

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.36) (2018) 197-208

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Technology and Architecture for a System of High-Speed Sensor

Data Stream Collection and Processing

Vladimir V. Kopytov, Pavel V. Kharechkin, Vladimir V. Naumenko, Aleksey V. Savartsov, Oleg V. Dorofeyev,

Mikhail V. Batashan

LLC Infocom-S, Stavropol, Russia

*Corresponding author E-mail: p.harechkin@infocom-s.ru

Abstract

Objective: The objective is to address the challenges of monitoring process facility and environmental parameters, which can be

analyzed to anticipate dangerous and critical conditions.

Methodology/approach: This article proposes the technology and architecture for a system of high-speed stream data collection and

processing, which combines the advantages of both the cloud and fog computing models for data collection, storage and processing.

Conclusion: The proposed technology and architecture for a system of high-speed stream data collection and processing make it possible

to adapt to various monitoring and situation control challenges and can be used to set up centers for processing monitoring data of

different levels.

Originality/value: The originality of the proposed technology and architecture consists in the application of a set of universal

programming solutions aiming to set up a data processing center. Such a center would require a minimum amount of work related to

designing an automated data collection system and to developing additional software. Furthermore, it will provide ample opportunities

for further scaling and expanding its functionality.

Key words: facility monitoring, environmental monitoring, fog computing, cloud computing, information sensors.

1. Introduction

One of major factors behind growing amounts of information in

the world is an increased share of automatically generated data.

Research conducted by the International Data Corporation (IDC)

[1] projects an increase of automatically generated data by more

than 40% of the overall data by 2020 as compared to 11% in 2005,

and the Open Fog Consortium [2] estimates the amount of data to

grow up to 2.3 exabytes. Over 21 billion devices are projected [3]

to get Internet access by 2020 mostly due to the rapidly growing

and expanding IoT or Internet of Things.

Of special importance among various monitoring devices are

information and measurement sensors used to monitor process

facilities and the environment, to project the emerging dangerous

and critical conditions and to prevent emergencies [4]. The need to

obtain full information on surveillance targets facilitating timely

decision-making inevitably leads to the increased amount of data

obtained from information sensors. As a result, this affects the

requirements imposed on data collection systems and the

possibility of assessing situations. The main sources of such data

are Earth remote sensing satellites, GPS, mobile devices and

measurement sensors, among others.

Consequently, a pressing need exists to update stream data

collection and processing methods, which requires testing or new

technologies and architectures to set up data processing centers

(DPCs).

Currently, these tasks are accomplished by means of cloud

technologies using software tools in a cluster-based architecture

for data processing centers. The increasing amount of stored and

transferred data, however, prevents cloud architectures from

achieving the required capacity output. This challenge can be

addressed by adopting a technology known as cloud computing,

which ensures effective, safe and secure interaction of a multitude

of devices between themselves and with local and cloud DPCs.

The notion of cloud computing appeared in 2012 when Cisco

published an article entitled Fog Computing and Its Role in the

Internet of Things [5]. In 2015, ARM, Cisco, Dell, Intel, Microsoft

and Princeton University established the Open Fog Consortium

[2] with a view to develop common approaches to the

implementation of the fog computing technology. The first

technical specifications describing fog computing architecture

dates back to 2017.

Fog computing architecture allows users to transfer computations,

storage, connection as well as management and decision-making

systems to terminals that have limited resources and are directly

linked to the physical world beyond the cloud. This is why the

joint use of cloud and fog computing seems an optimal solution in

terms of performance, security, scalability and cost minimization.

This article proposes a technology and architecture that combines

the advantages of both the cloud and fog computing models for

data collection, storage and processing and adapts monitoring and

situation management challenges. Another major feature of the

proposed technology is the possibility of setting up new DPCs and

of expanding, both functionally and technologically, the existing

and operating automated management and control systems.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:p.harechkin@infocom-s.ru

198 International Journal of Engineering & Technology

2. Materials and Methods

2.1 A diagram of high-speed stream data collection and

processing in situation control systems

Before describing the proposed technological solutions, the

authors suggest to examine the formal description of high-speed

stream data collection and processing in situation control systems

presented as a conceptual diagram (see Fig. 1).

Fig. 1. Diagram of high-speed stream data collection and processing in situation control systems

The following three conceptual levels represent the diagram of

high-speed stream data collection and processing from diverse

information sensors:

- Big Data sources;

- Big Data environment;

- data environment.

The level of Big Data sources contains the following:

- information sensors generating large amounts of structured and

unstructured stream data;

- communication channels and network equipment integrating

stream data coming from information sensors for their further

transmission to the next level;

- software and hardware tools (computing machines) performing

the parallel primary digital processing of stream data.

