

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.36) (2018) 200-203

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paperv

A Framework For Effective Processing Of Jobs In Hadoop

Amarendra Mohanty1, Dr.P.Ranjana 2

1Research Scholar, Dept. of MCA,Hindustan Institute of Technology & Science,Chennai, India

mohanty.amarendra@gmail.com
2Associate Professor, School of Computing Sciences, Hindustan Institute of Technology & Science,Chennai, India

*Corresponding author E-mail: pranjana@hindustanuniv.ac.in

Abstract

 The main challenges in oozie based scheduling is high computing, high CPU usage and resource intensive. This leads to resource

contention in production because it was not load balanced optimally.

The objective of the proposed New Sql Server built Java based (NSSJ) Scheduling is to overcome some of the current challenges in the

existing oozie based scheduling. It stores all the inventory information on SQL Server environment. SQL Server is preferred over Hbase,

because at any given point of time, there were multiple threads hitting same inventory table to ensure transaction level processing. One

can run or kill or put on hold any number of deamons or jobs at any point of time. This gives complete flexibility to the end user to load

balance based on the number of jobs. It has auto restart feature when a task or job fails. It will try to attempt for one re-run, if it fails

second time, it will put the job in abandoned state.

Thus the proposed NSSJ scheduling load balances the resource optimally during production.

Keywords— Hadoop, Daemons, Oozie, CPU, Cluster, Capacity

1.Introduction

Data ingestion is one of the critical Hadoop workflows. Massive

amounts of data are moved from various sources into Hadoop for

performing analysis. Data ingestion is the process of obtaining,

importing and processing data for later use or storage in a

database.

There are few studies about performance of the Hadoop

framework and cluster management in the literature. Multiple

clusters can be used for the processing of Big Data and each

cluster can have multiple nodes. It is difficult to manage with the

increasing number of nodes in a cluster, Virtualization solutions

have been developed for the installation, scheduling, deployment

and efficient resource management.

In this study, Data ingestion framework defines the processes and

guidelines for landing data from a variety of sources “as-is” into

Hadoop environment. The framework encapsulates all the

components, processes and “how-to” guidelines, that project

teams can utilize to land their data into Hadoop environment from

varieties of data sources e.g. databases, rest APIs, FTP/SFTP

servers with ease.

2.Background

The diagrams below depict the data ingestion framework, with the

typical flow of data from source systems into Hadoop

environment.

Figure 1: Data Ingestion Framework

As data is brought in from different types of sources, the ingestion

framework provides common routines for each type of source that

shall connect to and extract data from the source system.

2.1. Data Ingestion has four major operations

(irrespective of sources system)

1. Pre Data Ingest – Preparations to occupy the source

system and adding metadata entries to the reputed systems

2. Data Ingest – Process of ingesting data from external or

internal sourced to Hadoop Staging Area without applying any

transformations – as is data from source system.

3. Data Movement – Moves the data from Staging area to

landing zone for analytical users access.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 201

4. Post Data Ingest – Mails are triggers to team on

success/failure of ingestion and movement. Audit and logging will

be done using HBASE and Unix box.

3.Key Features

• Generic, works in batch based/adhoc based mode

• Capable of performing Ingestion from Databases/File

based systems

• Reusable code libraries that can be adapted by any new

source system with the minimal changes to cetain files(Properties

and Catalog updates)

• Contains Hive based services.

• Common Hadoop file handling utilities in Java.

• Properties which drives the framework to act on a

particular source.

• Workflows & shell scripts that run the java code.

• Falcons which govern the scheduling of the whole

ingestion process.

• Metadata, Auditing and Logging is handled within the

code framework.

• Exception Handling and necessary mail notification on

success/failures are incorporated.

• Ease to perform build and deploy to different

environments.

4.Hadoop File System Hierarchy

The Hadoop File System Hierarchy(HDFS) covers the folder

structure for both HDFS and local Unix file systems in

Development, Quality Assurance and Production environments.

This file system stores the ingested data, and code required for

data ingestion and supporting Hadoop related files.

Key elements stored in HDFS:

o Source Data Files

o Hive external tables

o Pig and Hive scripts

o MapReduce code and user defined functions

o Intermediate processing files

o Scheduling configuration files

o File watchers

o Workflows

o Java Binaries

Staging Area: This acts as a temporary storage area which holds

the raw un-altered data from the source systems.

Landing Area: Raw un-altered data stored in staging area is

copied into this zone which acts as a permanent storage area for

the data ingested.

5.Nssj Framework

Figure 2: NSSJ Framework

5.1. High Level Architecture:

Figure 3: High Level Architecture of NSSJ Framework

Master scheduler program will be running always in the

background and it will keep hitting polling/queue table, fetch the

next set of the tables , that needs to processed based on priority,

next refresh time, Status.

