reclaiming the primary block. These blocks periodically 

changing their tasks to guarantee the available free spaces in 
handling the write operations [3], [4]. Additionally, this FTL 
solution has improved the worst-case response time as well as the 
average-case system response time. On the contrary, this solution 
is quite expensive since the space utilization level that can be 
optimized is only 33% or one-third of the NAND flash raw 
capacity. Moreover, the RFTL scheme consumes extra memory 
space to guarantee access performance in handling the worst-case 

response time. Although the benchmark results of the block erase 
counts for the RFTL is ranging from other FTLs [4], but the result 
is still only capable of one-third of the device space. In other 
words, the RFTL could spend three times higher block erase 
counts as compared to the others FTL if the space utilization is 
taken into consideration. 
The RFTL scheme requires additional two data blocks to in order 
to act as replacement and buffer blocks. To avoid blocked write 
process due to initiating the garbage collection process, buffer 

blocks are used to serve the incoming write operations [3], [4]. 
This would be advantageous if all logical blocks are being used 
when all the write requests fill-up the IO interface at any given 
time window. If not, then it would waste the blocks. These buffer 
blocks can be assigned for the logical block addresses in order to 
increase the available capacity in the NAND flash device. In 
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addition, although the SSD was meant to become a block device 
replacement to the SATA hard drive, their performance still 
cannot be fully utilized due to the limitation of standard IO 
interface (6 Gb/s or less, depends on SATA types) that connect 
between the host and the SSD [16]. Due to this reason, in a worst-
case scenario when all write requests fill-up this interface at any 
time window, only some part of logical blocks will serve the 
request and may require buffer block if garbage collector gets 

being triggered to reclaim the primary blocks. Meanwhile, the 
remaining buffer blocks will be just idle or free. 

3. Optimized Real-Time Flash Translation 

Layer (ORFTL) 

3.1. Motivation 

According to the discussion in the previous section, we propose of 

allocating the buffer blocks based on the maximum throughput of 
the IO interface, rather than assigning one buffer block for each 
logical block founds in the device. In this approach, one logical 
block can be assigned with any buffer blocks from a pool of buffer 
blocks when the write request being issued from the file system, 
which gives two optimization opportunities. First, reduce the 
number of idle buffer blocks assigned to each logical block. Even 
if the number of writes operation reach the maximum throughput 
of the device IO interface, the numbers of idle buffer blocks still 

endure. Second, reassign the number of idle buffer blocks in order 
to create the more logical block. By considering the current space 
utilization in the RFTL, we can increase the space utilization for 
the proposed ORFTL if we reassign the idle buffer blocks for the 
more logical block. Thus, even in a worst-case scenario of write 
requests occurs at a given time window, the number of idle buffer 
blocks still exist due to the maximum throughput of IO interface 
of the SSD itself. 

3.2. Utilizing the Unutilized Buffer Block 

Generally, all the IO operation requests (both read and write) are 
being issued by the file system and will pass through the IO 
interface (the interface that connects the storage device to the host 
system). Now, the IO interface communicates at a rate of 6 Gbit/s. 
At any given time window, when the IO interface full with the 
write requests, only a small group of logical blocks will be used to 

serve all write operations. According to Figure 3, when all writei→j 
operations are scheduled, depending on the LBNi→j that has 
primary blocki→j with invalid pages, the buffer blocki→j will serve 
the write request, while waiting for the garbage collector to 
reclaim the primary blocki→j. All valid pages in the block then will 
be copied into the designated replacement blocki→j. The role 
between the primary block and the replacement block will be 
swapped when the erasure operation completed. 

 

 
Fig 3: RFTL address mapping scheme – buffer block is used only when 

write operation is triggered. 

Given at any time window wherein a worst-case scenario of all 
writei→j operations filled up the interface, logical blockk→l are still 
idle. The primary blockk→l and replacement blockk→l could still 
have valid or invalid pages except for the buffer blockk→l where 
free pages are guaranteed to serve next write operations in case of 
garbage collector being triggered to reclaim the primary block. To 
do this, we assign each logical block mapped with two physical 
blocks, which are primary block and replacement block. However, 

in order to provide guarantee free pages to serve next write 
operations, a pool of buffer blocks is considered. The number of 
buffer blocks in the pool will depend on the capacity of IO 
interface of SSD. Two equations below describe the difference 
between both RFTL and ORFTL. 
The number of LBA x, for the RFTL is being calculated as 
follows: 
 

 
(a)                      (b) 

 
Parameter y is an index number of LBA while PB refers to the 
physical block being allocated for the LBA. (a) is the number of 
LBA to be fully utilized in a IO interface, (b) is the number of 
LBA that are idle when I/O operations take place on (a). 
Meanwhile, Figure 4 describes the number of idle buffer block, 
the buffer blockk→l is being reclaimed from the idle logical 
blockk→l when in the worst-case scenario of all write requests fill-

up the IO interface at any given time window. In return, the 
reclaimed buffer blockk→l will be reassigned to the new logical 
blockm→n to increase the space utilization for the proposed 
ORFTLThis paper proposed an address-mapping scheme named 
Optimized Real-Time Flash Translation Layer (ORFTL). 
 

