

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.36) (2018) 373-382

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Design & Simulation Of 64-Bit Hybrid Processor Instruction Set

Using Verilog

1Harish M S & 2Jayadevappa D

1Research Scholar, Dept. of Electronics Engineering, Jain University, Bengaluru, India

2Professor, Dept. of E&IE, JSS Academy of Technical Education, Bengaluru, India

*Corresponding author E-mail: devappa22gmail.com

Abstract

As a part of my ongoing research on implementation of multi core hybrid processor on FPGA, I have developed data flow designs for most

popularly used 20 processor instructions. I have made digital design, wrote code in Verilog HDL and simulated all the 20 instructions using

Xilinx ISE 14.5. The data flow designs, symbolic representation and simulation results are explained in detail in this technical paper. This is

partial implementation of Hybrid Processor & the other sub modules implementation on Xilinx FPGA will be published in my subsequent

technical paper.

Keywords. Image Segmentation, MRI, Contourlet transform, Active contours.

1. Introduction

As it was discussed in my previous paper [7], FPGA is emerging as

a rapid prototype for its several advantages as was listed [7]. Many

researchers have undertaken several partial implementation of RISC

processor using FPGA. Processor design can be done using any one

of the following approaches.

Architecture based (Top down approach: The basic core architec-

ture is kept as reference and instructions are derived based on this

basic architecture. This means, better the architecture design, power-

ful the instructions.

Instruction based (Bottom up approach): here the approach is to

list out the most used instructions of popular processors & imple-

ment them one by one. By putting all these implementation of in-

structions together, will emerge architecture at the top level. Hence

in this approach incremental growth of instruction implementation

will lead to mega processor architecture.

State Machine approach: In this approach, each instruction is

treated as a fixed state machine. This means various instructions

leads to various field state machines. The processor states can be

like- FETCH, DECODE, EXECUTE, READ, WRITE, INTER-

RUPT, SEND, RECEIVE, ROTATE, IN , OUT etc.

Fixed Function Special Processors: This approach is used for de-

signing custom processor with very specific & dedicated applica-

tions. Example: Video processor, audio processor, mobile processor,

data acquisition, instrumentation & measurements – all these appli-

cations utilize processors only for high speed data processing, dedi-

cated fixed functions or instructions.

All general purpose Processors will have several features set which

are rarely used. Only 10% instructions are used 90% of the times.

Hence this leads to enormous overhead or wastage of logic/ features

/architecture /area/ cost/ delay etc leading to performance degrada-

tion of the overall processor application.

Hence there is a strong need to develop application specific / appli-

cation driven/customized processor for specific applications or fixed

task based high performance processor to provide high performance

& fixed functionality. Also, present day Processors needs features of

flexibility - to add or remove features or instructions or functionality

and plug & play or modular architecture. My proposed “Customized

and Scalable Hybrid Processor design” is the innovative 5th

approach.

2. Other Related Research Work

Till date, several attempts has been made to realize subset of RISC

instruction set and several attempts has been made by various re-

searchers to propose some minimal RISC architectures for various

bit length like 8 bit, 32 bit, 64 bit using Verilog and VHDL on

FPGA.

Mrudul S. Ghaturle, Prof. R. D. Kadam [1] et al, have claimed to

have design and simulated decoder unit of 32 bit RISC processor to

support R, I,, J, I/O type instructions with data path diagrams. They

have indicated simulation results and RTL schematic of the decoder.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

374 International Journal of Engineering & Technology

Mohammad Gousuddin H Maniya, SujathaHiremath [2] et al, have

implemented a 64 bit CISC processor on FPGA to support short and

long instruction formats and have implemented a double precision

floating point multiplier and have indicated the resulting simulation

waveforms.