The Big Data environment provides the opportunity to create a

monitoring data collection sector for high-speed processing of

structured and unstructured data coming from diverse information

sensors in real-time mode and for their further research by using

the methods and algorithms of predictive analysis, projection and

analysis.

The Big Data environment in the monitoring data collection sector

tackles the following tasks:

- preliminary data processing in real-time mode resulting in

extraction and transformation of diverse structured and

unstructured data for the purposes of their analysis as well as of

comparison, detection and storage of key metadata;

- parallel data recording into a distributed system for data storage

which ensures high-speed recording of Big Data streams coming

from information sensors;

- research on Big Data coming from information sensors to high-

performance distributed computing systems by using the methods

and algorithms of predictive modeling, projection and analysis;

- presentation and visualization of the results of research on

monitoring data for decision-making support related to monitoring

objects and processes.

The level of data environment ensures the infrastructure of top-

level applications and is aimed at aggregating the results obtained

Big Data Sources

Big Data Environment

Data Environment

Data Storage SQL Data Sources

Real-Time

Analysis

Monitoring Data

Collection Sector

 Data Streams
Structured and

Unstructured Data

Primary Monitoring

Data Processing

International Journal of Engineering & Technology 199

by the Big Data environment in the processing and research of

monitoring data and at supporting decision-making based on the

predictive modeling of dangerous situations.

The data environment includes the following:

- data storage that aggregates the results of monitoring data

processing and research;

- connectable SQL data sources necessary to support decision-

making.

The following are SQL data sources:

- automated management and control system in place on the

monitoring object;

- SCADA systems in place on the monitoring object;

- external automated systems and services that supply available

data;

- external systems and services for projecting the evolution of

emergencies.

In the proposed technology, the Big Data environment can be set

up using either the cloud infrastructure of DPCs only or an

integrated system comprising the cloud infrastructure and the fog

computing environment. What follows is an examination of the

architecture for DPCs used in this technology.

2.2 Architecture for Data Processing Centers

A data processing center is a high-speed data collection and

processing cluster that is part of high-performance computing

clusters [7] and is used to accomplish the following tasks:

- use of various techniques to process sensor data streams stored in

a time series database;

- scheduled data processing;

- interactive management of sensor data processing.

The architecture of a typical computing cluster is a group of joint

operations servers sharing the same data warehouse. Depending

on the task, the high-speed data collection and processing cluster

shall also include software for collecting data from diverse

measuring devices.

Therefore, the architecture for a high-speed data collection and

processing cluster can be described as four interacting base

subsystems (see fig. 2):

- sensor data processing subsystem;

- data storage subsystem;

- cluster management subsystem.

Fig. 2. Architecture for a high-speed data collection and processing cluster

The sensor data collection subsystem is a bridge between sensor

device terminals and data processing and storage components and

provides a common interface for their connection to a computing

cluster, i.e. an enterprise service bus, by means of device drivers

or external monitoring systems. This study understands device

drivers as software serving as a link between the enterprise service

bus and a device (or an external monitoring system) and ensuring

the compliance of the device’s interface with that of the enterprise

service bus.

The sensor data processing subsystem comprises tools allowing

users to adopt various algorithms for sensor data stream

processing, which are stored in a time series database, and for

scheduled data processing.

A data warehouse should also meet the requirements to ensure

horizontal scalability of DPCs depending on the number of

connected sensors and the amount of sensor data requiring the

application of the distributed data storage technology.

The cluster management subsystem provides mechanisms for

interactively managing sensor data processing and, specifically,

computing task scheduling.

Given this architecture, research was conducted on the following

software classes to achieve the objectives defined:

- software designed to aggregate data from diverse devices;

- systems for managing distributed databases;

- software for unfolding and managing distributed data processing.

The choice of software is based on the analysis of state-of-the-art

solutions in terms of their significance to achieve the stated

objectives [8].

Software designed to aggregate data from diverse devices belongs

to the software class known as a message broker, whose primary

aim is to ensure interaction between different program modules

within the same protocol. This is why analysıs and research were

conducted on the following popular platforms that process large

amounts of data and allow users to work within cluster

architectures:

- Apache Kafka;

- Apache ActiveMQ;

- Mosquitto MQTT;

- RabbitMQ.

Apache Kafka [9] is a high-speed distributed platform for

exchanging large amounts of highly dense messages between the

components of a program system, implementing in real-time mode

a publish-subscribe-based messaging mechanism for data

transmission.

