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Abstract 

 

Recently, searching over encrypted cloud-data outsourcing has attracted the current researcher. Using cloud computing (CC), individuals 

and organizations are motivated to outsource their private and sensitive data onto the cloud service provider (CSP) due to less 

maintenance cost, great flexibility, and ease of access.  However, the data should be encrypted using encryption techniques such as DES 

and AES before uploading to the CSP in order to provide data privacy and protection, which obsolete plaintext searching techniques over 

encrypted cloud data. Thus, this article proposes an efficient multi-keyword synonym-based ranked searching technique over encrypted 

cloud data (EMSRSE), which supports dynamic insertion and deletion of documents. The main objectives of EMSRSE are 1. To build an 

index search tree in order to store encrypted index vectors of documents and 2. To achieve better searching efficiency, a searching 

technique over the encrypted index tree is proposed. An extensive research and empirical result analysis show that the proposed 

EMSRSE scheme achieves better efficiency in comparison with other existing methods.  
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1. Introduction 

In the past, CC has gained more attention from industry as well as 

academic people. As it becomes a new prototypical model for IT 

organizations, it can unify large resource computing, applications, 

storage, and on-demand network admittance to a collective pool of 

reckoning resources that achieve better efficiency, great 

flexibility, ease of access, and nominal maintenance cost [1]. With 

the attracted features of CC [2], more and more individuals and 

industry people are driven to upload their data such as financial 

records, health records, photos, albums, and emails onto the CSP 

instead of procuring own hardware and software to maintain the 

data in the local systems.  As CSP cannot be trusted in terms of 

data outsourcing, the data encryption is recommended to provide 

data privacy, before it is uploaded to CSP. Since the data 

encryption does not have the answers for consumer queries on 

cloud data storage, traditional penetrating techniques cannot be 

used over encrypted searchable data in ciphertext domain. The 

existing searching techniques such as Google and Yahoo search 

over plaintext cannot be used directly over encrypted cloud data. 

To overcome this issue, the entire encrypted data can be 

downloaded to the data consumer’s local system and then decrypt. 

However, it is infeasible to apply because of high bandwidth 

utilization and computational overhead. Moreover, the data 

consumers may be interested to download only a few documents 

but not the entire document pool.  

To address above issues, researchers are proposed several 

approaches to enable searching over encrypted cloud data ([3], [4], 

[5]), Such as fuzzy, single, similarity, and multi-keyword search. 

Among them, few approaches are practical applicability. These 

schemes mainly support the exact keyword search. Assume, a user 

searches a keyword “computer”. He/ She will get zero results even 

the documents containing keywords like “system” or “laptop”. 

Though they are similar kindin the computer field. The authors in 

[6] present a model for a protected multi-keyword pursuit over 

cloud information encryption. Moreover, it supports dynamic 

update operations such as insertion and deletion. To generate the 

index and the query vector, the vector space model and Term 

Frequency-Inverse Document Frequency (TFIDF) model are 

integrated. To provide efficient multi-keyword ranked pursuit, 

they built a special index tree structure named keyword balanced 

binary tree and proposed Greedy depth-first search algorithm.  

As a result, this article dealing with how to design an efficient 

searchable encryption technique to support both the synonym-

based search and multi-keyword ranked search in order to solve 

the above addressing issues. To address the issue distinctly, this 

article presents an efficient multi-keyword synonym-based ranked 

pursuit technique over encrypted cloud data. The proposed 

EMSRSE scheme uses WordNet [7] to generate a synonym set 

that enables a feature of the keyword dictionary. In addition, this 

scheme adapts a technique [8] to encrypt index vectors of 

documents and query vector in order to calculate the score of each 

document through encrypted vectors.  

      The major contributions of this article are as follows: 

1. With the help of WordNet, a synonym set for a 

synonym-based search is generated in addition to multi-

keyword search.  