PriyavratBhardwaj [3] et al, has proposed a MIPS Instruction Set

Architecture (ISA) with instruction set categorized into Register,

Immediate, Jump (RJI) instruction with 32 bit op-codes and have

proposed data path diagrams for RJI instructions. They have also

suggested 5 stage pipelined architecture with instruction fetch, de-

code, execute memory read and write operation. They claim to have

implemented this 32 bit RISC processor on FPGA and have indicat-

ed RTL design schematic of that MIPS architecture.

Anu Mariam John, ShilpiVarshney [4] et al, have implemented 32

bit CISC processor for multiplication operation. They have used

booth multiplier with CISC architecture. They have used Verilog

HDL and Xilinx Spartan 3 board with a maximum clock speed of

177MHz and result is stored in 64 bit register.

AkshathaRai K, Basavaraj H[5] et al, have suggested an innovative

design for the implementation of dual core RISC architecture and

have proposed a pipelined architecture with separate data and pro-

gram memory. They have implemented a 17 bit RISC processor on

Xilinx FPGA and have indicated RTL schematic and simulation

results for memory read and write memory.

S. Suresh, R. Ganesh [6] et al, have proposed 8 bit single cycle pro-

cessor with 10 bit address bus and four stage pipelined data flow

(instruction fetch, instruction decoder and operand fetch, execute

and write back). They have indicated simulation results for addition,

subtraction and multiplication with RTL schematics.

Saraswthi P, M K Chandrasen [7] et al, supposed to have imple-

mented 32 bit CISC CPU architecture on FPGA with architecture

logic unit, accumulator, 32 bit memory unit, 32 bit MUX, instruction

register, program counter and indicated simulation screenshots.

WojciechWójcik, JacekDługopolski [8] et al, has attempted to im-

plement a multi core processor on FPGA using parallel processing

characteristics. They have also experimented on number of parallel

processors leading to the overall speed of processor operations and

also characterized problem size versus efficiency of processors.

Vijay R. Wadhankar, VaishaliTehre [9] et al, have attempted to im-

plement RISC processor on FPGA and suggested a new architecture

and specific design for instruction and control unit. They have

shown simulation results of control unit for memory read and write

operations.

A. Key findings of survey

After going through several technical papers, my observation is that

there is no clear cut approach on whether fixed architectures will

lead to powerful instruction set implementations (top down ap-

proach) or set of powerful and useful instructions will lead to an

open ended architecture(bottom up approach). There is a big di-

lemma for Processor system designers.

During my exhaustive survey, about various types of Processors,

their functionality, feature set, instruction set, interrupts, associated

special features, Processor design approach, platforms for implemen-

tation etc., In my already published 3 survey papers [10] [11] [12].

Many of the above said processor implementation attempts, I did not

come across any complete processor architecture to support contem-

porary instruction set implementation on FPGA using popular HDL

(Verilog/VHDL). Also, none of the other related research works

have explained the processor design implementation on FPGA at

micro level or at data flow level or at instruction implementation

levels.

Hence there is a strong and serious need to attempt design, simula-

tion, implementation & prototype testing ofa scalable general pur-

pose Processor architecture to support required useful instruction set

implementation on FPGA meaningful and serious approach is re-

quired to realize.

3. Proposed Methodology

Both RISC & CISC Processor Architecture have their own merits &

demerits & neither RISC nor CISC standalone Processor can pro-

duce a complete solution to the present day computational needs,

hence there is a strong need of Hybrid Processor. Our proposed ar-

chitecture will utilize all the best features of both RISC and CISC.

Fig. 1 Proposed Multi core Hybrid Processor Architecture.

Keeping the above technical issues in mind, an efficient Hybrid Pro-

cessor with the best features of RISC and CISC is proposed & the

top level Systems design is as indicated below.

A. Research Design of Hybrid Multi Core Processor

Instruction set and Op-code assignment: The table indi-

cates the list of instruction implemented on FPGA. The table also

indicates the operation function of each instruction, along

with respective op-codes and instruction decoder output. As indicat-

ed in the figure 1, for each instruction respective code is

applied to the instruction decoder. The instruction decoder, depend-

ing on the op-code will enable only 1 out of 30 outputs which in turn

will enable the respective instruction dataflow logic for hardware.

