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 Abstract 
 

The purpose of this research is to analyze the distribution of density in the laser beam, both from the experimental and theoretical point 

of view. I measured the density distribution through the He-Ne laser beam and prepared an attempt to compare it with the Gaussian 

distribution function. Image profiling can be used to determine the distance of objects depending on the distribution of the laser beam 

spot surroundings by their width. It can also be used to take pictures of things and define their distances and shape things. As we see, 

Nubia is very good. From the compatibility analysis found that (the program that made the fitting mention of GNUPLOT). 
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1.Introduction 

 
lasers are devices that amplify or increase the intensity of light to 

produce a beam with high direction and high density and usually 

have a very pure wavelength or wavelength. Packages come in 

sizes ranging from ten human hair to a very large building 

diameter. [1] Since the establishment of the first laser beam in 

1960, detection techniques have been developed in order to 

identify and analyze package properties. In general, laser beam 

analysis depends on energy measurement, laser beam intensity 

distribution, beam deflection, waist parameter, number of patterns, 

etc. [2].In optics, the Gaussian beam is an example of 

electromagnetic waves, which are well measured by field 

distributions and transverse power density by Gaussian functions. 

Many lasers produce gauze-like rays, in which case the laser is 

said to operate in the primary transverse mode. Goss is commonly 

used in theoretical and experimental optics, and muscle 

representation has been successfully applied by many workers, 

and the mathematical function that describes the shape of the laser 

beam is the approximate solution of the Helmholtz equation. We 

obtain this approximation by solving a homogeneous wave 

equation, and we can derive a wave equation from Maxwell's 

equations in empty space. Thus, any solution to the Maxwell's 

equations in empty space meets wavelength equation. [3] 

 

2.Solution of wave equation oscillating in time 

and Helmholtz equation 

 
The waveform can be seen in experiments on diffraction and  

interference . The light was theoretically depicted as an 

electromagnetic wave that verified Maxwell's equations. In 

contrast, the nature of light molecules is expressed by the idea of 

re-measurement or photon in the theoretical description of 

electromagnetic field estimation. However, the degree of 

coherence of laser light is much better than other forms of light, 

and in exceptional cases only the intensification of the 

electromagnetic field of laser light is reflected in any intrinsic 

effect. Therefore, we will explain in detail the propagation of 

light, especially the ultra-directional light (and most of the 

microscope) of the laser, starting with Maxwell's equations. [4] 

From electromagnetic theory, E,H are the electric field and 

magnetic field respectively , magnetic flow density �⃗� , electrostatic 

flow density �⃗⃗� , power density𝐽 , and charge density ρ, all may 

change as coordinates functions (x, y, z) and time t , Are linked to  

 

Maxwell's equations: ×�⃗� = −
𝜕�⃗� 

𝜕𝑡
, ……………                   (1) 

 

∇ × �⃗⃗� = 𝐽 +
𝜕�⃗⃗� 

𝜕𝑡
,                                                                           (2) 

 

.�⃗⃗� = 𝜌,                                                                                     (3) 

 

.�⃗� = 0.                                                                                      (4) 

 

Here  is the vector operator with𝜕 𝜕𝑥⁄ ,∂/∂y and 𝜕 𝜕𝑍⁄ as its 𝑥, y, 

and Z components, respectively. Let 𝜀 denote the electric permit-

tivity, 𝜇 the magnetic permeability and 𝜎 the electric conductivity 

of medium. We have then 

 

�⃗⃗�  =𝜀 E ,  �⃗�  =𝜇�⃗⃗�  ,  𝐽  =𝜎�⃗� .                                                       (5) 

 

By using the polarization�⃗� and the permittivity in vacuoε0 , we 

have    

 

�⃗⃗�  =ε 0 �⃗�  +  �⃗�                                                                                (6) 

 

The electric susceptibility is given by: 
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�⃗�  = 𝜀o𝑥�⃗�                                                                                        (7) 

In general, �⃗� it is proportional to the time when the electric field is 

weak, but is no longer proportional with E when it is strong. In 

addition, this does not always follow a time difference according 

to the time change  

 

The�⃗� -field follows the�⃗�  -field only if x  is constant, i.e. 

independent on the frequency of external field. We shall assume 

later that the medium is dielectric so that𝜎=  0, and the 

permeability is  :          

  

𝜇 = 𝜇0 = 4𝜋 x 10-7H/m. 