2. To achieve better searching efficiency in a multi-core 

processor system, a balanced searchable index tree and 

searching algorithm are proposed.  

      The rest of this article is prepared as follows: literature review 

is discussed in section 2, Problem formation is presented in 

section 3, which discuss the system model, threat model, and 
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notations.  The EMSRSE scheme design is discussed in Section 4, 

Results, performance evaluation and analysis are explored in 

section 5. And finally concluding remarks are elaborated in 

section 6.  

2. Literature survey 

Various searching techniques have been proposed over encrypted 

cloud data. S. Deshpande [9] suggests a technique searching over 

encrypted cloud data using fuzzy keywords. They are used Edit 

distance to quantify keyword similarity and developed two 

techniques for building fuzzy keyword sets in order to attain 

improved storage and depiction overheads. Cong Wang et al. [10] 

proposes a method named ranked keyword pursuit over encrypted 

cloud data using techniques such as keyword frequency and order-

preserving encryption. It supports only a single keyword at a time. 

Moreover, the keyword frequency decides the document files 

score. Rank is assigned to every file based on the relevance score 

of the corresponding file. Finally, top-ranked files are sent to users 

instead of all files. To enrich the search functionality N. Cao et al. 

[11] have proposed a system, which supports conjunctive 

keywords search. It is a privacy-preserving multi-keyword ranked 

pursuit technique using symmetric encryption. 

Various researchers are employed a technology is known as 

Searchable Encryption (SE) that enables the searching over 

encrypted cloud data. SE allows the data owner to outsource the 

encrypted data and its related index to CSP [3,5,12]. As a result, 

all legitimate users are authorized to launch a query-based 

keyword search over the ciphertext domain. Various searchable 

techniques have been proposed [3,12-15] forsalient features such 

as security, searching accuracy, and computational overhead.  The 

authors in [16] propose a model for a single keyword semantic-

based pursuit over cloud data encryption affirming similarity 

ranking. This method returns not only the exact keyword matched 

files, but also the files comprise semantically related to the query 

keyword. The creators in [4] recommend various leveled bunching 

technique to help search semantics and furthermore quick 

scrambled information search on huge information condition. 

They propose various leveled strategy bunches the record 

documents in view of the base importance edge and after that 

partitions subsequent groups into sub-groups until the point that 

the limitation on the most extreme size of the bunch is coming. 

However, the existing techniques are not well suited for the multi-

keyword ranked search (MKRS), sincetheyemphasize on the 

single or boolean-keyword search.   Primarily use a privacy-

preserving scalar-product encryption (SPE) technique [8] to 

achieve multi-keyword ranked pursuit over encrypted data in CC, 

which achieves privacy preservation. Later, the SPE technique has 

become a popular tool for SE especially to examine security and 

computation time complexity. Keyword secure search techniques 

[6,17] employ the SPE to offer flexible dynamic operation namely 

insertion and deletion [6] not only to enhance search efficiency 

but also to support the user personalization search [17]. The 

authors in [18] present two techniques to support multi-keyword 

ranked pursuit to attain more accurate pursuit results and the 

synonym-based pursuit to support synonym queries over 

encrypted cloud data. The improved semantic feature extraction 

scheme E-TFIDF proposes by incorporating features extraction 

technique TFIDF that expands the accuracy of pursuit results. 

Veerraju et al. [19] present a complete study of keyword searching 

on encrypted cloud data and discuss the comparison of various 

schemes in terms of security.   

To accomplish high efficiency and better precision over encrypted 

cloud data as, like plain-text search, research has been done. Wang 

et al. [10] suggest a secure ranked keyword pursuit technique that 

finds ranked keyword search to consider the keyword score 

relevancy. Boldyreva et al. [20] propose an Order-Preserving 

Encryption (OPE) scheme to accomplish ranked results. However, 

this scheme does not support trapdoor unlinkability. Sun et al. [21] 

offer a multi-keyword search method that uses keyword score 

relevancy and multidimensional tree to attain an efficiency of 

query searching. Yu et al. [22] suggest a secure multi-keyword 

top-k retrieval method, to retrieve top-k documents from CSP that 

employs homomorphic encryption to encrypt index vector and 

query vector in order to confirm high security. Offer a privacy-

preserving multi-keyword ranked system for multi-keyword 

ranked pursuit over encrypted cloud data (MRSE) that uses 

coordinate matching. 

