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Abstract 
 

Objective: The objective is to address the challenges of monitoring process facility and environmental parameters, which can be 

analyzed to anticipate dangerous and critical conditions. 

Methodology/approach: This article proposes the technology and architecture for a system of high-speed stream data collection and 

processing, which combines the advantages of both the cloud and fog computing models for data collection, storage and processing. 

Conclusion: The proposed technology and architecture for a system of high-speed stream data collection and processing make it possible 

to adapt to various monitoring and situation control challenges and can be used to set up centers for processing monitoring data of 

different levels. 

Originality/value: The originality of the proposed technology and architecture consists in the application of a set of universal 

programming solutions aiming to set up a data processing center. Such a center would require a minimum amount of work related to 

designing an automated data collection system and to developing additional software. Furthermore, it will provide ample opportunities 

for further scaling and expanding its functionality.  
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1. Introduction 

 
One of major factors behind growing amounts of information in 

the world is an increased share of automatically generated data. 

Research conducted by the International Data Corporation (IDC) 

[1] projects an increase of automatically generated data by more 

than 40% of the overall data by 2020 as compared to 11% in 2005, 

and the Open Fog Consortium [2] estimates the amount of data to 

grow up to 2.3 exabytes. Over 21 billion devices are projected [3] 

to get Internet access by 2020 mostly due to the rapidly growing 

and expanding IoT or Internet of Things. 

Of special importance among various monitoring devices are 

information and measurement sensors used to monitor process 

facilities and the environment, to project the emerging dangerous 

and critical conditions and to prevent emergencies [4]. The need to 

obtain full information on surveillance targets facilitating timely 

decision-making inevitably leads to the increased amount of data 

obtained from information sensors. As a result, this affects the 

requirements imposed on data collection systems and the 

possibility of assessing situations. The main sources of such data 

are Earth remote sensing satellites, GPS, mobile devices and 

measurement sensors, among others. 

Consequently, a pressing need exists to update stream data 

collection and processing methods, which requires testing or new 

technologies and architectures to set up data processing centers 

(DPCs). 

Currently, these tasks are accomplished by means of cloud 

technologies using software tools in a cluster-based architecture 

for data processing centers. The increasing amount of stored and 

transferred data, however, prevents cloud architectures from 

achieving the required capacity output. This challenge can be 

addressed by adopting a technology known as cloud computing, 

which ensures effective, safe and secure interaction of a multitude 

of devices between themselves and with local and cloud DPCs. 

The notion of cloud computing appeared in 2012 when Cisco 

published an article entitled Fog Computing and Its Role in the 

Internet of Things [5]. In 2015, ARM, Cisco, Dell, Intel, Microsoft 

and Princeton University established the Open Fog Consortium 

[2] with a view to develop common approaches to the 

implementation of the fog computing technology. The first 

technical specifications describing fog computing architecture 

dates back to 2017. 

Fog computing architecture allows users to transfer computations, 

storage, connection as well as management and decision-making 

systems to terminals that have limited resources and are directly 

linked to the physical world beyond the cloud. This is why the 

joint use of cloud and fog computing seems an optimal solution in 

terms of performance, security, scalability and cost minimization. 

This article proposes a technology and architecture that combines 

the advantages of both the cloud and fog computing models for 

data collection, storage and processing and adapts monitoring and 

situation management challenges. Another major feature of the 

proposed technology is the possibility of setting up new DPCs and 

of expanding, both functionally and technologically, the existing 

and operating automated management and control systems. 
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2. Materials and Methods 

 
2.1 A diagram of high-speed stream data collection and 

processing in situation control systems 

 
Before describing the proposed technological solutions, the 

authors suggest to examine the formal description of high-speed 

stream data collection and processing in situation control systems 

presented as a conceptual diagram (see Fig. 1). 

 

 
Fig. 1. Diagram of high-speed stream data collection and processing in situation control systems 

 

The following three conceptual levels represent the diagram of 

high-speed stream data collection and processing from diverse 

information sensors: 

- Big Data sources; 

- Big Data environment; 

- data environment. 