 

Applying the curl operation to both sides of (1) and using (2) 

and�⃗�  =𝜇�⃗⃗� ,  we obtain: 

 

x ( ×�⃗� ) = - ×
∂B⃗⃗ 

∂t
 = -𝜇

𝜕

𝜕𝑡
∇ × �⃗⃗� = −𝜇

𝜕2�⃗⃗� 

𝜕2𝑡
.                               (8) 

 

 According to vector calculus we have 

 

𝛻( 𝛻x �⃗� )  = 𝛻 (𝛻.�⃗� )−𝛻 2�⃗� ,                                                          (9) 

 

so that (8) can be written as 

 

𝛻 ( 𝛻 ∙ �⃗� ) −𝛻2 �⃗�  =  −𝜇
𝜕2�⃗⃗� 

𝜕2𝑡
                                                        (10) 

 

Using (3.4) and�⃗⃗�  =  ε �⃗�  we have 

 

𝛻. �⃗�  =
1

𝜀
𝛻 ∙ �⃗⃗�  =

𝜌

𝜀
        (11) 

 

An electric charge produces only an electrostatic field and is 

irrelevant to electromagnetic waves in an optical medium, we can 

neglect it and put𝜌 = 0. Therefore, we have 𝛻 ∙ �⃗�  = 0 and equation 

(10) becomes: 

 

𝛻2�⃗� − 𝜀𝜇
𝜕�⃗� 

𝜕𝑡
=0           (12) 

 

This is the equation of waves propagating with the velocity v such 

that v2=
1

𝜀𝜇
, and the velocity of light in vacuo is c = 

1

√𝜀0𝜇0
. 

Using Fourier expansion one can express any waveform as 

superposition of harmonic waves . On the other hand . laser light 

is almost perfectly monochromatic. Therefore, we can express the 

time factor of monochromatic electromagnetic wave of frequency 

𝜔by �⃗� =𝜀 exp(iwt), and the wave equation (12) becomes: 

 

𝛻2ε  + k 2 𝜀  = 0,           (13) 

 

where k 2  =𝜔2 ε µ ,  and k  = 
𝜔

𝜈
 is the wave number. 

In normal waveform processing, it is sufficient to use the 

waveform of the scalar u variable: 

 

𝛻2u  +  k 2 u  =0.          (14) 

 

This equation is known as the Helmholtz equation. In order to 

explain diffraction, interference, degeneration, etc., this is 

equivalent to talking only about a vector component. In general, 

when the dimensions of the medium are large compared to the 

wavelength, the optical wave is purely cross-sectional so that the 

numerical calibration is the plant. We will use the Helmholtz 

equation to analyze the properties of monochromatic light beam, 

and it is known that any electromagnetic field can be arbitrarily 

extended to flat or spherical waves, but the light beam that spreads 

along the axis can extend roughly to the Hermian Gaussian roads 

along this axis [5 ].Taking the z axis along the light beam and the 

wave number of the medium for transverse waves as k, we put 

u  =  A ( x ,  y ,  z ) e x p ( i k z )              ( 1 5 )  

 

The function A  representing the light beam must become 

practically zero for large values of x  or y  and changes slowly 

with z. Substituting equation (3.15) in (3.14) we get: 

(
𝜕2𝐴

𝜕𝑋2) e x p ( i k z )  +  (
𝜕2𝐴

𝜕𝑦2) e x p ( i k z )  + (
𝜕2𝐴

𝜕𝑧2)e x p ( i k z )  

 

−2𝑖𝑘(
𝜕𝐴

𝜕𝑧
)𝑒𝑥𝑝(−𝑖𝑘𝑧) – k2Aerp( i k z ) +k2Aerp(−𝑖𝑘𝑧)=0,     (16) 

 

which reduces to 

 

(
𝜕2𝐴

𝜕𝑥2
)+(

𝜕2𝐴

𝜕𝑦2
)−2𝑖𝑘(

𝜕𝐴

𝜕𝑧
)+(

𝜕2𝐴

𝜕𝑧2
)=0        (17) 

 

The term exp  ( i k z )  of Equation 15 accounts for the wave os-

cillation along the propagation direction. The dependence of A  on 

2 is of a different nature. It likely accounts for the slow decrease 

in the amplitude of the wave as the wave propagates. Thus we can 

say that A  varies slowly with z, and thus we can neglect the term 

(
𝜕2𝐴

𝜕𝑍2
) in front of the other ones and drop it from Equation (17) . 