3. Problem formation 

3.1. System model 

In this article, the system model comprises three entities: 1. the 

data owner, 2. Data consumer, and 3. CSP as shown in Figure 1.  

The data owner (DO) has a pool of documents with sensitive 

information to outsource to the CSP. DO creates a dictionary 

based on keywords mined from all m documents based on Term 

Frequency Inverted Document Frequency (TFIDF) [23] In 

addition, this scheme generates the synonyms for each keyword 

through WordNet [7] that creates a keyword-synonym dictionary 

using keywords and corresponding synonyms. Using Equ.(1), the 

index vector is created for each document based on the keyword-

synonym dictionary with the help ofthe term frequency (TF) 

weight of the keyword. To improve searching efficiency, a 

searchable balanced index tree is built for the document pool. To 

protect index tree privacy, data owner encrypts the index tree 

before uploading to CSP. In addition, all documents also 

encrypted using any standard encryption algorithm [24-25]. 

Afterward, the data owner uploads the encrypted document pool 

and index tree to the CSP. DO builds the trapdoor using query 

keywords of the legitimated data consumer and then sends 

decryption keys and trapdoor to him/her. Besides, the data owner 

also responsible to update the index tree based on insertion or 

deletion of documents.  

Data consumer sends interested search keywords to DO and 

receives trapdoor from him. He/she sends trapdoor to the CSP and 

receives top 𝑘 ranked encrypted documents from it. By then, 

He/she decrypts the documents using decryption keys.  

The CSP stores the encrypted document pool and index tree of 

DO. Upon receiving the trapdoor from the data consumer, the CSP 

searches trapdoor over an encrypted index tree to obtain the top 

score ranked documents, in turn, returns top k ranked encrypted 

documents to the data consumer. Besides, the CSP also 

responsible to update the index tree and a document pool based on 

update information received from the DO.   

Cloud Service Provider 

(CSP)
1. Encrypted 

Documents

2. Encrypted 

Index Tree

3. Search Query Keywords

4. Search Control, Access Control

5. Trapdoor

6. Top Ranked 

Documents

Data Owner
Data Consumer

 
Figure 1: System architecture 

3.2. Notations 

𝐷𝑃: Document pool, denoted as a pool of m documents 𝐷𝑃  =
 (𝐷1, 𝐷2, . . . , 𝐷𝑚). 
𝐸𝑃: Encrypted document pool stored in the CSP, denoted as a 

collection of m documents 𝐸𝑃 = (𝐶1, 𝐶2, . . . , 𝐶𝑚). 
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𝐷𝐼𝐷: The identity pool of encrypted documents 𝐸𝑃 denoted 

as 𝐷𝐼𝐷  =  (𝐷𝐼𝐷1, 𝐷𝐼𝐷2, . . . , 𝐷𝐼𝐷𝑚). 

𝐹: The unencrypted form of index vectors for 𝐷𝑃, denoted as 

a collection of m 𝐹 =   (𝐹1, 𝐹2, . . . , 𝐹𝑚). 
𝐼: The encrypted form of index vectors for F, denoted as a 

collection of m 𝐼 =  (𝐼1, 𝐼2, . . . , 𝐼𝑚). 
𝐷: Keyword-synonym dictionary, it contains n keywords and 

t synonyms of each keyword, denoted as  

𝐷𝑛×𝑡  =  (𝑤11, 𝑤12, . . . , 𝑤1𝑡  
𝑤21, 𝑤22, . . . , 𝑤2𝑡  . . . 
𝑤𝑛1, 𝑤𝑛2, . . .  𝑤𝑛𝑡)  

Ʈʹ: The encrypted form of balanced index tree stored in CSP, 

it is built using 𝐼. 