Table 1. Instruction set and Op-code assignment

Sl. No. Instructions Operation function Opcode Instruction decoder output

1 reset Reset the registers 000000 I1E=1 & other InE=0

2 Load acc load data into accumulator 101000 I2E=1 & other InE=0

3 read acc read data from accumulator 000111 I3E=1 & other InE=0

4 Load regA load data into reg A 000001 I4E=1 & other InE=0

International Journal of Engineering & Technology 375

5 movacc,regA move data from reg A to acc 001011 I5E=1 & other InE=0

6 Add acc, regA add accumulator with reg A 010001 I6E=1 & other InE=0

7 sub acc, regA Sub accumulator with reg A 010100 I7E=1 & other InE=0

8 NOT acc Not accumulator 011010 I8E=1 & other InE=0

9 AND acc, regA AND accumulator with reg A 010111 I9E=1 & other InE=0

10 OR acc, regA OR accumulator with reg A 011011 I10E=1 & other InE=0

11 EXOR acc, regA XOR accumulator with reg A 011110 I11E=1 & other InE=0

12 Exchange regA, regB
Exchange the contents of

reg A and reg B
000100 I12E=1 & other InE=0

13 INC acc Increment the content of accumulator 110000 I13E=1 & other InE=0

14 DEC acc decrement the content of accumulator 110001 I14E=1 & other InE=0

15 Shift left acc, n Shift accumulator left by n 100001 I15E=1 & other InE=0

16 Shift right acc, n Shift accumulator right by n 100010 I16E=1 & other InE=0

17 Rotate left acc, n rotate accumulator left by n 100011 I17E=1 & other InE=0

18 Rotate right acc, n rotate accumulator right by n 100100 I18E=1 & other InE=0

19 Addcacc, regA add accumulator with reg A and carry 101010 I19E=1 & other InE=0

20 Subbacc, regA Sub accumulator with reg A and carry 101101 I20E=1 & other InE=0

21 comp acc, reg A Compare the contents of accumulator and regA 100110 I21E=1 & other InE=0

Instruction Decoder: The above figure indicates an instruction

decoder indigenously designed to handle 25 instructions. Based on

the 5 bit command or Opcode any one of the 32 outputs of the

decoder will get enabled i.e., for each Opcode applied as com-

mand to the instruction decoder, one particular output of the de-

coder will go high or enabled and remaining 31 outputs will be

held low or disabled. The whole scheme works as per the com-

mand and enable assignments done in the table.

These single enables of each command will in turn enable re-

quired logic to execute the corresponding instructions as per the

assignment table I. This instruction decoder design is fully scala-

ble and can support hundreds of instructions with the increase in

number of command bits. The number of instructions will be

equal to the number of decoder outputs.

Fig. 2. Instruction Decoder

4. Experimental Results

Popular Instructions set Implementation using VERILOG HDL

• LOAD Accumulator, datain

• READ Accumulator, dataout

In all the simulation waveform, clk is clock, command [5:0] is 6

bit Opcode or command or each instruction, datain1 [63:0] is 64

bit data input bus, accumulator [64:0] is 65 bit accumulator and

dataout[63:0] is 64 bit data output bus. When reset is applied 0’s

are applied to datain1, accumulator, and dataout to clear all the

registers.

Fig. 3. Digital design for Instruction - Load Accumulator, Datain

and Read Accumulator

Design shows the digital design required to implement load and

read accumulator instructions.

As seen from the waveform, clock can be of any suitable

frequency. Command [5:0] is 6 bit and is unique to specific

instructions. The command bit assignment is as per the table.

• Between 0 to 200ns, reset is applied to command, da-

tain1 [63:0], accumulator [64:0] and dataout [63:0].

