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Abstract 
 

Fruits quality inspection is important task on agriculture industry. Automated inspection using machine and vision technology have been 

widely used for increasing accuracy and decreasing working cost. Convolutional Neural Network (CNN) is a type of deep learning that 

had a great success in large scale image and video recognition. In this research, we investigate the effect of different deep convolutional 

neural network architectures on its accuracy in strawberry grading system (quality inspection). We evaluate different types of existing 

deep CNN architectures such as AlexNet, MobileNet, GoogLeNet, VGGNet, and Xception, and we compare them with two layers CNN 

architecture as our baseline. Here, we have done two experiments, the first is two classes strawberry classification and the second is four 

classes strawberry classification. Results show that VGGNet achieves the best accuracy, while GoogLeNet achieves the most 

computational efficient architecture. The results are consistent on both two classes classification and four classes classification. 
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1. Introduction 

Automatic fruit grades classification is very useful in sorting the 

harvest production based on the quality of the fruits. This grading 

classification for quality grading can be used for determining 

prices, fulfillment of orders with certain quality standards and also 

for other post-harvest processing. Some of the methods employed 

include high performance liquid chromatography [1], near-

infrared imaging [2], and gas sensor [3]. However, these 

approaches require expensive devices and professional operators. 

In addition, the resulting accuracy may not be satisfactory. These 

studies report accuracies below 85 %. 

 

Fruit classification using image data-based machine learning is 

another approach. This approach is cheaper because it only 

requires a digital camera for the acquisition of fruit images. Better 

accuracies are also reported (many systems achieve accuracies 

above 85 %). Support vector machine (SVM) based method was 

proposed in [4] with an accuracy of 88.2 %. A neural network 

based artificial bee colony (ABC) was proposed in [5] with an 

accuracy of 89.47 %. Better performance could be achieved by 

using more complex machine learning methods such as feed 

forward neural network in [6], or using more complex feature 

extraction such as using texture and shape features [7], and 

fractional Fourier entropy (FRFE) in [8]. 

 

Recent developments show that deep learning, as a newest 

technology in machine learning, provide better accuracy results 

than previous (shallow) machine learning algorithms. Deep 

learning has superior performance because of its ability to extract 

high-level features from raw input data due to the use of many 

non-linear functions. This feature extraction capability is obtained 

by statistical learning using neural network layers structure with 

input from large amount of image data. Recent ImageNet Large 

Scale Visual Recognition Competition (ILSVRC), an annual 

competition for object classification tasks [9], shows that winners 

from the recent years competition usually employ deep learning 

architectures, in particular Convolutional Neural Network (CNN). 

It shows excellent ability to recognize objects for ImageNet data 

[10] competition. The competition produced some superior deep 

CNN architectures such as AlexNet [11], GoogLeNet [12], 

Xception [13], VGGNet [14], MobileNet [15] compared to many 

shallow architectures such as SVM. Deep learning technology has 

been applied to many other fields such as abnormality detection 

using medical images [16], carcinoma nuclei grading [17], and 

others. In studies [18], 13 DNN layers are used to recognize the 

image of the fruit that reaches accuracy of 94.94 %. In [19], 

convolutional neural network (CNN), a variant of deep learning 

architectures, with the input of image elements of RGB (red, 

green, blue) and D (depth) are used to perform fruit and vegetable 

grading. The resulting accuracy reaches 97 %. 

 

In this paper we evaluate CNN performance for implementation 

on strawberry quality inspection. We design a simple CNN 

architecture with two convolutional layers as baseline. Then we 

evaluate and compare five popular CNN architectures for this task. 

They are AlexNet, GoogLeNet, VGGNet, Xception, and 

MobileNet. The rest of the paper is organized as follows. Section 

2 introduces the evaluated architectures. Section 3 details the 

experimental setup. Section 4 shows the result and discussion. We 

conclude the paper in section 5. 
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2. Evaluated Architectures 

We evaluated the performance of some deep learning 

architectures, especially CNN algorithm for strawberry quality 

inspection. A typical CNN architecture consist of several 

convolutional layers followed by fully connected networks. First 

we design simple convolutional neural network with two 

convolutional layers and on top of that we stack two fully 

connected layers as baseline architecture. Then we also evaluate 

five popular CNN architectures: AlexNet, VGG-16, GoogLeNet, 

Xception, and MobileNet. The detail explanation of each network 

is described in this section. 

 

2.1. Baseline CNN 
 

As baseline on this research, we used simple CNN architecture 

with two convolutional layers and two fully connected layers on 

the top of the convolutional layers as depicted on Fig. 1. This 

architecture uses 3x3 convolution filter with stride 2. Max pooling 

was applied over a 2x2 pixel window on the second convolutional 

layer. Dropout 20% was applied to the first convolutional layer 

and dropout 50% was applied on first fully connected layer to 

avoid overfitting problem.  