The following are the main functional advantages of Apache

Kafka:

 Big Data Environment
 Sensor Data Processing

Subsystem

 Data Warehouse

 Cluster Management Subsystem

200 International Journal of Engineering & Technology

- high-speed stream data processing: one compute node is capable

of processing over 100,000 messages per second, with an overall

volume being over 10 MB per second;

- linear scaling: a computing cluster is expandable up to thousands

of servers with no downtimes in the data processing system;

- a user-friendly interface easily integrated into external and

interactive applications;

- sufficient flexibility: easy setups, configuration and

administration, full technical support by the producer;

- high security: messages in a computing cluster may be replicated

and the replication level can be configured in settings; each node

may store terabytes of data on the hard disk for further batch

processing with no loss in performance;

- low delay time due to the division of subscribers into groups;

- high fault tolerance: stream data are automatically balanced in

case one or several cluster nodes fail; additionally, messages are

synchronized between interacting data centers.

The only detected deficiency of Apache Kafka is the low

compatibility of interfaces when switching from one version of

Apache Kafka to another.

Apache ActiveMQ [10] is open source software acting as a

mediator to transmit and process messages in a distributed

environment in asynchronous mode and based on Java Message

Service (JMS), although it is compatible with other protocols and

platforms. As a rule, Apache ActiveMQ is used in service-oriented

projects as a secure message queue processing system.

The following are the main functional advantages of Apache

ActiveMQ:

- relatively high-speed stream data processing;

- easy integration with other components and interacting systems

due to interface support for different platforms and programming

languages;

- good scalability: data processing tasks are automatically

distributed across cluster nodes and streams in every node;

- high degree of data loss protection: temporary data storage on

hard drives, data caching and logging;

- high fault tolerance (recovery from failures): if a handler is

down, tasks are reassigned to other handlers;

- secure communication and messaging owing to SSL protocol

support.

Among the deficiencies of Apache ActiveMQ are the following:

- sudden drops in Apache ActiveMQ’s performance when working

with databases;

- intricate asynchronous data stream processing functions that can

be performed only by highly experienced developers;

- according to the expert community, Apache ActiveMQ contains

a significant number of errors in its source code, resulting in

functional risks.

Mosquitto MQTT [11] is a lightweight protocol based on top of

TCP/IP and designed for messaging between devices using the

publish-subscribe pattern. IBM, Microsoft and Amazon are among

the major cloud service providers supporting this software

protocol. MQTT requires a data broker, which is a program

serving as a TCP server with a dynamic database. The central idea

of this technology is that all devices send and receive data to/from

the broker only.

The following are the main functional advantages of Mosquito

MQTT:

- easy to use and manage: the protocol is a program module with

no superfluous functionality that can be easily built into any

complex system;

- compatible with mobile sensors, including navigation

controllers;

- capable of maximally unburdening the network architecture,

since transmitted messages contain only useful information;

- stable and secure: the protocol ensures secure messaging in case

of continuous connection disruptions and other online issues;

- universal: the protocol imposes no restrictions on the format of

message traffic.

Among the deficiencies of Mosquitto MQTT are the following:

- insufficient system scaling potential: the protocol limits the

density of messaging depending on its tool;

- as a purely program technology, Mosquitto MQTT does not have

long-term data storage, since it contains no intermediary disk

warehouse, in technological terms;

- Mosquitto MQTT is bad at processing alarm events and,

consequently, clients do not receive updated information about the

communication line status.

RabbitMQ [12] is a distributed message queue processing server

based on the extended network protocol AMQP and designed for

messaging between publish-subscribe network applications.

Rabbit MQ supports multiple platforms and interacts well with

various programming languages. In addition to being a classical

message broker, RabbitMQ supports the remote procedure call

system (RPC), thus ensuring feedback between message senders

and receivers.

The following are the main functional advantages of RabbitMQ:

- high fault tolerance: if the server did not shut down properly,

queued data are not lost and, after restart, processing continues

where it left off;

- fully open: RabbitMQ is licensed under the Mozilla Public

License, as is the case with AMQP, whose libraries are available

in all major programming languages and platforms;

- horizontally scalable: the system status is automatically

replicated between cluster nodes; in most cases, two or three disk

nodes are sufficient, the remaining ones being spared from having

to work with the disk subsystem to improve performance;

- universal: RabbitMQ supports many protocols, client libraries

and plugins;

- resource-intensive: there is no limit to the number of messages

placed on queues in storage; this said, the messaging server can be

located far from both the source of messages and the consumer.

The following are the main functional advantages of RabbitMQ:

- absence of timeout-based message processing: if the queue

runner freezes due to a code error or for some other reason, the

message will be not transmitted to another runner until the frozen

one breaks connection;

- large amount of service data per message: the memory footprint

for the same number of messages can differ markedly from launch

to launch.