𝑊: The keywords in the query entered by a data consumer.  

𝑄: The query vector for keyword collection W. 

𝑇𝑊: The encrypted form of Q, named as a trapdoor.  

𝑇𝐹: The sum of keyword frequency and corresponding 

synonyms (in keyword-synonym dictionary) frequency in the 

document. 

𝐿𝑘: It is a list to store retrieved top K document files in 

descending order according to the relevance score. 

AK: Least score in the 𝐿𝑘 

3.3. Preliminaries 

The TFIDF [23] model is employed in order to retrieve ranked 

search results, which are used in searchable encryption schemes. 

In this article, term frequency (𝑇𝐹) is the sum of keyword 

frequency and corresponding synonyms frequency within a 

document. The inverse document frequency (IDF) shows the 

prominence of the term in the entire document pool. The relevance 

score of a keyword to a document is expressed as follows [28]: 

 

𝑆𝑐𝑜𝑟𝑒(𝑤𝑖 , 𝐷𝐽) =  
1

|𝐷𝐽|
(1 + ln 𝑓𝐽,𝑤𝑖 

) ln(1 +
𝑚

𝑓𝑤𝑖

)    ---        (1) 

 

Where 𝑓𝐽,𝑤𝑖 
means the term frequency of a keyword 𝑤𝑖 in the 

document 𝐷𝐽, 𝑓𝑤𝑖
 Denotes the number of documents having the 

keyword𝑤𝑖, 𝑚denotes the number of documents and |𝐷𝐽| denotes 

the number of indexed keywords.  

Each document in the document pool is represented by the vector 

know as index vector, whose elemental values are calculated using 

Equ.(1). Moreover, the vector called the query vector that has IDF 

values of search query keywords represents the query. In the 

article [8], the authors suggest a secure k-nearest neighbor method 

to encrypt index and query vectors. It can encrypt two vectors and 

calculates the score between them. Firstly, the secret key 

(𝑆, 𝑀1, 𝑀2) is created. Where, 𝑆 is a bit vector used to split the 

index and query vectors into two random vectors each. The 

objective of the random vector generation is to ensure keyword 

anonymity in the plaintext vector. To encrypt the split vectors, two 

invertible matrices (𝑀1 and 𝑀2)are utilized. The computation and 

security of this encryption method can be cited to[8].   

3.4.EMSRSE Design 

The EMSRSE scheme compromises of four phases namely, 1. 

Setup, 2. GenerateIndexTree, 3. GenerateTrapdoor, and 4. Search. 

The detailed description is as follows: 

Setup: DO generates the secret key SK={M1, M2, S}to encrypt the 

index and query vectors, where M1 and M2 are two invertible 

matrices and S is a bit vector. 

GenerateIndexTree(𝐷𝑃, SK): Using BuildBalancedIndexTree(m, 

𝐷𝑃) algorithm 1, DO bulids the unencrypted index tree based on 

index vectors of 𝐷𝑃. By then, each index vector Fu at node u is 

encrypted using SK. Initially, Fu is split into 𝐹𝑢
′  and 𝐹𝑢

′′using S bit 

vector. If S[i]=0 then, 𝐹𝑢
′  and 𝐹𝑢

′′ are set as same as Fu[i]. If S[i]=1 

then, 𝐹𝑢
′  and 𝐹𝑢

′′ are set to two random values whose sum 

equivalent to Fu[i]. Later, 𝐹𝑢
′  and 𝐹𝑢

′′ are encrypted using M1 and 

M2 as Iu={𝑀1
𝑇. 𝐹𝑢

′ , 𝑀2
𝑇 . 𝐹𝑢

′′}. Using the same process, all the index 

vectors within the tree are encrypted in order to generate an 

encrypted index tree. 
  