• Between 200 to 400ns, command [5:0] is loaded with

111111 and no operation is performed.

• Between 400 to 800ns, command [5:0] is loaded with

101000 and datain1[63:0] is loaded with 2121 which

indicates load accumulator instructions opera-

tion/execution needs to be performed by the processor.

Command [5:0] 101000 will enable data loading to ac-

cumulator. After some latency, datain1 [63:0] value is

moved to accumulator [64:0].

• After 800ns onwards, command [5:0] is now changed

to 000111, which indicates READ accumulator instruc-

tion operation need to be performed by the processor

and accordingly the already loaded accumulator data

will be moved to dataout.

376 International Journal of Engineering & Technology

Digital Design for Instruction Move Accumulator (Move Ac-

cumulator, Reg A):

Fig. 4 Digital design for Instruction - Move Accumulator, Reg A.

The above figure indicates the simulation waveform for

move accumulator, regA instruction.

• Between 0 to 200ns, reset is applied to command, da-

tain1 [63:0], accumulator [64:0] and dataout [63:0].

• Between 200 to 400ns, command [5:0] is loaded with

111111 and no operation is performed.

• Between 400 to 600ns, command [5:0] is loaded with

000001 and datain1 [63:0] is loaded with the value

4141, which indicates move register A instruction oper-

ation.

• After 600ns, command is changed to 001011, which

performs move register A to accumulator instruction

operation.

Add Acc, RegA (accumulator accumulator + regA):

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

Opcode 000001 and datain1 [63:0] is applied with the

value 4141 which indicates load register A instruction

operation.

• Between 500 to 700ns, command is loaded with 101000

and datain1 [63:0] is loaded with the value 2121 which

performs load accumulator operation.

• Between 700ns to 720ns, command [5:0] is applied

with010001, which performs addition of the contents of

register A and accumulator and the result is stored in

the accumulator.

• After 720ns, command [5:0] signal is loaded with

000111 and the contents of the accumulator are moved

to dataout [63:0].

Fig. 5 Digital design for Instruction - Add Accumulator, Reg A

1. Sub Acc, RegA (accumulator accumulator - regA):

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

Opcode 000001 and datain1 [63:0] is applied with the

value 2121 which indicates load register A instruction

operation.

• Between 500 to 700ns, command is loaded with 101000

and datain1 [63:0] is loaded with the value 4141 which

performs load accumulator operation.

• Between 700ns to 720ns, command [5:0] is applied

with 010100, which performs subtraction of the con-

tents of register A and accumulator and the result is

stored in the accumulator.

• After 720ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

International Journal of Engineering & Technology 377

Fig. 6 Digital design for Instruction - Subtract Accumulator, Reg A

2. Not Acc (accumulator ~ accumulator):

Fig. 7 Digital design for Instruction - NOT Accumulator

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 4141, which indicates load accumulator oper-

ation.

• Between 500 to 520ns, command 011010 is applied

which performs NOT operation of the content of the

accumulator [64:0].

3. AND ACC, RegA (accumulator accumulator and regA):

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value 2121, which indicates load register A opera-

tion.

• Between 500 to 700ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 4141, which indicates load accumulator oper-

ation.

• Between 700 to 720ns, command 010111 is applied

which performs AND operation of the contents of the

accumulator [64:0] and register A [63:0].

• After 720ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

Fig. 8 Digital design for Instruction - AND Accumulator, Reg A

4. OR ACC, Reg A (Accumulator Accumulator|regA)

378 International Journal of Engineering & Technology

• As shown in the figure, between 0 to 300ns, reset is ap-

plied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value 2121, which indicates load register A opera-

tion.

• Between 500 to 700ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 4141, which indicates load accumulator oper-

ation.

• Between 700 to 720ns, command 011011 is applied

which performs OR operation of the contents of the ac-

cumulator [64:0] and register A [63:0].

• After 720ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

5. EXOR Acc, RegA (Accumulator Accumulator^

regA):

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 500ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value 2121, which indicates load register A opera-

tion.