In choosing a messaging platform, special attention was given to

data rates and security. This is why Apache Kafka with its

ZooKeeper-based advanced fault-tolerant technology was selected

to aggregate data from diverse devices [13].

Today, systems for managing distributed databases use the

NoSQL technology [14], characterized by no superfluous

sophistication, high capacity and accessibility, immunity to data

partitioning as well as unlimited horizontal scaling. NoSQL does

not ensure data consistency [15], which is not required for storing

time-series sensor data; it has, however, the following important

features to address issues related to sensor data collection:

- recording and storage of large amounts of data;

- real-time data processing;

- quick query evaluation;

- fault tolerance support.

Storage of large amounts of data means that the system should

handle the increasing amounts of data, i.e. to be easily and linearly

scalable.

Quick query evaluation means that queries are to be evaluated

with maximum speed and this speed is to be minimally dependent

on the growing amount of data collected.

Fault tolerance support means that service performance should not

deteriorate in case of failures and disruptions, which is particularly

difficult given the large amounts of data and their real-time

processing.

Today, the most popular NoSQL product is Hbase, a database

based on Apache Hadoop’s distributed file system, HDFS, which

shows high data processing rates due to data locality [16].

OpenTSDB [17], an application on top of Hbase, ensures time-

series storage in the most user-friendly BigTable format.

International Journal of Engineering & Technology 201

Distributed data processing in a computing cluster comprises data

processing management tools within cluster architecture as well as

the component parts of programs or program units by using

methods for joint data processing of spatially distributed

information sensors and prediction.

Distributed data processing can be presented in two ways:

- independent development of an application by using methods for

joint data processing of spatially distributed information sensors

and prediction with functionalities that allow users to work in

cluster architecture;

- use of a ready-to-use computing environment, which requires

writing individual program modules using methods for joint data

processing of spatially distributed information sensors and

prediction.

To ensure the high security and accessibility of a computing

cluster, users may employ resource management tools to plan

sensor data processing and computing resources allocated to them.

Resource management tools of a computing cluster may be

implemented independently as the individual application units,

which either use methods for joint data processing of spatially

distributed information sensors and prediction or are based on

existing open program solutions.

Given that Apache Hadoop-based solutions have been selected as

a data storage system, it may be appropriate, when to use Yarn

[18], a resource manager that is part of Apache Hadoop and fully

compatible with Apache Spark, as a system for managing the

resources of a computing cluster.

Below is the content and functionality of cluster program

components ensuring high-speed data collection and processing in

compliance with the architecture and technological solutions

chosen in this study.

Fig. 3 shows a diagram of cluster stream data ensuring high-speed

data collection and processing.

Fig. 3 Diagram of stream data in a cluster to ensure high-speed data collection and processing

The following are the components of the diagram above:

- information sensors;

- intermediary data processing servers;

- Apache Kafka message broker;

- stream processing services;

- scheduled data processing services;

- distributed time-series database;

- Apache Zeppelin, a web-based notebook to work with Big Data;

- Apache Hue, a stream scheduling service for deferred

computing;

- Grafana, a tool for metric analytics.

Data streams of the above diagram are the following:

- sensor data streams from end-user devices such as information

sensors and intermediate data processing servers;

202 International Journal of Engineering & Technology

- sensor data streams between a message broker and data stream

processing services;

- data streams received by data processing services via Java API;

- control commands via Java API and REST API.

Sensor device drivers are connected to a single enterprise service

bus based on the Apache Kafka message broker, shaping stream

data in Avro format. Among Apache Kafka’s functions are

transmission, storage and distribution of data received.

Sensor data stream processing services and scheduled data

processing services are the component parts of applications used

in task analysis, projection or predictive modeling, to be discussed

later.

Sensor data stream processing services obtain data directly from

Apache Kafka, operate inside the Apache Spark platform and use

the Spark Streaming library.

Scheduled data processing services interact with OpenTSDB, a

scalable time-series database, operate inside the Apache Spark

platform and use the Spark SQL library.

The interface for computing cluster management and for

displaying sensor data and their processing results is based on

Grafana, a tool using Varnish to have access to OpenTSDB.

The web-based notebook Apache Zeppelin supports remote

program control for scheduled processing services in Apache

Spark via Livy, a web service for Spark.

Apache Hue, a tool that interacts with the time-series database and

Apache Spark, is used to schedule workflows for deferred

computing and data analysis in Apache Hadoop.

Fig. 4 shows the program components’ location and their

interconnections.

Fig. 4 Diagram of the cluster program components’ location to ensure high-speed data collection and processing

All program components are based on Linux Ubuntu and use three

types of servers:

- database server;

- data processing server;

- integration server.