The level of Big Data sources contains the following: 

- information sensors generating large amounts of structured and 

unstructured stream data; 

- communication channels and network equipment integrating 

stream data coming from information sensors for their further 

transmission to the next level; 

- software and hardware tools (computing machines) performing 

the parallel primary digital processing of stream data. 

The Big Data environment provides the opportunity to create a 

monitoring data collection sector for high-speed processing of 

structured and unstructured data coming from diverse information 

sensors in real-time mode and for their further research by using 

the methods and algorithms of predictive analysis, projection and 

analysis. 

The Big Data environment in the monitoring data collection sector 

tackles the following tasks: 

- preliminary data processing in real-time mode resulting in 

extraction and transformation of diverse structured and 

unstructured data for the purposes of their analysis as well as of 

comparison, detection and storage of key metadata;  

- parallel data recording into a distributed system for data storage 

which ensures high-speed recording of Big Data streams coming 

from information sensors; 

- research on Big Data coming from information sensors to high-

performance distributed computing systems by using the methods 

and algorithms of predictive modeling, projection and analysis; 

- presentation and visualization of the results of research on 

monitoring data for decision-making support related to monitoring 

objects and processes. 

The level of data environment ensures the infrastructure of top-

level applications and is aimed at aggregating the results obtained 
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by the Big Data environment in the processing and research of 

monitoring data and at supporting decision-making based on the 

predictive modeling of dangerous situations. 

The data environment includes the following: 

- data storage that aggregates the results of monitoring data 

processing and research; 

- connectable SQL data sources necessary to support decision-

making.  

The following are SQL data sources:  

- automated management and control system in place on the 

monitoring object; 

- SCADA systems in place on the monitoring object; 

- external automated systems and services that supply available 

data; 

- external systems and services for projecting the evolution of 

emergencies. 

In the proposed technology, the Big Data environment can be set 

up using either the cloud infrastructure of DPCs only or an 

integrated system comprising the cloud infrastructure and the fog 

computing environment. What follows is an examination of the 

architecture for DPCs used in this technology. 

 

2.2 Architecture for Data Processing Centers 

 
A data processing center is a high-speed data collection and 

processing cluster that is part of high-performance computing 

clusters [7] and is used to accomplish the following tasks: 

- use of various techniques to process sensor data streams stored in 

a time series database; 

- scheduled data processing; 

- interactive management of sensor data processing. 

The architecture of a typical computing cluster is a group of joint 

operations servers sharing the same data warehouse. Depending 

on the task, the high-speed data collection and processing cluster 

shall also include software for collecting data from diverse 

measuring devices.  

Therefore, the architecture for a high-speed data collection and 

processing cluster can be described as four interacting base 

subsystems (see fig. 2): 

- sensor data processing subsystem; 

- data storage subsystem; 

- cluster management subsystem. 

 

 
Fig. 2. Architecture for a high-speed data collection and processing cluster 

 

The sensor data collection subsystem is a bridge between sensor 

device terminals and data processing and storage components and 

provides a common interface for their connection to a computing 

cluster, i.e. an enterprise service bus, by means of device drivers 

or external monitoring systems. This study understands device 

drivers as software serving as a link between the enterprise service 

bus and a device (or an external monitoring system) and ensuring 

the compliance of the device’s interface with that of the enterprise 

service bus. 

The sensor data processing subsystem comprises tools allowing 

users to adopt various algorithms for sensor data stream 

processing, which are stored in a time series database, and for 

scheduled data processing. 

A data warehouse should also meet the requirements to ensure 

horizontal scalability of DPCs depending on the number of 

connected sensors and the amount of sensor data requiring the 

application of the distributed data storage technology. 

The cluster management subsystem provides mechanisms for 

interactively managing sensor data processing and, specifically, 

computing task scheduling. 

Given this architecture, research was conducted on the following 

software classes to achieve the objectives defined: 

- software designed to aggregate data from diverse devices; 

- systems for managing distributed databases; 

- software for unfolding and managing distributed data processing. 

The choice of software is based on the analysis of state-of-the-art 

solutions in terms of their significance to achieve the stated 

objectives [8]. 