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: Baseline CNN Architecture 
 

2.2. AlexNet 
 

AlexNet [11] was first proposed to perform classification of 1.2 

million high resolution images in the LSVRC-2010 ImageNet 

contest. The big numbers of images have to be classified to 1000 

different classes of object. The proposed deep neural network has 

60 million parameters and 650,000 neurons. Training is made 

faster by using non-saturating neurons and a very efficient GPU 

implementation of the convolution operations. In the ILSVRC-

2012, the proposed neural network system achieved the top 5 

among participants. The networks achieved a test error rate of 13.3 

%. After the publication, AlexNet has been used on many tasks 

such as object detection [20], image segmentation [21], and video 

classification [22]. 

 

 

 

 

 
 

 

 

 

 

 

Fig. 2: AlexNet Architecture 

 

AlexNet has relatively simple layout, as can be seen on AlexNet 

architecture on Fig. 2 [11]. It consists of five convolutional layers 

and three fully connected layers. Some of convolutional layers are 

followed by max-pooling layers. Convolutional process uses filter 

size 11x11 with stride 4 pixel on first layer, 5x5 on second layer, 

and 3x3 on the remaining layers. The output of the last fully 

connected layer is fed to a softmax function. ReLU (Rectified 

Linear Unit) is used as activation function in each of convolutional 

layer. AlexNet also apply local response normalization after 

applying  ReLU in certain layers. AlexNet use data augmentation 

and dropout to reduce overfitting on image data. Data 

augmentation is artificially enlarge dataset using some 

transformation such as image translation, horizontal reflections, 

and altering the intensities of the RGB channels. Dropout is a 

process to set the output become zero value of each hidden 

neuron, to reduce complexity of the co-adaptations of neurons. 

AlexNet uses dropout in the first two fully connected layers with 

probability 0.5.  

 

2.3.  VGGNet 
 

VGGNet is one of the deep learning architectures proposed by 

VGG team for their ImageNet Challenge 2014 submission [14]. 

VGGNet investigate the effect of the convolutional network depth 

on its accuracy for this contest. The submission achieved the first 

and the second places in the localization and classification. 

VGGNet improves AlexNet by adding the network depth. In 

VGGNet, the number of convolutional layers are added. There are 

some configurations of VGGNet, depend on number of 

convolutional layers in the networks. On this research, we used 

VGG-16, that consists of 13 stacks of convolution layer which is 

followed by 3 fully-connected layers and the final layer is the soft-

max layer. VGG-16 makes  the improvement over AlexNet by 

replacing large kernel size filters (11x11 in the first convolutional 

layer and 5x5 in the second convolutional layer) with multiple 3x3 

sized filters with stride 1 for all convolutional processes. All 

hidden layers are equipped with ReLu (Rectified Linear Unit). 

Unlike AlexNet, there is no local response normalisation (LRN) in 

VGGNet because LRN leads to increased memory consumption 

and computation time [14]. Some of the convolutional layers is 

followed by max-pooling, performed over 2x3 pixel window with 

stride 2. VGG-16 architecture can be seen on Fig.3 [14]. 

 

 

 

 

 

 

 

 

 

 
Fig. 3: VGGNetArchitecture 

 

2.4. GoogLeNet 

 
GoogLeNet is a deep convolutional neural network architecture 

that proposed by Szegedy et al. for ILSCVR 2014 competition 

[12]. GoogLeNet improved accuracy while keeping computational 

load constant by inscreasing not only the depth of the networks 

but also the width of the networks [12]. The performance at the 

2014 ILSVRC achieved error rate of 6.67 %, put it in first place 

among participants.  

 

The most common way for improving performance of deep neural 

network is by increasing the size of the network. It includes the 

number of layers (depth) and the number of units in each layer 

(width) of the network. Increasing size of network has some 

drawbacks. It would increase the number of parameters to train 

and as the consequences, it require more computational resources. 

These problems can be solved by moving from fully connected to 

sparsely connected architectures, even inside the convolutions 

[12]. GoogLeNet solves it by utilizing inception module. 

Inception module uses a parallel combination of 1x1, 3x3, and 

5x5. 1x1 convolutions are used to compute reductions before 

expensive 3x3 and 5x5 convolutions. Single inception module can 

be seen on Fig.4 [12]. GoogLeNet architecture uses 9 inception 
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modules, consists of 22 layers deep when counting only layers 

with parameters. Beside the 22 layers deep network if we count 

only layers with parameters, there are also 5 pooling layers (four 

max pooling layers and one average pooling layer). Average 

pooling with 5x5 filter size and stride 3 is used before the 

classifier. GoogLeNet use dropout layer with 70% ratio of 

dropped outputs. The ReLU is used in all convolutional layers, 

including inside the inception modules. The complete schematic 

of GoogLeNet architecture is depicted in Fig. 5  [23]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Inception Module 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Fig. 5: GoogLeNet Architecture 

2.5. Xception 

Xception (short form of extreme inception) was proposed by 

Franois Chollet in 2017 as an improvement of GoogLeNet. On 

this architecture, the standard Inception modules are replaced by 

depthwise separable convolutions (extreme version of Inception 

module). This architecture slightly outperform inception V3 on the 

ImageNet dataset and outperforms Inception V3 on a larger image 

classification dataset significantly [13]. 