A database server is one of the nodes storing time series from

sensor data and comprises the following program components:

- HDFS, a file system node;

- HBase, a region server;

- Zookeeper, a node;

- OpenTSDB.

A data processing server is one of the cluster nodes used to

process data (real-time and/or scheduled stream data) and

comprises the following program components:

- Yarn, a node;

- Apache Spark;

- Data processing services.

An integration server is designed for displaying the components of

the Apache Kafka-based enterprise service bus.

The central server displaying the following components serves as

a controller:

- Yarn, a manager;

- Central HDFS node;

- Grafana, a tool for metric analytics;

- Apache Zeppelin, a web-based notebook to work with

Big Data;

- Varnish, a cache service;

- Livy, a web service;

- Apache Hue, a stream scheduling service for deferred

computing;

- Nginx reverse proxy.

International Journal of Engineering & Technology 203

The proposed architectural solutions for organizing a high-speed

data collection and processing cluster fully support the basic

functionality and the localization of program modules using the

data processing and predictive modeling methods and algorithms

of cloud DPCs. What is special about the proposed architecture is

the application of technological solutions ensuring high capacity

and unlimited horizontal scaling.

Data processing on end-user devices will be discussed as part of

the proposed technology using fog computing.

2.3 Aggregation and high-speed data processing from

distributed information sensors

The basic elements of the proposed technology are device drivers

or external monitoring system drivers as well as program

applications used in task analysis, projection or predictive

modeling.

The technology under investigation implies three data collection

and processing options, depending on the following tasks:

- primary data collection without preliminary processing;

- preliminary data processing on interface devices;

- data collection and analytical processing using interface

devices.

Primary data collection without preliminary processing implies

that the data is processed only in a cloud DPC (cluster), while the

drivers serve to transform the device’s interface to operate with

Apache Kafka (an enterprise service bus). The driver can be

installed on both the servers of a DPC’s enterprise service bus and

separate devices outside the DPC.

Preliminary data processing on interface devices is that the device

driver performs some data processing tasks (preliminary data

processing), i.e. the data are recorded in the cluster storage after

preliminary processing and the remaining data processing is

performed by a cloud DPC. Intermediate data processing devices

outside DPCs, in which a device driver is installed, reduce

pressure on the DPC cluster.

Data collection and analytical processing using interface devices

implies that data processing tasks are performed by external

interface devices acting both as drivers and computing modules.

At the same time, the device’s software has to secure M2M

connectivity with other devices, thus merging them into a cluster

for joint task execution.

Each data collection and processing option requires a uniform

technological solution adaptable for specific DPC tasks. Practice

[19] shows that a possible solution may be the use of inexpensive

single-board Linux computers [20] as devices for installing drivers

such as Raspberry Pi (Raspberry Pi Trading, Ltd), Khadas VIM

(Shenzhen Wesion Technology Co., Ltd) and Odroid XU-4

(Hardkernel Co., Ltd). As a result, device drivers partially carries

out fog computing functions by taking some data processing

functions outside DPCs.

In this case, device drivers shall be composed of the following

functional units:

- interface unit with a monitoring device (information

sensor);

- computing unit;

- interface unit with a DPC enterprise service bus (Apache

Kafka).

Interface units with monitoring devices and interface units with

DPC enterprise service buses perform data transformation tasks.

At the same time, computing units have to allow execution of a set

of standard functions for working with the time series of

measurement data, such as calculating the average value of a

function over an interval, exponential smoothing and Fourier

transformation, or for making calculations according to a pre-

determined mathematical function.

Software designed for task analysis, projection or predictive

modeling shall be composed of a computing section including data

stream processing services and scheduled data processing services

as well as an interface allowing the user to configure a device

driver in compliance with a specific computing task. Device driver

settings include the following:

- configuring primary measurement data processing settings using

mathematical time-series processing functions;

- configuring connections to a device (information sensor);

- configuring connections to Apache Kafka.

Fig. 5 shows the structure of applications used to perform

analysis, projection and predictive modeling tasks and that of

device drivers

.

204 International Journal of Engineering & Technology

Fig. 5. Structure of applications for preliminary data processing on interface devices

This diagram makes it possible to perform data processing tasks

on devices outside DPCs, thus undervolting DPC clusters.

Specialized software capable of creating a fog computing

architecture in compliance with Open Fog specifications is

required to perform distributed calculations accomplishing all

analysis, projection and predictive analysis computing tasks

outside cloud DPCs [6]. As an example, Cisco is now working on

creating software for its network equipment, such as Ethernet

routers, access point and IP video cameras [21], ensuring

protected M2M communication to perform distributed calculations

in the perimeter network. This will require, however, more

expenditure on network infrastructure updating, which will create

difficulties in setting up new DPCs.