Software designed to aggregate data from diverse devices belongs 

to the software class known as a message broker, whose primary 

aim is to ensure interaction between different program modules 

within the same protocol. This is why analysıs and research were 

conducted on the following popular platforms that process large 

amounts of data and allow users to work within cluster 

architectures: 

- Apache Kafka; 

- Apache ActiveMQ; 

- Mosquitto MQTT; 

- RabbitMQ. 

Apache Kafka [9] is a high-speed distributed platform for 

exchanging large amounts of highly dense messages between the 

components of a program system, implementing in real-time mode 

a publish-subscribe-based messaging mechanism for data 

transmission. 

The following are the main functional advantages of Apache 

Kafka: 

 Big Data Environment 
 Sensor Data Processing 

Subsystem 

 Data Warehouse 

 Cluster Management Subsystem 
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- high-speed stream data processing: one compute node is capable 

of processing over 100,000 messages per second, with an overall 

volume being over 10 MB per second; 

- linear scaling: a computing cluster is expandable up to thousands 

of servers with no downtimes in the data processing system; 

- a user-friendly interface easily integrated into external and 

interactive applications; 

- sufficient flexibility: easy setups, configuration and 

administration, full technical support by the producer; 

- high security: messages in a computing cluster may be replicated 

and the replication level can be configured in settings; each node 

may store terabytes of data on the hard disk for further batch 

processing with no loss in performance; 

- low delay time due to the division of subscribers into groups; 

- high fault tolerance: stream data are automatically balanced in 

case one or several cluster nodes fail; additionally, messages are 

synchronized between interacting data centers.  

The only detected deficiency of Apache Kafka is the low 

compatibility of interfaces when switching from one version of 

Apache Kafka to another. 

Apache ActiveMQ [10] is open source software acting as a 

mediator to transmit and process messages in a distributed 

environment in asynchronous mode and based on Java Message 

Service (JMS), although it is compatible with other protocols and 

platforms. As a rule, Apache ActiveMQ is used in service-oriented 

projects as a secure message queue processing system. 

The following are the main functional advantages of Apache 

ActiveMQ: 

- relatively high-speed stream data processing; 

- easy integration with other components and interacting systems 

due to interface support for different platforms and programming 

languages; 

- good scalability: data processing tasks are automatically 

distributed across cluster nodes and streams in every node; 

- high degree of data loss protection: temporary data storage on 

hard drives, data caching and logging; 

- high fault tolerance (recovery from failures): if a handler is 

down, tasks are reassigned to other handlers; 

- secure communication and messaging owing to SSL protocol 

support. 

Among the deficiencies of Apache ActiveMQ are the following: 

- sudden drops in Apache ActiveMQ’s performance when working 

with databases; 

- intricate asynchronous data stream processing functions that can 

be performed only by highly experienced developers; 

- according to the expert community, Apache ActiveMQ contains 

a significant number of errors in its source code, resulting in 

functional risks. 

Mosquitto MQTT [11] is a lightweight protocol based on top of 

TCP/IP and designed for messaging between devices using the 

publish-subscribe pattern. IBM, Microsoft and Amazon are among 

the major cloud service providers supporting this software 

protocol. MQTT requires a data broker, which is a program 

serving as a TCP server with a dynamic database. The central idea 

of this technology is that all devices send and receive data to/from 

the broker only. 

The following are the main functional advantages of Mosquito 

MQTT: 

- easy to use and manage: the protocol is a program module with 

no superfluous functionality that can be easily built into any 

complex system; 

- compatible with mobile sensors, including navigation 

controllers; 

- capable of maximally unburdening the network architecture, 

since transmitted messages contain only useful information; 

- stable and secure: the protocol ensures secure messaging in case 

of continuous connection disruptions and other online issues; 

- universal: the protocol imposes no restrictions on the format of 

message traffic. 

Among the deficiencies of Mosquitto MQTT are the following: 

- insufficient system scaling potential: the protocol limits the 

density of messaging depending on its tool; 

- as a purely program technology, Mosquitto MQTT does not have 

long-term data storage, since it contains no intermediary disk 

warehouse, in technological terms; 

- Mosquitto MQTT is bad at processing alarm events and, 

consequently, clients do not receive updated information about the 

communication line status. 