The resulting equation is 

 

(
𝜕2𝐴

𝜕𝑥2)+(
𝜕2𝐴

𝜕𝑦2)−2𝑖𝑘 (
𝜕𝐴

𝜕𝑧
) = 0                                                 (18) 

 

Equation (18) is called the paraxial wave equation. 

 

3.Approximate solution of the Helmholtz equa-

tion 

 
The simple solution of the wave equation is the solution in which 

we enter the simplest forms of solution and find the exact form 

that obeys the equation of the wave. The most formal solution is 

the solution where we solve the wave equation in full. We believe 

that the simple experimental solution for (18) of the model 

 

A ( 𝑟)⃗⃗  ⃗=  F 1 ( z ) e x p [ −
𝜌2

𝐹2(𝑍)
].                        (19) 

 

Here F 1 ( z )  and F 2 ( z )  are slowly varying functions of z  

only, and 𝜌2  =  x 2 +y 2 .  To find the equations which describe 

F 1 ( z )  and F 2 ( z )  we will substitute the equation (19) 

into the equation 18). The first derivative of function A  with 

respect to x  is given by 

 
𝜕𝐴

𝜕𝑥
=  F 1 ( z ) [−

2𝑥

𝐹2(𝑍)
] exp [−

𝜌2

𝐹2(𝑍)
],       (20) 

 

and the second derivative  

 
𝜕2𝐴

𝜕𝑥2 = 𝐹1(𝑍) [−
2

𝐹2(𝑧)
] 𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] + 𝐹1 (𝑧)(−

2𝑥

𝐹2(𝑧)
)2 exp [−

𝜌2

𝐹2(𝑧)
]    

,       (21) 

 

and similarly for the derivative with respect to y 

 
𝜕2𝐴

𝜕𝑦2 = 𝐹1(𝑍) [−
2

𝐹2(𝑧)
] 𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] + 𝐹1 (𝑧)(−

2𝑦

𝐹2(𝑧)
)2 exp [−

𝜌2

𝐹2(𝑧)
]  

,         (22) 

 

According to equation (18) we will also find the first derivative of 

with respect to z 
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∂A

∂z
= 𝐹’1(𝑧)𝑒𝑥𝑝 [−

𝜌2

𝐹2(𝑧)
] +

𝐹1(𝑧)
𝜌2

𝐹2(𝑧)2
𝐹2

′(𝑧)exp[−
𝜌2

F2(z)
….………..………... (23) 

 

Substituting equations (21), (22), (23) into equation 3.18) we get 

−
4𝐹1(𝑧)

𝐹2(𝑧)
+ 𝐹1(𝑧)

4

𝐹2
2(𝑧)

(𝑥2 + 𝑦2) − 2𝑖𝑘𝐹1
′(𝑧) − 2𝑖𝑘

𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑥2 +

𝑦2) = 0,..         (24) 

 

or 

 

[−
4𝐹1(𝑧)

𝐹2(𝑧)
− 2𝑖𝑘𝐹1

′(𝑧) + (𝑥2 + 𝑦2)[−
4𝐹1(𝑧)

𝐹2
2(𝑧)

− 2𝑖𝑘
𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑧)] = 0 

(25) 

Equation (25) will be fulfilled if 

 
2𝐹1(𝑧)

𝐹2(𝑧)
+ 𝑖𝑘𝐹1

′(𝑧) = 0         (26) 

 

And 

 
2𝐹1(𝑧)

𝐹2
2(𝑧)

− 𝑖𝑘
𝐹1(𝑧)

𝐹2
2(𝑧)

𝐹2
′(𝑧)] = 0         (27) 

 

separately. It follows from (27) that 

 

𝐹2
′(𝑧) =

2

𝑖𝑘
          (28) 

 

By integration of the equation (28) we get: 

 

𝐹2(𝑧) =
2𝑧

𝑖𝑘
+ 𝑐          (29) 

 

where c is constant of integration. 

We can rewrite the equation (26) as: 

 

𝑖𝑘𝐹1
′(𝑧) = −

2𝐹1(𝑧)

𝐹2(𝑧)
          (30) 

 

Or 

 
𝐹1
′ (𝑧)

𝐹1(𝑧)
=−

2

𝑖𝑘

1

𝐹2(𝑧)
.                                                                                 (31) 

 

By using the equation (29) in t h e  equation (31) we obtain 

 
𝐹1

′(𝑧)

𝐹1(𝑧)
=−

2

𝑖𝑘
2𝑘

𝑖𝑘
+𝑐

∙          (32) 

The last equation can be writ ton as 

 
𝑑

𝑑𝑧
ln𝐹1(𝑧) = −

1

𝑍+
𝑖𝑘

2
𝐶
 ,        .(33) 

 

Then 

 

ln 𝐹1(𝑧) = −ln (𝑧 +
𝑖𝑘

2
c)+𝑐1 , …………                                        (3.34) 

 

where 𝑐1 can be written as 𝑐1 = ln𝐵1. 