This is why the optimal solution is to use single-board computers,

as with preliminary data processing. As of now, the most attractive

option for performing distributed calculations is Greengrass, a

platform launched by Amazon [22]. Greengrass is a program

module container launched on a Greengrass device and allowing

devices to exchange information regardless of whether they are

connected to an external network or not. Greengrass is fully

compatible with most Linux platforms used in single-board

computers [23]. The Greengrass platform uses AWS Greengrass,

external software that manages distributed calculations on various

devices.

 In this case, applications used to perform analysis, projection or

predictive modeling tasks comprise a computing sector, which

includes integration services with AWS Greengrass and the data

stream processing service, and an interface enabling developers to

configure the parameters of computing tasks performed by

Greengrass. The data stream processing service uploads the

processed data from an AWS Greengrass cloud and stores them in

the data warehouse of a cluster. In their turn, local Greengrass

Core applications interacting with AWS Greengrass are deployed

on interface devices, as well as the interface services of connected

measurement devices (information sensors) that support

Greengrass API.

Fig. 6 shows the structure of applications used to perform

analysis, projection and predictive modeling tasks and that of

device drivers.

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 6. Structure of applications for data collection and analytical processing using interface devices

The following are the major limitations to using distributed

calculations with interface devices:

- Location of interface devices in the same subnetwork;

- Stable network connection and network capacity

sufficient for performing computing tasks between devices,

between each of the devices and AWS Greengrass cloud as well as

between a DPC and AWS Greengrass cloud;

- Input data locality, i.e. only data obtained from

information sensors connected to Greengrass devices can serve as

input data for a computing task.

Consequently, using Greengrass as part of DPCs responds to the

challenge of collecting and analytically processing data using

interface devices without using DPC cloud resources.

3. Results

The developed technology and architecture was used to set up the

software and hardware system for high-speed stream collection

and processing of the Earth’s ionospheric sounding data [24] as

part of research on near-Earth space by assessing various

parameters of Earth’s ionosphere obtained from signals sent by the

Global Navigation Satellite System (GNSS) [25]. These include

full ionospheric electron content data (ECD), scintillation index,

Rice distribution, mean square deviation of the small-scale

variants of the ionospheric ECD, mean square deviation of phase

fluctuations of a wave front and signal error rate, among others.

Data on Earth’s ionospheric parameters are of interest to many

technical and scientific applications. Global maps of ECD

distribution and fluctuations are used to evaluate current radio

weather, and many research studies have analyzed the impact of

major seismic events on the ionosphere. The main objective of the

system under investigation is to identify the geographic

coordinates and to assess the linear dimensions of the ionosphere

with intense small-scale heterogeneities based on the ongoing

ECD received from GNSS receivers.

The main tasks of the system for high-speed stream collection and

processing of the Earth’s ionospheric sounding data are as

follows:

- obtaining data from a GNSS receiver to monitor the ionosphere;

- dividing the data into parallel streams and their preliminary

processing;

- recording data streams into a time-series database (OpenTSDB

database);

- processing scheduled data to identify the geographic coordinates

of an under-ionospheric point;

- visualizing the data processing results.

The hardware and software system for high-speed stream

collection and processing of the Earth’s ionospheric sounding data

comprises the following:

- three 1480Q1 Depo Storm computing servers;

- NovAtelGPStation-6, a dual-frequency GNSS receiver;

- interface module based on Raspberry Pi 3 Model B.

The driver of a GNSS receiver is installed on the interface model

with a view to read and pre-process monitoring logs and, then, to

send the data to Apache Kafka, the enterprise service bus, at a

speed of 0.8 Mbps. Fifty-six satellites collect data at a speed of 50

values per second for each data stream. Data stream processing

covered an area of 4,000 geographic coordinates. Scheduled

processing aimed at calculating the geographic coordinates of

ECD focused on an area of 180,000 geographic coordinates.

Grafana, a tool for metric analytics that is part of cluster program

components (see Fig. 7 and 8), was used to visualize the data

processing results and the satellites’ current location. Research

studies [25] and [26] provide a detailed description of the

parameters, i.e. input data peculiar to ECD and output data

obtained from the near-Earth space dimensioning calculations.

http://creativecommons.org/licenses/by/3.0/

206 International Journal of Engineering & Technology

Fig. 7. Ionosphere parameter monitoring based on the evaluation of delays in trans-ionospheric radio wave propagation

Fig. 8. Ionospheric condition monitoring system according to the satellites’ current location and trajectory

Metric-based monitoring of the cluster’s hardware component

(CPU, random access memory, disk array etc.) and of data

stream collection and processing (duration of tasks and

duration of recording into the time-series database OpenTSDB)

has been executed to control the computer system’s

performance (see Fig. 9 and 10) and to assess the effectiveness

of the suggested architecture and technology.