RabbitMQ [12] is a distributed message queue processing server 

based on the extended network protocol AMQP and designed for 

messaging between publish-subscribe network applications. 

Rabbit MQ supports multiple platforms and interacts well with 

various programming languages. In addition to being a classical 

message broker, RabbitMQ supports the remote procedure call 

system (RPC), thus ensuring feedback between message senders 

and receivers. 

The following are the main functional advantages of RabbitMQ: 

- high fault tolerance: if the server did not shut down properly, 

queued data are not lost and, after restart, processing continues 

where it left off; 

-  fully open: RabbitMQ is licensed under the Mozilla Public 

License, as is the case with AMQP, whose libraries are available 

in all major programming languages and platforms; 

- horizontally scalable: the system status is automatically 

replicated between cluster nodes; in most cases, two or three disk 

nodes are sufficient, the remaining ones being spared from having 

to work with the disk subsystem to improve performance; 

- universal: RabbitMQ supports many protocols, client libraries 

and plugins; 

- resource-intensive: there is no limit to the number of messages 

placed on queues in storage; this said, the messaging server can be 

located far from both the source of messages and the consumer. 

The following are the main functional advantages of RabbitMQ: 

- absence of timeout-based message processing: if the queue 

runner freezes due to a code error or for some other reason, the 

message will be not transmitted to another runner until the frozen 

one breaks connection; 

- large amount of service data per message: the memory footprint 

for the same number of messages can differ markedly from launch 

to launch. 

In choosing a messaging platform, special attention was given to 

data rates and security. This is why Apache Kafka with its 

ZooKeeper-based advanced fault-tolerant technology was selected 

to aggregate data from diverse devices [13]. 

Today, systems for managing distributed databases use the 

NoSQL technology [14], characterized by no superfluous 

sophistication, high capacity and accessibility, immunity to data 

partitioning as well as unlimited horizontal scaling. NoSQL does 

not ensure data consistency [15], which is not required for storing 

time-series sensor data; it has, however, the following important 

features to address issues related to sensor data collection: 

- recording and storage of large amounts of data; 

- real-time data processing;  

- quick query evaluation; 

- fault tolerance support. 

Storage of large amounts of data means that the system should 

handle the increasing amounts of data, i.e. to be easily and linearly 

scalable. 

Quick query evaluation means that queries are to be evaluated 

with maximum speed and this speed is to be minimally dependent 

on the growing amount of data collected. 

Fault tolerance support means that service performance should not 

deteriorate in case of failures and disruptions, which is particularly 

difficult given the large amounts of data and their real-time 

processing. 

Today, the most popular NoSQL product is Hbase, a database 

based on Apache Hadoop’s distributed file system, HDFS, which 

shows high data processing rates due to data locality [16]. 

OpenTSDB [17], an application on top of Hbase, ensures time-

series storage in the most user-friendly BigTable format. 
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Distributed data processing in a computing cluster comprises data 

processing management tools within cluster architecture as well as 

the component parts of programs or program units by using 

methods for joint data processing of spatially distributed 

information sensors and prediction. 

Distributed data processing can be presented in two ways: 

- independent development of an application by using methods for 

joint data processing of spatially distributed information sensors 

and prediction with functionalities that allow users to work in 

cluster architecture; 

- use of a ready-to-use computing environment, which requires 

writing individual program modules using methods for joint data 

processing of spatially distributed information sensors and 

prediction. 

To ensure the high security and accessibility of a computing 

cluster, users may employ resource management tools to plan 

sensor data processing and computing resources allocated to them. 

Resource management tools of a computing cluster may be 

implemented independently as the individual application units, 

which either use methods for joint data processing of spatially 

distributed information sensors and prediction or are based on 

existing open program solutions. 

Given that Apache Hadoop-based solutions have been selected as 

a data storage system, it may be appropriate, when to use Yarn 

[18], a resource manager that is part of Apache Hadoop and fully 

compatible with Apache Spark, as a system for managing the 

resources of a computing cluster. 