3.5. Algorithm 1: Build Balanced Index Tree(m, 𝐃𝐏) 

Input: m &𝐷𝑃 

Output: root node  

Begin  

1. For each document 𝐷𝑖 in 𝐷𝑃 do 

 Create a leaf node L for document𝐷𝑑,                 𝐿. 𝐼𝐷 =
𝐺𝑒𝑛𝐼𝐷(),  

𝐿. 𝑐ℎ𝑖𝑙𝑑[𝑖] = 𝑛𝑢𝑙𝑙𝑓𝑜𝑟 𝑖
= 1 𝑡𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑏, 

𝐿. 𝑑𝑖𝑑 = 𝑑𝑖𝑑, 𝐹𝑑[𝑗] = 𝑆𝑐𝑜𝑟𝑒(𝑤𝑗 , 𝐷𝑑) 𝑓𝑜𝑟 𝑗

= 1 𝑡𝑜 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 𝑛; 
Insert L into CurrentNodePool; 

2. End for; 

3. While (|CurrentNodePool|>1) do  

   For each b nodes 𝑢1, 𝑢2, . ., 𝑢𝑏 in  CurrentNodePool  

      Generate a parent node V such that        𝑉. 𝐼𝐷 =
 𝐺𝑒𝑛𝐼𝐷(), 𝑉. 𝑐ℎ𝑖𝑙𝑑[𝑗] =  𝑢𝑗  𝑓𝑜𝑟 𝑗 =

1 𝑡𝑜 𝑏 𝑛𝑜𝑑𝑒𝑠𝑉. 𝑑𝑖𝑑 = 𝑛𝑢𝑙𝑙, 𝑎𝑛𝑑  
         D[i] = max{ui.F[j] for i=1 to b} for each j=1 to n;      

/* D is index vector of node V   */                                

End for; 

         Insert V to TempNodePool; 

   End for; 

Generate a parent node V with the remaining 

nodes (<b) in CurrentNodePool like above; 

Insert V to TempNodePool; 

CurrentNodePool= TempNodePool; 

TempNodePool=0; 

4. End while; 

5. Return node left in CurrentNodePool as root; 

6. End; 

GenerateTrapdoor(W): Based on interested keywords of the data 

consumer, the query vector Q is generated using D. If keyword 

available within D then, IDF value of the keyword is set to the 

corresponding dimension of the Q, otherwise set to zero. Q is split 

into 𝑄′and 𝑄′′ using S. The splitting process is as same as index 

vector splitting but in reverse. Finally, the 𝑄′and 𝑄′′are encrypted 

using M1 and M2 to generate trapdoor as TW= {𝑀1
−1 . 𝑄′, 

𝑀2
−1. 𝑄′′}. 

Search(TW, Ʈʹ): Using TopK_search(u,l) algorithm 2, the CSP 

searches the trapdoor TW over encrypted index vector Ʈʹ in order 

to generate top K ranked documents. At each node u of the Ʈʹ, the 

relevance score between the encrypted index vector and trapdoor 

is calculated using the inner product as follows: 

Relevance(Iu, TW) = {𝑀1
𝑇. 𝐹𝑢

′ , 𝑀2
𝑇 . 𝐹𝑢

′′} × {𝑀1
−1 . 

𝑄′, 𝑀2
−1. 𝑄′′} 

                                  = {𝑀1
𝑇. 𝐹𝑢

′ . 𝑀1
−1 . 𝑄′} + 

{𝑀2
𝑇 . 𝐹𝑢

′′. 𝑀2
−1. 𝑄′′} 

                                  = {𝐹𝑢
′𝑇. M1×𝑀1

−1 . 𝑄′ }  + { 

𝐹𝑢
′′𝑇. M2 ×𝑀2

−1. 𝑄′′} 

                                  = 𝐹𝑢
′𝑇. 𝑄′ + 𝐹𝑢

′′𝑇 . 𝑄′′ 

                                  = 𝐹𝑢
𝑇. 𝑄 

                                  = RelevanceScore(Fu, Q) 

The search process is illustrated in Figure 2 using query vector Q 

= (0.91, 0, 0.8, 0.45) and K=3. It returns top 3 documents as D15, 

D7, and D8. The red cross mark indicates that the search process 

stops at L21. 