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 9. Monitoring of the duration of tasks

Fig. 10. Monitoring of the use of CPU and of random access memory during stream collection and processing of the Earth’s ionospheric sounding data

In addition to completing the main tasks related to ionospheric

electron content, the study assessed the effectiveness of the

suggested architecture and technology when using preliminary

data processing on interface devices based on the setup’s

following general performance indicators:

- average scheduled data processing time;

- average value of using the cluster servers’ CPU;

- average value of using the cluster servers’ random

access memory.

The software and hardware system operated in the following two

modes:

- using preliminary data processing, under which an interface

device performed intermediary data stream processing by means

of sliding window flow control; coordinate transformations; and

calculation of two parameters, i.e. mean square deviation of the

small-scale variants of the ionospheric ECD and mean square

deviation of phase fluctuations of a wave front and signal error

rate, which are required for further analysis of near-Earth space;

- without using preliminary data processing, under which the

GNSS receiver’s driver transforms only the primary data and

records data streams into Apache Kafka (enterprise service bus).

Selection of computing tasks remoted to an interface device is

made taking into consideration the hardware capability of the

single-board computer Raspberry Pi3. The values of the setup’s

above-mentioned performance parameters are calculated using the

data collected during 24 hours of the cluster’s uninterrupted

operation. Table 1 shows the results obtained.

Table 1. Results of the study on the software and hardware system for high-speed stream collection and processing of the Earth’s ionospheric sounding in
different data processing modes on interface devices

No Use of CPU cores, % Use of random access memory, GB Data processing time, ms

1 Without using preliminary data processing

6.4 2.3 95

2 Using preliminary data processing

4.8 2.1 69

The results of the study on the performance parameters of the

setup’s software and hardware system show that using preliminary

data processing on interface devices may considerably save the

resources of a DPC’s computing cluster. This is why this

architecture for software and hardware systems will be adopted in

further research studies using several GNSS receivers distributed

by area, thereby expanding the area’s extent, improving the

accuracy of estimations and testing the variant using the external

services of AWS Greengrass with a view to calculate all output

parameters of near-Earth space.

http://creativecommons.org/licenses/by/3.0/

208 International Journal of Engineering & Technology

4. Discussion

This article proposed the technology and architecture for a high-

speed stream data collection and processing system, whose main

advantages are as follows:

- ample opportunity for integration of diverse monitoring devices

on the basis of the same data bus;

- use of cluster technologies for setting up DPCs ensuring high

capacity and accessibility, immunity to data partitioning as well as

unlimited horizontal scaling;

- use of the fog computing technology ensuring data collection and

analytical processing using interface devices, which makes it

possible to take data analytical processing functions outside

DPCs;

- use of preliminary data processing on interface devices, when the

specific nature of a task does not allow developers to perform

distributed data processing on external devices.

Among the advantages of the proposed technology and

architecture is the possibility of combining different technological

solutions of centralized and distributed data processing aimed at

adjusting to various issues in monitoring and situation control,

thereby making the creation and exploitation process less time-

consuming. The disadvantage of the proposed technology and

architecture is its dependence on connection to external services to

perform fog computing using interface devices. This is why

further research on this topic is related to the development of open

source software for Linux-based fog computing.

5. Conclusion

To sum up, the proposed technology and architecture for a system

of high-speed stream data collection and processing is designed to

deal with a wide range of issues relating to technological and

environmental monitoring aimed at predicting emergencies. That

said, the main advantage of the developed technology and

architecture is their ability to adjust to different issues in

monitoring and situation control and to be used in setting up

centers for processing various monitoring data.

The obtained scientific and application results can be used in

further research on the development of interface device software

capable of performing distributed data processing without

resortıng to external services and of reacting to changes in task

flows occurring over time, while choosing the best method for

processing data.

6. Acknowledgements

This study has been carried out as part of the Development of

Means for High-Speed Processing of Information Sensor Data in

Situation Control Systems, a project under the 2014-2020 Federal

Targeted Program for Research and Development (identification

number: RFMEFI57916X0135) funded by the Ministry of

Education and Science of the Russian Federation.