Below is the content and functionality of cluster program 

components ensuring high-speed data collection and processing in 

compliance with the architecture and technological solutions 

chosen in this study. 

Fig. 3 shows a diagram of cluster stream data ensuring high-speed 

data collection and processing. 

 
Fig. 3 Diagram of stream data in a cluster to ensure high-speed data collection and processing 

 

The following are the components of the diagram above: 

- information sensors; 

- intermediary data processing servers; 

- Apache Kafka message broker; 

- stream processing services; 

- scheduled data processing services; 

- distributed time-series database; 

- Apache Zeppelin, a web-based notebook to work with Big Data; 

- Apache Hue, a stream scheduling service for deferred 

computing; 

- Grafana, a tool for metric analytics. 

Data streams of the above diagram are the following: 

- sensor data streams from end-user devices such as information 

sensors and intermediate data processing servers; 
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- sensor data streams between a message broker and data stream 

processing services; 

- data streams received by data processing services via Java API; 

- control commands via Java API and REST API. 

Sensor device drivers are connected to a single enterprise service 

bus based on the Apache Kafka message broker, shaping stream 

data in Avro format. Among Apache Kafka’s functions are 

transmission, storage and distribution of data received. 

Sensor data stream processing services and scheduled data 

processing services are the component parts of applications used 

in task analysis, projection or predictive modeling, to be discussed 

later. 

Sensor data stream processing services obtain data directly from 

Apache Kafka, operate inside the Apache Spark platform and use 

the Spark Streaming library. 

Scheduled data processing services interact with OpenTSDB, a 

scalable time-series database, operate inside the Apache Spark 

platform and use the Spark SQL library. 

The interface for computing cluster management and for 

displaying sensor data and their processing results is based on 

Grafana, a tool using Varnish to have access to OpenTSDB. 

The web-based notebook Apache Zeppelin supports remote 

program control for scheduled processing services in Apache 

Spark via Livy, a web service for Spark. 

Apache Hue, a tool that interacts with the time-series database and 

Apache Spark, is used to schedule workflows for deferred 

computing and data analysis in Apache Hadoop. 

Fig. 4 shows the program components’ location and their 

interconnections. 

 
Fig. 4 Diagram of the cluster program components’ location  to ensure high-speed data collection and processing 

 

All program components are based on Linux Ubuntu and use three 

types of servers: 

- database server; 

- data processing server; 

- integration server. 

A database server is one of the nodes storing time series from 

sensor data and comprises the following program components: 

- HDFS, a file system node; 

- HBase, a region server; 

- Zookeeper, a node; 

- OpenTSDB. 

A data processing server is one of the cluster nodes used to 

process data (real-time and/or scheduled stream data) and 

comprises the following program components: 

- Yarn, a node; 

- Apache Spark; 

- Data processing services. 

An integration server is designed for displaying the components of 

the Apache Kafka-based enterprise service bus. 

The central server displaying the following components serves as 

a controller: 

- Yarn, a manager; 

- Central HDFS node; 

- Grafana, a tool for metric analytics; 

- Apache Zeppelin, a web-based notebook to work with 

Big Data; 

- Varnish, a cache service; 

- Livy, a web service; 

- Apache Hue, a stream scheduling service for deferred 

computing; 

- Nginx reverse proxy. 
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The proposed architectural solutions for organizing a high-speed 

data collection and processing cluster fully support the basic 

functionality and the localization of program modules using the 

data processing and predictive modeling methods and algorithms 

of cloud DPCs. What is special about the proposed architecture is 

the application of technological solutions ensuring high capacity 

and unlimited horizontal scaling. 

Data processing on end-user devices will be discussed as part of 

the proposed technology using fog computing. 

 

2.3 Aggregation and high-speed data processing from 

distributed information sensors 

 
The basic elements of the proposed technology are device drivers 

or external monitoring system drivers as well as program 

applications used in task analysis, projection or predictive 

modeling. 

The technology under investigation implies three data collection 

and processing options, depending on the following tasks: 

- primary data collection without preliminary processing; 

- preliminary data processing on interface devices; 

- data collection and analytical processing using interface 

devices. 