• Between 500 to 700ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 4141, which indicates load accumulator oper-

ation.

• Between 700 to 720ns, command 0111110 is applied

which performs OR operation of the contents of the ac-

cumulator [64:0] and register A [63:0].

• After 720ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

6. Exchange reg A, reg B (regA regB):

Fig. 9 Digital design for Instruction - Exchange Reg A, Reg B

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 400ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value 28, which indicates load register A operation.

• Between 400 to 600ns, command [5:0] is applied with

the Opcode 000010 and datain1 [63:0] is loaded with

the value 66, which indicates load register B operation.

• Between 600 to 620ns, command [5:0] is loaded with

which performs the exchange of the contents of register

A and register B.

• After 620ns, command [5:0] signal is loaded with

000100 and the content of the register A is moved to

dataout [63:0].

7. Incacc (Accumulator Accumulator + 1)

Fig. 10 Digital design for Instruction - Increment Accumulator

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 400ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

International Journal of Engineering & Technology 379

the value ff21, which indicates load accumulator opera-

tion.

• Between 400 to 420ns, command is loaded with 110000

which performs increment operation and the content of

the accumulator [64:0]is incremented by 1 and the

result is stored in the accumulator.

• After 420ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

8. Dec acc (Accumulator Accumulator - 1):

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator

[64:0] and dataout [63:0].

• Between 200 to 400ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value ff21, which indicates load accumulator oper-

ation.

• Between 400 to 420ns, command is loaded with 110001

whichperform decrement operation and the content of

the accumulator [64:0] is decremented by 1 and the re-

sult is stored in the accumulator.

• After 420ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

Fig. 11 Digital design for Instruction - Decrement Accumulator

9. Shift left acc, n(CF MSB ; MSB MSB-1; LSB 0)

Fig. 12 Digital design for Instruction - Shift left Accumulator, n

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 600ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value ff21, which indicates load accumulator opera-

tion.

• Between 600 to 620ns, n[5:0] is loaded with the value

4 and command [5:0] is applied with 100001, which in-

dicates shift left operation of the content of the accumu-

lator by value 4 and the result is stored in the accumula-

tor.

• After 620ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

10. Shift right acc,n (CF LSB ; LSB LSB+1; MSB 0)

Fig. 13 Digital design for Shift right Accumulator, n

380 International Journal of Engineering & Technology

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 600ns, command [5:0] is

applied with the Opcode 101000 and datain1

[63:0] is loaded with the value ff21, which indicates

load accumulator operation.

• Between 600 to 620ns, n [5:0] is loaded with the value

4 and command [5:0] is applied with 100010, which

indicates shift right operation of the content of the ac-

cumulator by value 4 and the result is stored in the ac-

cumulator.

• After 620ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

•

11. Rotate right acc, n(CF MSB ; MSB MSB-1; LSB

CF)

Fig. 14 Digital design for Instruction - Rotate right Accumulator, n

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 600ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 200000000000ff21, which indicates load ac-

cumulator operation.

• Between 600 to 620ns, n[5:0] is loaded with the value

4 and command [5:0] is applied with 100011 , which

indicates rotate right operation of the content of the ac-

cumulator by value 4 and the result is stored in the ac-

cumulator.

• After 620ns, command [5:0] signal is loaded with

000111 and the content of the Accumulator is moved to

dataout [63:0].

12. Rotate left acc, n(CF LSB ; MSB CF; LSB LSB+1)

Fig. 15 Digital design for Instruction - Rotate right Accumulator, n

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 600ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 200000000000ff21, which indicates load ac-

cumulator operation.

• Between 600 to 620ns, , datin1 [63:0] is applied with

the value ff21, n[5:0] is loaded with the value 4 and

command [5:0] is applied with 100100, which indi-

cates rotate left operation of the content of the accumu-

lator by value 4 and the result is stored in the accumula-

tor.