Note: The relevance score between the encrypted index vector and 

trapdoor is as same as between unencrypted index vector and 

query vector.  
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Figure 2: An example of the balanced index tree with the search process 

3.6. Algorithm 2: TopK_search(u, l) 

Input: node u & level l 

Output: top-ranked list 𝐿𝑘 

Begin  
1. If (𝑢 != leaf) then 

    If (RelevanceScore (Fu, Q) > Ak) then 

Compute the scores of children and then sort in 

descending order 

       For i=1 to children of u do 

                            TopK_search(u.child[i], l+1) 

                      End for; 

 Else 

                     Return; 

                    End if; 

2. Else 

   If(|𝐿𝑘|  < 𝐾) then 

     Insert document 𝐹𝑑 into 𝐿𝑘 according to Score (Fu, Q); 

   Else 

         If (RelevanceScore (Fu, Q) > Ak ) then 

                 Delete Ak from RankedList 𝐿𝑘; 

                  Insert document 𝐹𝑑 into 𝐿𝑘 according to 

RelevanceScore (Fu, Q); 

         Else 

           Return; 

         End if; 

    End if; 

Sort 𝐿𝑘𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟; 
3. End if; 

4. Return 𝐿𝑘; 
End; 

3.7. Balanced index tree update 

The balanced index tree needs to update after the insertion or 

deletion of a document. The update operation is based on the 

identity of a document, but not required to access document data. 

The update process is as follows: 

{Ʈʹ
𝑠
, 𝐶𝑖𝑑} = GenTreeUpdateInfo (𝑆𝐾,Ʈ

𝑠
, 𝑖𝑑, 𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑦𝑝𝑒): This 

procedure returns tree-update information,{Ʈʹ
𝑠
, 𝐶𝑖𝑑}, in turn, send 

to the CSP. Here, Ʈʹ
𝑠
 is updated sub-tree and 𝐶𝑖𝑑 is an encrypted 

document. The parameter UpdateType ϵ {insert, delete} indicates 

either insertion or deletion of a document 𝐷𝑖𝑑 in the index tree. 

Ʈ
𝑠
indicates a set of nodes to update. In order to ease the 

communication cost, the data owner stores a copy of the 

unencrypted index tree.  For example, if you wish to delete the 

document 𝐷12 from the index tree shown in Figure 2, then 

UpdateType equals to delete and the sub-tree Ʈ
𝑠
 contains a set of 

nodes {𝐿22, 𝐿1}. The DO deletes the leaf node, which contains 

document identity 12 and index vector and then updates the index 

vectors of the nodes L22 and L1 in order to update Ʈs. While 

deletion, the index tree may be unbalanced. To avoid this, DO 

replaces the deleted node with a dummy node. Moreover, its 

identity is set to null and index vector elemental values are set to 

zero. Finally, the data owner encrypts the index vectors in Ʈ
𝑠
 

using 𝑆𝐾 in order to generate an encrypted sub-index tree Ʈʹ
𝑠
 and 

𝐶𝑖𝑑 set to null. If UpdateType is equal to insert, then the DO work 

is to create a leaf node with the document identity 𝑖𝑑 for the new 

document 𝐷𝑖𝑑. Using keyword-synonym dictionary, DO generates 

index vector for new document and inserts this new leaf node 

intoƮ
𝑠
. However, it also updates vectors of other nodes in the sub-

tree Ʈ
𝑠
.   Preferably, DO replaces the dummy nodes with new leaf 

nodes. Finally, sub-tree Ʈ
𝑠
 encrypted using 𝑆𝐾 in order to generate 

Ʈʹ
𝑠
 and the document 𝐷𝑖𝑑 is encrypted in order to generate𝐶𝑖𝑑.  