Primary data collection without preliminary processing implies 

that the data is processed only in a cloud DPC (cluster), while the 

drivers serve to transform the device’s interface to operate with 

Apache Kafka (an enterprise service bus). The driver can be 

installed on both the servers of a DPC’s enterprise service bus and 

separate devices outside the DPC. 

Preliminary data processing on interface devices is that the device 

driver performs some data processing tasks (preliminary data 

processing), i.e. the data are recorded in the cluster storage after 

preliminary processing and the remaining data processing is 

performed by a cloud DPC. Intermediate data processing devices 

outside DPCs, in which a device driver is installed, reduce 

pressure on the DPC cluster. 

Data collection and analytical processing using interface devices 

implies that data processing tasks are performed by external 

interface devices acting both as drivers and computing modules. 

At the same time, the device’s software has to secure M2M 

connectivity with other devices, thus merging them into a cluster 

for joint task execution. 

Each data collection and processing option requires a uniform 

technological solution adaptable for specific DPC tasks. Practice 

[19] shows that a possible solution may be the use of inexpensive 

single-board Linux computers [20] as devices for installing drivers 

such as Raspberry Pi (Raspberry Pi Trading, Ltd), Khadas VIM 

(Shenzhen Wesion Technology Co., Ltd) and Odroid XU-4 

(Hardkernel Co., Ltd). As a result, device drivers partially carries 

out fog computing functions by taking some data processing 

functions outside DPCs. 

In this case, device drivers shall be composed of the following 

functional units: 

- interface unit with a monitoring device (information 

sensor); 

- computing unit; 

- interface unit with a DPC enterprise service bus (Apache 

Kafka). 

Interface units with monitoring devices and interface units with 

DPC enterprise service buses perform data transformation tasks. 

At the same time, computing units have to allow execution of a set 

of standard functions for working with the time series of 

measurement data, such as calculating the average value of a 

function over an interval, exponential smoothing and Fourier 

transformation, or for making calculations according to a pre-

determined mathematical function. 

Software designed for task analysis, projection or predictive 

modeling shall be composed of a computing section including data 

stream processing services and scheduled data processing services 

as well as an interface allowing the user to configure a device 

driver in compliance with a specific computing task. Device driver 

settings include the following: 

- configuring primary measurement data processing settings using 

mathematical time-series processing functions; 

- configuring connections to a device (information sensor); 

- configuring connections to Apache Kafka. 

Fig. 5 shows the structure of applications used to perform 

analysis, projection and predictive modeling tasks and that of 

device drivers 

. 
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Fig. 5. Structure of applications for preliminary data processing  on interface devices 

 

This diagram makes it possible to perform data processing tasks 

on devices outside DPCs, thus undervolting DPC clusters. 

Specialized software capable of creating a fog computing 

architecture in compliance with Open Fog specifications is 

required to perform distributed calculations accomplishing all 

analysis, projection and predictive analysis computing tasks 

outside cloud DPCs [6]. As an example, Cisco is now working on 

creating software for its network equipment, such as Ethernet 

routers, access point and IP video cameras [21], ensuring 

protected M2M communication to perform distributed calculations 

in the perimeter network. This will require, however, more 

expenditure on network infrastructure updating, which will create 

difficulties in setting up new DPCs. 

This is why the optimal solution is to use single-board computers, 

as with preliminary data processing. As of now, the most attractive 

option for performing distributed calculations is Greengrass, a 

platform launched by Amazon [22]. Greengrass is a program 

module container launched on a Greengrass device and allowing 

devices to exchange information regardless of whether they are 

connected to an external network or not. Greengrass is fully 

compatible with most Linux platforms used in single-board 

computers [23]. The Greengrass platform uses AWS Greengrass, 

external software that manages distributed calculations on various 

devices. 

 In this case, applications used to perform analysis, projection or 

predictive modeling tasks comprise a computing sector, which 

includes integration services with AWS Greengrass and the data 

stream processing service, and an interface enabling developers to 

configure the parameters of computing tasks performed by 

Greengrass. The data stream processing service uploads the 

processed data from an AWS Greengrass cloud and stores them in 

the data warehouse of a cluster. In their turn, local Greengrass 

Core applications interacting with AWS Greengrass are deployed 

on interface devices, as well as the interface services of connected 

measurement devices (information sensors) that support 

Greengrass API. 