• After 620ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

13. Addcacc, regA (accumulator accumulator + regA +

carry)

 The below figure indicates the simulation wave form of addi-

tion with carry instruction operation.

• Between 0 to 200ns, reset is applied to command, da-

tain1 [63:0], accumulator [64:0] and dataout [63:0].

International Journal of Engineering & Technology 381

• Between 200 to 400ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value ff000000000028, which indicates load regis-

ter A operation.

• Between 400 to 600ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value f000000000ff21, which indicates load accu-

mulator operation.

• Between 600 to 620ns, command [5:0] is applied with

the value 010001 which perform addition operation of

the content of register A and accumulator where the

carry is generated and the carry flag is set high and the

result is stored in the accumulator.

• Between 620 t0 800ns, command [5:0] signal is loaded

with 000111 and the content of the accumulator is

moved to dataout [63:0].

• Between 800 to 1020ns, datain1 [63:0] is loaded with

the new value f0000000000004 and the command [5:0]

is loaded with 000001 which indicates load register A

operation.

• Between 1020 to 1040ns, command [5:0] is loaded with

101010 which indicates add with carry instruction op-

eration where the content of accumulator and register A

is added with the carry flag and the result is stored in

the accumulator.

• After 1040ns, command [5:0] signal is loaded with

000111 and the content of the Accumulator is moved to

dataout [63:0].

Fig. 16 Digital design for Instruction - Add with carry Accumulator,

RegA

14. Subbacc, regA (accumulator accumulator -regA - car-

ry)

Fig. 17 Digital design for Instruction - Subtract with carry Accumulator,
Reg A

• As shown in the waveform, between 0 to 200ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 200 to 400ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value ff000000000028, which indicates load regis-

ter A operation.

• Between 400 to 500ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value f000000000ff21, which indicates load accu-

mulator operation.

382 International Journal of Engineering & Technology

• Between 520 to 520ns, command [5:0] is applied with

the value 010001 which perform subtraction operation

of the content of register A and accumulator where the

carry is generated and the carry flag is set high and the

result is stored in the accumulator.

• Between 520 t0 720ns, command [5:0] signal is loaded

with 000111 and the content of the accumulator is

moved to dataout [63:0].

• Between 720 to 820ns, datain1 [63:0] is loaded with the

new value f0000000000004 and the command [5:0] is

loaded with 000001 which indicates load regis-

ter A operation.

• Between 820 to 840ns, command [5:0] is loaded with

101101 which indicates subtract with carry instruction

operation where the content of accumulator

and register A is subtracted with the carry flag and the

result is stored in the accumulator.

• After 840ns, command [5:0] signal is loaded with

000111 and the content of the accumulator is moved to

dataout [63:0].

17. Compare Acc, regA (modify flags accumulator – regA)

Fig. 18 Digital design for Instruction - Compare Accumulator, Reg A

• As shown in the waveform, between 0 to 300ns, reset is

applied to command, datain1 [63:0], accumulator [64:0]

and dataout [63:0].

• Between 300 to 600ns, command [5:0] is applied with

the Opcode 000001 and datain1 [63:0] is loaded with

the value 2121, which indicates load register A opera-

tion.

• Between 600 to 1000ns, command [5:0] is applied with

the Opcode 101000 and datain1 [63:0] is loaded with

the value 4141, which indicates load accumulator oper-

ation.

• After 1000ns, command [5:0] is applied with 100110,

which indicates the compare instruction operation. Here

the contents of register A and accumulator is compared

if the values are same then the zero flag is set high and

if it is different then the zero flag will be low.