Inventory table will have following information:

Table Name, Application name, frequency of the refresh (Daily,

Weekly, Every 4 hours, every 30 minutes). Last refreshed date

time status: (In queue, In progress, Ready, Pending for

submission, completed, Failed), Next Refresh date time, Priority

Master Scheduler Program

Inventory Table

Worker Daemon Program

202 International Journal of Engineering & Technology

Order, Manual Override Flag (to override the priority and give

higher precedence

Worker Daemon Program will process those set of tables

sequentially. Based on the status, it needs to write back the status

of that process back to the Inventory table. Once it completes all

the tables, the daemon process return the control back to Master

Scheduler program with number of success/failures and spawn out

from the queue.

Master Scheduler Flow Diagram:

Step 1: with next Refresh Date time & it's Status as Completed

through the SMF Framework tool

Step 2: if the current date time is greater than Next Refresh Date

time, please set all the tables to In Queue State

Worker Daemon Flow Diagram:

Step 1: Worker Daemon will look for tasks/jobs that are in

"InQueue" Status and start changing the status to "InProcess"

based on the priority order

Step 2: Each and every task/job is associated to hql /some scripts,

which is stored in hdfs and framework will read hql and run the

same

Step 3: Based on the status of the output it will set to either

completed or abandoned status.

6.Comparision Between Oozie Vs Nssj

Here are the number of jobs consuming the clusters and no.of job

failures in a typical peak time scenario

Figure 4: Cluster Usage Metrics for OOZIE

Figure 5: Cluster Usage Graph for OOZIE

Here are the number of jobs consuming the clusters and no.of job

failures in a typical peak time scenario.

Figure 6: Cluster Usage Metrics for NSSJ

Figure 7: Cluster Usage Graph for NSSJ

International Journal of Engineering & Technology 203

7.Conclusion & Next Steps

The usage of cluster is optimized through the NSSJ framework. It

would enhance the performance of the system. It results in

reducing the no. of job failures and improves the processing time

due to optimization of resource utilization. It is controlled job

execution framework. No. of jobs can be decided based on the

availability of resources and cluster capacity. This framework

ensures the efficient use of resources (CPU memory). The scope

of this framework can be extended to optimize the job processing

time.

References

[1] R. Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan. (2014)
“Hadoop: Improving MapReduce performance by optimizing job

execution mechanism in Hadoop clusters”, Journal of Parallel and

Distributed Computing, vol. 7, n. 03, pp. 2166-2179.
[2] Yuansong Qiao, Xueyuan Wang, Guiming Fang, Brian Lee. (2016)

“Doopnet: An Emulator for Network Performance Analysis of

Hadoop Clusters Using Docker and Mininet”, IEEE Symposium on
[3] Computers and Communication. Pp 784-790.

[4] Rammohan, N., Baburaj, E. (2014) “Genetic Clustering with

Workload Multi-task Scheduler in Cloud Environment”,
International Journal on Communications Antenna and

Propagation, pp. 77-86.

[5] C. Vorapongkitipun and N. Nupairoj. (2014) “Improving
performance of small-file accessing in Hadoop”, 11th International

Joint Conference on Computer Science and Software Engineering,

pp. 200-205.
[6] M. Ishii, J. Han, and H. Makino. (2013) “Design and performance

evaluation for hadoop clusters on virtualized environment”,

International Conference on Information Networking (ICOIN), pp.
244-249.

[7] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N.

Poly-zotis. (2011) “Array-based query processing in Hadoop”,
International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1-11.
[8] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors. (2010)

“Improving mapreduce performance through data placement in

heterogeneous hadoop clusters”, IEEE International Symposium on
Parallel and Distributed Processing, Workshops and Phd Forum,

pp. 1-9.

[9] Zaharia, M. (2009) “Job scheduling for multi-user MapReduce
clusters”, EECS Department, University of California, Berkeley,

Vol. 55, pp. 1-16.

[10] Guo S. (2013). “Hadoop Operations and Cluster Management”,
Packt Publishing.

[11] J. Dean and S. Ghemawat. (2008) “MapReduce: Simplified data

processing on large clusters”, Communication of the ACM, vol. 51,
pp. 107-113.

[12] Tan YS, Tan J, Chng ES. (2011) “Hadoop framework: impact of

data organization on performance”. Wiley Online Library, 43:

1241-1260.

[13] Lee SW, Yu F. (2014) “Securing KVM-based cloud systems via

virtualization introspection”, 47th Hawaii International Conference
on System Sciences, pp. 5028-5037.