Fig. 6 shows the structure of applications used to perform 

analysis, projection and predictive modeling tasks and that of 

device drivers. 
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Fig. 6. Structure of applications for data collection and analytical processing using interface devices 

 

The following are the major limitations to using distributed 

calculations with interface devices: 

- Location of interface devices in the same subnetwork; 

- Stable network connection and network capacity 

sufficient for performing computing tasks between devices, 

between each of the devices and AWS Greengrass cloud as well as 

between a DPC and AWS Greengrass cloud; 

- Input data locality, i.e. only data obtained from 

information sensors connected to Greengrass devices can serve as 

input data for a computing task. 

Consequently, using Greengrass as part of DPCs responds to the 

challenge of collecting and analytically processing data using 

interface devices without using DPC cloud resources. 

 

3. Results 

 
The developed technology and architecture was used to set up the 

software and hardware system for high-speed stream collection 

and processing of the Earth’s ionospheric sounding data [24] as 

part of research on near-Earth space by assessing various 

parameters of Earth’s ionosphere obtained from signals sent by the 

Global Navigation Satellite System (GNSS) [25]. These include 

full ionospheric electron content data (ECD), scintillation index, 

Rice distribution, mean square deviation of the small-scale 

variants of the ionospheric ECD, mean square deviation of phase 

fluctuations of a wave front and signal error rate, among others. 

Data on Earth’s ionospheric parameters are of interest to many 

technical and scientific applications. Global maps of ECD 

distribution and fluctuations are used to evaluate current radio 

weather, and many research studies have analyzed the impact of 

major seismic events on the ionosphere. The main objective of the 

system under investigation is to identify the geographic 

coordinates and to assess the linear dimensions of the ionosphere 

with intense small-scale heterogeneities based on the ongoing 

ECD received from GNSS receivers. 

The main tasks of the system for high-speed stream collection and 

processing of the Earth’s ionospheric sounding data are as 

follows: 

- obtaining data from a GNSS receiver to monitor the ionosphere; 

- dividing the data into parallel streams and their preliminary 

processing; 

- recording data streams into a time-series database (OpenTSDB 

database); 

- processing scheduled data to identify the geographic coordinates 

of an under-ionospheric point; 

- visualizing the data processing results.  

The hardware and software system for high-speed stream 

collection and processing of the Earth’s ionospheric sounding data 

comprises the following: 

- three 1480Q1 Depo Storm computing servers; 

- NovAtelGPStation-6, a dual-frequency GNSS receiver; 

- interface module based on Raspberry Pi 3 Model B. 

The driver of a GNSS receiver is installed on the interface model 

with a view to read and pre-process monitoring logs and, then, to 

send the data to Apache Kafka, the enterprise service bus, at a 

speed of 0.8 Mbps. Fifty-six satellites collect data at a speed of 50 

values per second for each data stream. Data stream processing 

covered an area of 4,000 geographic coordinates. Scheduled 

processing aimed at calculating the geographic coordinates of 

ECD focused on an area of 180,000 geographic coordinates. 

Grafana, a tool for metric analytics that is part of cluster program 

components (see Fig. 7 and 8), was used to visualize the data 

processing results and the satellites’ current location. Research 

studies [25] and [26] provide a detailed description of the 

parameters, i.e. input data peculiar to ECD and output data 

obtained from the near-Earth space dimensioning calculations. 

 

http://creativecommons.org/licenses/by/3.0/


206 International Journal of Engineering & Technology 

 

  
Fig. 7. Ionosphere parameter monitoring based on the evaluation of delays in trans-ionospheric radio wave propagation 

 
Fig. 8. Ionospheric condition monitoring system  according to the satellites’ current location and trajectory 

 

Metric-based monitoring of the cluster’s hardware component 

(CPU, random access memory, disk array etc.) and of data 

stream collection and processing (duration of tasks and 

duration of recording into the time-series database OpenTSDB) 

has been executed to control the computer system’s 

performance (see Fig. 9 and 10) and to assess the effectiveness 

of the suggested architecture and technology. 