Then we can write equation (34) in the form 

 

𝐹1(𝑍) =
𝐵1

𝑧+
𝑖𝑘𝑐

2

∙         (35) 

 

4.Modeling of the Gaussian laser beam by Ap-

proximate solution of Helmholtz equation 

 
For t h e  purpose of modeling of t h e  Gaussian laser beam via 

approximate solution of Helmholtz equation we substitute the 

forms o f  𝐹1(z)  and 𝐹2(𝑧) , equations (35) and (29) respectively, 

into equation (19) and we get 

 

A(𝑟 )=
𝐵1

𝑍+
ikc

2

exp [−
𝜌2

𝑧2
𝑖𝑘

+𝑐
],                   (36) 

This equation represents the spread of the Gaussian beam in the 

direction of z. For each z value, the intensity is a gausic function 

of the half-way distance ρ. This is why the wave is named by a 

Gosi package. The Gauss function peaks at ρ = 0 (on the axis) and 

decreases monotonously with an increase of ρ. The beam radius w 

(z) is increased for Gaussian distribution with the axial distance. 

The large beam deviation corresponds to the radius of the beam 

beam with poor beam quality. Low beam deflection can be 

important for applications such as optical signal communication or 

free space. [6] 

 

5.Measurement of the intensity distribution in 

He-Ne laser 

 
The theoretical package (TEM00) has a perfect guise. The laser 

can produce many other TEM modes. In general, one could say 

that laser beams have a symmetric density profile. For example: if 

we pass through the beam, the minimum intensity is on the edge 

and as we move towards the center, it increases and reaches the 

maximum in the center and then falls in a similar way to the other 

end. For the current measurement, we used a He-Ne laser beam (λ 

= 562.8 nm) with 5 megawatt power and a high-speed silicon 

detector to measure the intensity of the laser light falling on the 

detector at the laser beam that does not weaken. The detector is 

located 0.4 meters from the end of the laser output and moved to a 

transient phase in mm increments, as shown in Fig. 1. 

 

 
Figure 1: Scanning detector along diameter beam. 

 

The data were plotted and compared to the theoretically predicted 

Gaussian model. The theoretical gouse distribution contains three 

coefficients: I0 maximum intensity, x0-centre of beam (maximum 

intensity point), w width or beam radius (1/2 diameter). The 

Gaussian curve was suitable for measuring data using GNUPLOT. 

For each measured point, the difference between the theoretical fit 

and the measured value was saved in an "error" cell, and the sum 

of these values was shown to show compatibility quality". I was 

able to adjust the theoretical graph constants so that the quality of 

the fit was almost perfect (minimum value is best suited). 
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Figure 2: Results of measurement  and fit to the Gaussian curve with 

distance x-axes. 

 

 
Figure 3: Results of measurement  and fit to the Gaussian curve with 
distance y-axes. 

 

Final set of parameters             Asymptotic Standard Error 
x0 = 104:484                              +/- 0.3436 (0.3289%). 

w = 70:3211                               +/- 0.6883 (0.9788%). 

I 0 = 147:568                              +/- 1.249 (0.8463%). 

 

6.Conclusions 

 
• • The mathematical equation that describes the Gaussian 

beam can be obtained from the approximate solution of the 

Helmholtz equation that follows the wave equation. 

• • In this paper we presented a precise solution to the 

Gaussian wave wave. Our solution satisfies Maxwell's equations. 

This exact solution was compared with the results obtained 

previously by other workers, particularly the axial holographic 

scale and axial axial coordinates values. 

• • The theme of the gothic symptoms provides students 

with basic understanding of the physics and diffusion of the laser 

beam. Due to the widespread use of laser today, this material must 

be an essential part of the course on optics. Coverage of high-level 

Gaussian patterns further deepens the discussion of light waves 

and confirms the main components of wave function: amplitude 

and phase. 

• The quality of the Gaussian beam (control of top hat symmetry 

and laser beam capacity assessment) is very important in medical 

applications, especially in surgical operations. The intensity 

distribution of the laser beam is strongly related to the strength of 

the source and can be used to determine the distance of objects. 
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