References

[1] J. Gantz, D. Reinsel. The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the Far East–United

States, IDC Country Brief. URL:

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-
united-states.pdf

[2] OpenFog Reference Architecture for Fog Computing. URL:

https://knect365.com/cloud-enterprise-tech/article/0fa40de2-6596-
4060-901d-8bdddf167cfe/openfog-reference-architecture-for-fog-

computing

[3] Rob van der Meulen. 6.4 Billion Connected “Things Will Be in Use

in 2016”, Gartner. URL:
https://www.gartner.com/newsroom/id/3165317

[4] Tebueva F.B., Kopytov V.V., Petrenko V.I., Kharechkin P.V.,

Sidorchuk A.V. Method for Detecting and Eliminating Data Time
Series Outlier in High-Speed Process Data Sensors. International

Journal on Communications Antenna and Propagation (IRECAP),

vol. 7, no. 7, 2017, pp. 603-612.
[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and

Its Role in the Internet of Things” in Proc. 1st Edition MCC
Workshop Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13-

16.

[6] OpenFog Reference Architecture for Fog Computing. URL:
https://www.openfogconsortium.org/wp-

content/uploads/OpenFog_Reference_ Architecture_2_09_17-

FINAL.pdf
[7] Furht, B. and Escalante, A. Cloud Computing Fundamentals. In

Handbook of Cloud Computing, Springer, 2010.

[8] Manuel Díaz, Cristian Martín, Bartolomé Rubio. State-of-the-Art,
Challenges, and Open Issues in the Integration of Internet of Things

and Cloud Computing (Preprint), 2016. DOI:

http://dx.doi.org/10.1016/j.jnca.2016.01.010

[9] Apache Kafka. URL: https://kafka.apache.org/

[10] Apache ActiveMQ. URL: http://activemq.apache.org/

[11] Eclipse Mosquitto (an open source MQTT broker). URL:
https://mosquitto.org/

[12] RabbitMQ. URL: https://www.rabbitmq.com/

[13] Apache ZooKeeper. URL: https://zookeeper.apache.org/
[14] Dmitry Namiot. On Big Data Stream Processing. International

Journal of Open Information Technologies, vol. 3, no. 8, 2015, pp.

48-51.
[15] Rick Cattell. Scalable SQL and NoSQL Data Stores, ACM

SIGMOD. Record 39, no. 4, 2011, pp. 12-27.

[16] Kałużka, J., Napieralska, M., Romero, O., Jovanovic, P. Data
Locality in Hadoop. International Journal of Microelectronics and

Computer Science, vol. 8, no. 1, 2017, pp. 16-20.

[17] OpenTSDB (The Scalable Time Series Database). URL:
http://opentsdb.net/

[18] Adam Kawa “Introduction to YARN”. URL:

https://www.ibm.com/developerworks/library/bd-yarn-
intro/index.html

[19] Nandor Verba, Kuo-Ming Chao, Anne James, Daniel Goldsmith,

Xiang Fei, Sergiu-Dan Stan Platform as a Service Gateway for the
Fog of Things. Advanced Engineering Informatics, vol. 33,

2017, pp. 243-257.

[20] Catalog of 98 Open-Spec, Hacker Friendly SBCs. URL:
http://linuxgizmos.com/catalog-of-98-open-spec-hacker-friendly-

sbcs/

[21] Cisco IoT Networking. Deploy. Accelerate. Innovate. URL:
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-

of-things/brochure-c02-734481.pdf

[22] AWS Greengrass. URL: https://aws.amazon.com/greengrass/
[23] AWS Greengrass FAQs. URL:

https://aws.amazon.com/greengrass/faqs/

[24] P. V. Kharechkin, A. V. Savartsov. System for High-Speed
Collection and Processing of the Sounding of the Earth’s

Ionosphere // 3rd All-Russian Scientific Conference on the

Fundamentals and Applications of Computer Technologies and
Information Security, Taganrog, Russia, 2017, pp. 330-333.

 [25] K.A. Katkov, V.P. Pashintsev, E.K. Katkov, N.N. Gakhova, R.P.

Gakhov, A.I. Titov. Forecast Accuracy of Determining Pseudo

Range in Satellite Navigation System Through Analysis of Data

from Ionosphere Monitoring. Journal of Fundamental and Applied
Sciences, vol. 9, no. 1S, 2017. DOI:

http://dx.doi.org/10.4314/jfas.v9i1s.744

[26] V. P. Pashintsev, A. F. Chipiga, V. A Tsimbal, M. V. Peskov. A
System for Determining Ionospheric Areas with Small-Scale

Heterogeneities based on the GPS Monitoring Data // Izvestiya

(News) of the Samara Scientific Center of the Russian Academy of
Sciences vol. 18, no. 2(3), 2016, pp. 941-945.

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
http://dx.doi.org/10.1016/j.jnca.2016.01.010
https://zookeeper.apache.org/