 

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 
Fig. 9. Monitoring of the duration of tasks 

 
Fig. 10. Monitoring of the use of CPU and of random access memory during stream collection and processing of the Earth’s ionospheric sounding data 

 

In addition to completing the main tasks related to ionospheric 

electron content, the study assessed the effectiveness of the 

suggested architecture and technology when using preliminary 

data processing on interface devices based on the setup’s 

following general performance indicators: 

- average scheduled data processing time; 

- average value of using the cluster servers’ CPU; 

- average value of using the cluster servers’ random 

access memory. 

The software and hardware system operated in the following two 

modes: 

- using preliminary data processing, under which an interface 

device performed intermediary data stream processing by means 

of sliding window flow control; coordinate transformations; and 

calculation of two parameters, i.e. mean square deviation of the 

small-scale variants of the ionospheric ECD and mean square 

deviation of phase fluctuations of a wave front and signal error 

rate, which are required for further analysis of near-Earth space; 

- without using preliminary data processing, under which the 

GNSS receiver’s driver transforms only the primary data and 

records data streams into Apache Kafka (enterprise service bus). 

Selection of computing tasks remoted to an interface device is 

made taking into consideration the hardware capability of the 

single-board computer Raspberry Pi3. The values of the setup’s 

above-mentioned performance parameters are calculated using the 

data collected during 24 hours of the cluster’s uninterrupted 

operation. Table 1 shows the results obtained. 

 
Table 1. Results of the study on the software and hardware system for high-speed stream collection and processing of the Earth’s ionospheric sounding in 
different data processing modes on interface devices 

No Use of CPU cores, % Use of random access memory, GB Data processing time, ms 

1 Without using preliminary data processing 

6.4 2.3 95 

2 Using preliminary data processing 

4.8 2.1 69 

 

The results of the study on the performance parameters of the 

setup’s software and hardware system show that using preliminary 

data processing on interface devices may considerably save the 

resources of a DPC’s computing cluster. This is why this 

architecture for software and hardware systems will be adopted in 

further research studies using several GNSS receivers distributed 

by area, thereby expanding the area’s extent, improving the 

accuracy of estimations and testing the variant using the external 

services of AWS Greengrass with a view to calculate all output 

parameters of near-Earth space. 
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4. Discussion 

 
This article proposed the technology and architecture for a high-

speed stream data collection and processing system, whose main 

advantages are as follows: 

- ample opportunity for integration of diverse monitoring devices 

on the basis of the same data bus; 

- use of cluster technologies for setting up DPCs ensuring high 

capacity and accessibility, immunity to data partitioning as well as 

unlimited horizontal scaling; 

- use of the fog computing technology ensuring data collection and 

analytical processing using interface devices, which makes it 

possible to take data analytical processing functions outside 

DPCs; 

- use of preliminary data processing on interface devices, when the 

specific nature of a task does not allow developers to perform 

distributed data processing on external devices. 

Among the advantages of the proposed technology and 

architecture is the possibility of combining different technological 

solutions of centralized and distributed data processing aimed at 

adjusting to various issues in monitoring and situation control, 

thereby making the creation and exploitation process less time-

consuming. The disadvantage of the proposed technology and 

architecture is its dependence on connection to external services to 

perform fog computing using interface devices. This is why 

further research on this topic is related to the development of open 

source software for Linux-based fog computing. 

 

5. Conclusion 

 
To sum up, the proposed technology and architecture for a system 

of high-speed stream data collection and processing is designed to 

deal with a wide range of issues relating to technological and 

environmental monitoring aimed at predicting emergencies. That 

said, the main advantage of the developed technology and 

architecture is their ability to adjust to different issues in 

monitoring and situation control and to be used in setting up 

centers for processing various monitoring data. 

The obtained scientific and application results can be used in 

further research on the development of interface device software 

capable of performing distributed data processing without 

resortıng to external services and of reacting to changes in task 

flows occurring over time, while choosing the best method for 

processing data. 
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