The Xception architecture based entirely on depthwise separable 

convolutional layers. Depthwise separable convolutional almost 

identical with extreme form of inception module such as depicted 

on Fig. 6 [13]. The differences between depthwise separable 

convolution and extreme inception is depthwise separable 

convolutions perform wise spatial convolution first, and then 1x1 

convolution, whereas inception performs the 1x1 convolution first. 

The Xception architecture has 36 convolutional layers. These 

layers are structured into 14 modules. All modules have linear 

residual connection, except for the first and last modules, as 

depicted on Fig. 7 [13]. The data first goes through four modules 

on entry flow, then through eight modules on middle flow, and 

finally through two modules on the exit flow. 

 

 
 

 

 

 
Fig. 6: Extreme form of inception module 

2.6. MobileNet 

The MobileNet is one of CNN architectures that is proposed for 

mobile and embedded vision applications [15]. MobileNet 

structure is built on depthwise separable convolutions except for 

the first layer which is a full convolution [15]. MobileNet has 28 

layers. All layers, except the final layer, are followed by a batch 

normalization and ReLu. The final layer is a fully connected layer 

that feeds into a softmax layer for classification. Average pooling 

is used before the fully connected layer to reduce the spatial 

resolution to 1. MobileNet architecture is depicted on Fig. 8 [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8: MobileNet architecture 

3. Experimental Setup 

For experiments, we collect a number of image data that are 

grouped into binary classes and four classes labels. Then the data 

are preprocessed and some of them are used to train six types of 

CNN architectures, while the rest are used as test data. Simple 

diagram of our research methods can be seen on Fig. 9.  

 

 

 

 

 

 

 

 

Fig. 9: Research Method 
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Fig. 7: Xception Architecture

On conventional machine learning algorithm, feature extraction 

process is a separate process from the classifier. It is important 

process that will determine classifier accuracy. Different with that, 

deep learning learns the features of image automatically. We do 

not need to manually extract features from the image. We only just 

feed the image to the network and the network learns to extract 

features and contextual details from the image on single process. 

We collect 1870 images of fruit using two digital cameras and 

three smartphone cameras. Original dataset consists of RGB 

images with different resolution. We group the images on two 

classes first, they are bad and good class. Overripe, damage, and 

rotten strawberries are fall into bad class, and the rest are good 

class.  

 

Then we also group the data into four classes labels, where we 

grade good class into three ranks (first, second, and third rank) and 

one class of bad strawberry (fourth rank). First rank is good 

strawberry with light red and normal shape, second rank is good 

strawberry with dark red and normal shape, and third rank is good 

strawberry with abnormal shape.  

 

In total 1870 images, our dataset consists of 1000 images with 

good quality (523 images for 1st rank, 355 images for 2nd rank, 

and 122 images for 3rd rank) and 870 images for bad quality (4th 

rank). Sample of the image data we collect can be seen on Fig. 10. 

 

On this research, we only preprocessed dataset by resizing all the 

images into fixed size 64x64 RGB images and extract the RGB 

values from each image as features. For training the system, we 

use 80% of data for training, 10 % is used for validation, and the 

remaining is used for testing. We use test accuracy to measure the 

performance of the system. We also compared training time and 

model size resulted from the training process. All of the 

architectures used same training and validation sets with number 

of learning epochs is 40 epochs and batch size is 10. This CNN 

training was implemented in python using Keras and Tensorflow 

packages. 

 

 

 

 

Fig. 10: (a) 1st rank, (b) 2nd rank, (c) 3rd rank, (d) 4th rank 

4. Result and Discussion 

The following section presents the results of the evaluated 

architectures for strawberry quality inspection. In the first 

experiment, we performed strawberry grading into two categories 

of good or bad quality. In the second experiment, strawberries was 

classified into 4 grade. The accuracies of all CNN network 

architectures are shown in Table I.  

 

As expected, binary classifications achieve higher accuracy than 

four classes classifications. The class of good and bad are more 

distinctive in color and shape making it easier to classify, while 

for four classes classification, the classes are less separable. 