5. Conclusion

There are several popular approaches to design and develop a

contemporary processor with several useful instructions. And in

this paper, I have evolved a fully scalable and open-ended Pro-

cessor architecture for basic popular instructions of the processor

that can be improvised into a complex next generation multi core

Processor. My approach to processor design is-Instruction leading

to Architecture. I have taken a subset of 20 popular instructions,

along with an innovatively developed command driven Instruc-

tion Decoder to fetch and execute each instruction. As a part of

my experimentation of implementation of Hybrid Processor on

FPGA, I have achieved further results with respect to Interfacing

Hardware modules with my Processor Core with Special Interrupt

driven Instructions (additional instructions and hardware interfac-

ing) and those will be published soon in my next research paper,

as my continued ongoing Research process & methodology of

Implementation on the proposed Xilinx FPGA target device.

References

[1]. Mrudul S. Ghaturle and R. D. Kadam “Design and Simulation of

Decoder Unit of 32-Bit RISC Processor”, International Journal for

Research in Applied Science & Engineering Technology (IJRA-

SET), ISSN: 2321-9653 Vol. 5 Issue 7, July 2017.
[2]. Mohammad Gousuddin H Maniya, Sujatha Hiremath, “Design and

Implementation o 64 bit RISC Processor on FPGA”, International

Journal of Advancement in Engineering Technology, Management
and Applied Science, ISSN: 2349-3224 Vol. 3, Issue 2, May 2016.

[3]. Priyavrat Bhardwaj, “Design& Simulation of A 32-Bit RISC Based

MIPS Processor Using Verilog”, International Journal of Research
in Engineering and Technology, Vol. 05, Issue 11, Nov. 2016.

[4]. Anu Mariam John, ShilpiVarshney, “FPGA Implementation of 32-

bit MIPS Processor with CISC Multiplication Operaton”, Interna-
tional Journal of Engineering Research and Technology (IJERT)

ISSN: 2278-0181, Vol. 4 Issue, issue 11, Nov. 2015.

[5]. Akshatha Rai K and Basavaraj H J, “Novel Design of Dual
Core RISC Architecture Implementation”, Proceedings of 3rd IRF

International Conference, 7th March 2015, Mysore, ISBN: 978-93-

82702-74-0.
[6]. S.Suresh and R.Ganesh, “FPGA Implementation of MIPS RISC

Processor”, International Journal of Engineering

Research and Technology, Vol. 3, Issue 1, January 2014.
[7]. Saraswthi P and M K Chandrasen, “Implementation Of FPGA

Based 32-Bit CISCCPU Design International Journal of Advanced

Research in Computer and Communication Engineering, Vol. 3,
Issue 2, Feb. 2014.

International Journal of Engineering & Technology 383

[8]. Wojciech Wójcik, Jacek Długopolski, “FPGA-Based Multi-Core

Processor”, Computer Science, 14 (3) 2013.

http://dx.doi.org/10.7494/csci.2013.14.3.459.
[9]. Vijay R. Wadhankar and VaishaliTehre, “A FPGA Implementation

of a RISC Processor for Computer Architecture”, National Confer-

ence on Innovative Paradigms in Engineering & Technology
(NCIPET-2012).

[10]. Harisha M. S and D. Jayadevappa, “Innovative Architecture for

FPGA based Multicore Hybrid Processor”, International Journal of
Scientific & Engineering Research, Vol. 7, Issue 6, June 2016,

ISSN 2229-5518.

[11]. Harisha M. S and D. Jayadevappa “A Survey of Various Processor
Types and Design Architectures”, International Journal of Emerg-

ing Technology and Advanced Engineering ISSN 2250-2459, Vol.

8, Issue 2, Feb. 2018.
[12]. Harisha M. S and D. Jayadevappa “A Comprehensive Survey of

Various Processor types and Latest Architectures”, International

Journal of Research and Scientific Innovation (IJRSI), Vol. 5, Is-
sue 4, April 2018, ISSN 2321–2705.

http://dx.doi.org/10.7494/csci.2013.14.3.459
http://www.rsisinternational.org/journals/ijrsi/digital-library/volume-5-issue-4/71-77.pdf?x49905
http://www.rsisinternational.org/journals/ijrsi/digital-library/volume-5-issue-4/71-77.pdf?x49905