 
Fig.  4: Utilizing the free buffer blocks for more space utilization for the 

ORFTL 

 
Thus, the number of LBA x, for the proposed ORFTL is 
calculated as follow: 

 
                                (a)                      (b)                     (c) 
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Part (a) of the above equation is the number of LBA with a pool of 
buffer blocks to be fully optimized based on IO interface 
throughput bandwidth size, (b) is the number of LBA without 
buffer block when the I/O operations take place on (a) and (c) is 
the reduced buffer blocks taken from (b) and reassign for the new 
LBA. 

4. Simulation and Results 

4.1. Performance Metrics 

To make the comparison of flash space utilization between the 

RFTL and the ORFTL, we performed the calculation of the logical 
block addresses. Table 1 summarizes the performance metric 
parameters used for the performance comparison. In most of SSD 
hardware specifications provided by manufacturers (for example 
in [1], [2], [17]), total physical blocks for flash memory 
information is not provided. Thus, two assumptions have been 
made in order to compare flash space utilization between RFTL 
and ORFTL schemes. First assumption is that user addressable 

sectors in LBA is calculated based on RFTL address mapping 
scheme. With this assumption, we calculated the total physical 
blocks of flash memory in SSD with their capacity ranging from 
200GB to 1200GB. From this results, we later calculated the user 
addressable sectors in LBA with ORFTL address-mapping 
scheme. The second assumption is that the maximum throughput 
of IO interface is calculated at 6GB/s or 600MB/s where no 
latency factor is considered. With this assumption, we calculated 
the pool size of buffer blocks that will serve write operations when 

targeted blocks have garbage collection process running to claim 
invalid pages in the targeted blocks. 
 

Table 1: Performance Metrics 

SSD Capacity in Gb 200 400 800 1200 

User Addressable Sectors in LBA 

Information is based on [2] 

200GB = 390,721, 968 

400GB = 781,422,768 

800GB = 1,562,824,368 

1200GB = 2,344,255,968 

Physical Blocks per LBA RFTL = 3, ORFTL = 2 

Max. IO Interface Throughput 6 Gb/s or 600MB/s 

Sector size 512 bytes 

Total sectors of Buffer Blocks 

based on IO Interface 

Throughput 

1, 171, 875 

4.2. Results 

As shown in Figure 5, the proposed scheme shows better 
improvement than the RFTL scheme. Given that the space 
capacity of flash memory in SSD ranging from 200GB to 
1200GB, RFTL scheme can only provide 33% of space capacity. 

Meanwhile, ORFTL scheme can offer 16% more than RFTL. This 
is because the proposed scheme has considered the limitation 
bandwidth throughput of IO interface and reducing idle buffer 
blocks and assigned them as additional primary and replacement 
blocks of new LBAs in order to optimize the physical blocks in 
flash memory for more space utilization. In another view, result 
from Figure 5 also shown that in the range of 200GB to 1200GB 
of space capacity of flash memory in SSD, only small amount of 

space required and allocated for pool of buffer blocks to serve 
write requests when targeted blocks has garbage collection in 
progress. This buffer size is fix across various sizes of SSDs as 
long as the IO interface is same. 
Meanwhile, Figure 6 illustrates the evaluation result for the 
required amount of space capacity for the buffer blocks in the 
ORFTL scheme. As can be seen, the required space capacity 
substantially declined when the capacity of the flash memory in 

SSDs is increased. This figure concludes that the proposed 
ORTFL scheme has fully optimized the capacity of the NAND 

flash device when the role of the assigned buffer blocks for the 
address-mapping are fully optimized. 
 

 
Fig 5: The space utilization requirement in address-mapping scheme. 

 

 
Fig 6: Space capacity used for the buffer blocks. 

 

In Figure 7, it describes the space capacity reclaimed from the 
optimization of space in RFTL based on SSD capacity ranging 
from 200GB to 1200GB. As explained in earlier, an SSD consists 
of additional flash memories are required to provide the buffer 

mechanism to improve the performance. An SSD with RFTL in 
place will cost 3 times of amount of flash memory. However, not 
all buffer blocks will be in-use and remains idle because of the 
bottleneck of IO interface limitation. By taking advantage of this 
limitation, ORFTL reclaims these idle blocks and assigned them 
as additional primary and replacement blocks of new LBAs in 
order to optimize the physical blocks in flash memory for more 
space utilization.  

As shown, only 6GB space allocated for buffer mechanism across 
every SSD size and the additional space utilization increase as the 
SSD size increase. 
 

 
Fig 7: Space capacity of flash memory in SSD with ORFTL. 
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5. Conclusion  

In this paper, we had proposed an optimized address-mapping 
scheme called the ORFTL. The scheme has shown significant 
improvement in space utilization as compared to the current 
scheme. By modifying the role of the assigned buffer block, the 

proposed scheme reduces the number of idle buffer blocks and 
utilized for these blocks for new logical block addresses. 
Moreover, the proposed scheme takes the advantage in utilizing 
the capacity of IO interface that connects the SSD to the host 
system. In the future, we will exploit the usage of the proposed 
address-mapping scheme with the garbage collector and wear 
leveller. 
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