 
Table 1: Accuracy (%) of CNN architectures for 2 and 4 classes  
strawberry grading 

 

Architectures Accuracy (%) 

2 classes 4 classes 

Baseline 85,61 73,33 

AlexNet 96,48 87,37 

GoogLeNet 91,93 85,26 

VGGNet 96,49 89,12 

Xception 92,63 87,72 

MobileNet 83,51 64,56 
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We notice that adding the depth of the networks may benefit the 

classification accuracies. By comparing the baseline (with 4 

layers), AlexNet (with 8 layers), and VGGNet (with 13 layers) 

that have quite similar architectures, it appears that VGGNet 

achieves the best, with AlexNet the second and baseline the third. 

The results are consistent on both two classes classification and 

four classes classification, indicating the effect of the network 

depth to the performance of the systems.  

 

We also notice that the width of the layers may also contributing 

to the performance. By comparing GoogLeNet and Xception, we 

find that Xception is superior to GoogLeNet. GoogLeNet uses 

inception modules and Xception and MobileNet uses depthwise 

separable convolutional operation. Xception slightly outperform 

GoogLeNet on this experiment. This result inline with result from 

experiment on Imagenet dataset [13]. Increasing the depth of 

network and replacing inception modules with depthwise 

separable convolution make the system better.  

 

Comparing between all of the architectures, as observed from 

Table I, VGGNet outperform all of the architecture on first and 

second experiment, with 96.49 % on first experiment and 89.12 % 

accuracy on the second experiment. VGGNet outperformed 

GoogLeNet, Xception, and MobileNet even though the three 

architectures are deeper and wider that VGGNet. These results are 

different with previous research on ImageNet dataset that 

GoogLeNet and Xception outperformed VGGNet. It maybe 

because the type of dataset used in this experiment has different 

characteristic with Imagenet dataset. MobileNet got the worst 

accuracy over all architectures maybe because the focus of the 

MobileNet architecture is for mobile and embedded vision 

applications that need smaller and faster model. 

 

Besides test accuracy, we also evaluate complexity of all 

architectures by comparing training time and size of model 

resulted from completed training. The results can be seen on Table 

II. By comparing baseline CNN, AlexNet, and VGGNet that has 

almost similar architecture with different depth, we could observe 

that the accuracy of VGGNet must be paid with the size of the 

model and training time, which is larger than baseline. But 

VGGNet still produces smaller model than AlexNet. We could 

observe from these results that complexity of the architecture is 

linearly correlated with the depth of layer.  

 

Next, we compare the size of the models from GoogLeNet, 

Xception, and MobileNet. Surprisingly, GoogLeNet is the fastest 

to train compared to others including MobileNet, and produce the 

smallest model. It maybe because of the used of 1x1 convolutions 

on the architecture. This property used for reducing the dimension 

and limiting the size of the network to decrease computational 

complexity. From these results we could say that GoogLeNet has 

the most computational efficiency. 

 
Table II: Training time and size of models 

Architectures Training time Size of  Model (MB) 

 Baseline  1840.26 3271.42 

 AlexNet  4834.90 357.1 

 GoogLeNet  853.29 0.6 
 VGGNet  5391.08 167.2 

 Xception  9076.54 479.0 

 MobileNet  3271.42 479.0 

From Tables I and II, we can see that every architecture has 

advantages and drawbacks. Among the six architectures, 

GoogLeNet shows fastest speed and smallest model size. 

GoogLeNet has computational efficiency, so that this model can 

be run on devices with limited computational resources, especially 

with low memory. VGGNet has the best accuracy but it need more 

training time and it has big size of model. We can choose type of 

architecture to be implemented, depend on the kind of model 

implementation. When the training time and memory devices is 

important concern, using GoogLeNet model could be a good 

choice. When accuracy is the most important thing, VGGNet is 

the best choice. On our research, model will be implemented for 

strawberry quality inspection with web and desktop based. In our 

system, size of model and computation complexity is not a big 

problem but accuracy is the most important thing. So we choose 

VGGNet as our classifier. Graph of train and validation accuracy 

of VGGNet on every epoch can be seen on Fig. 11.  

 
Fig.11:  Accuracy vs epoch on VGGNet architecture 

Fig. 11 shows that validation accuracy increased rapidly at the 

first 3 epoch and than increased slowly until around 30th epoch 

and tend to stable with a little fluctuation from 30 epoch to 40 

epoch.   

5. Conclusion  

This paper present the evaluation of deep learning technology, 

especially deep convolutional neural network architecture for 

strawberry quality inspection. We evaluated six types of 

architecture, baseline CNN, AlexNet, GoogLeNet, VGGNet, 

Xception, and MobileNet. The performance of these architectures 

is measured on a dataset representing 4 class categories. From the 

experiment we have got that VGGNet achieves the highest 

accuracy. The results prove that the depth of layer in CNN can 

improve the accuracy. The used of inception module on 

GoogLeNet not only increasing the depth but also the width of the 

network. This property significantly reduce computational 

complexity without significant performance penalty. 
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