{Ʈʹ, 𝐶ʹ} = UpdateIndexTree (Ʈ, 𝐶, UpdateType, Ʈʹ
𝑠
, 𝐶𝑖𝑑): CSP runs 

this procedure to replace sub-tree Ț
𝑠
 (encrypted sub-tree in the Ʈ) 

with  Ʈʹ
𝑠
 in order to generate Ʈʹ. If the update operation is 

insertion, then the CSP inserts the encrypted document𝐶𝑖𝑑 into 𝐶 

to generate new 𝐶ʹ. If the update operation is deletion, then CSP 

deletes the 𝐶𝑖𝑑 from 𝐶 to generate new 𝐶ʹ.  

4. Results and discussions 

This section presents the result analysis of the proposed index tree 

that constructively proposes a search algorithm over the encrypted 

search tree. The experiments are conducted for existing scheme 

BDMRS [6] and SMSRQE [28] in addition to the proposed 

EMSRSE. To compare and analyze the performance of the 

proposed scheme, schemes are implemented in Java language 

using Spring Tool Suite (STS) and tested on OpenStack instance 

with a flavor of 2.20 GHz Intel Core(TM) i5 processor and 8GB 

RAM. In addition, the secret key (M1, M2, S), and the dictionary 

are stored in a text file on the data owner system. To acquire more 

accurate and efficient analysis, all the tests are conducted on three 

datasets namely, National Science Foundation research awards 

[31], Internet Request for Comments (RFC) [29], and own created 

dataset.  Moreover, the performance of the proposed method 

EMSRSE in comparison with other existing methods SMSRQE 

and BDMRS is estimated using efficiency. 

4.1. Efficiency 

Using time cost, the proposed scheme’s efficiency is measured to 

generate an encrypted index tree, trapdoor, and searching over the 

encrypted tree.  

4.2. Encrypted index tree building 

The time required to construct an encrypted index tree incurs an 

index vector generation for 𝑑𝑝, unencrypted index tree 

construction, and finally building an encrypted index tree. To 

generate index vector for each document within 𝑑𝑝, dictionary 

keywords and synonyms are searching within the corresponding 

document, based on the availability of the term index vector is 

created. Using the proposed index tree-building algorithm, the 

unencrypted index tree is built with index vectors.  Finally, the 

index vector at every node is encrypted using the secret key, 

which involves a vector splitting operation, two matrices 

transpose, and two multiplications of size (n × n) in order to 

generate an encrypted index tree.  To compare dependency on 

dataset size (MB), the encrypted index tree is built for three 

different size datasets with a fixed number of keywords equal to 

2000 as shown in Figure 3.  



740 International Journal of Engineering & Technology 

 

 
Figure 3: Time for index tree building for different size datasets and a 
fixed number of dictionary keywords |n × t| = 2000×3. 

 

Searching dictionary terms within a large size document consume 

more time. As a result, EMSRSE-RFC consumes more time in 

comparison with EMSRSE-NSF and EMSRSE-Own due to the 

size of RFC dataset is more when compared to NSF and Own 

datasets, it is observed in Figure 3. Moreover, EMSRSE-NSF 

consumes more time in comparison with EMSRSE-Own because 

the size of the NSF dataset is more when compare to Own dataset. 

In addition, EMSRSE-NSF and EMSRSE-Own lines are linear 

with a number of documents in the dataset because dataset size 

and documents are increasing linearly, but the EMSRSE-RFC line 

is nonlinear. The dataset size and time cost are compared in Figure 

3.  

The time cost to build the index tree for a different size document 

pool with a fixed number of dictionary keywords |n × t| = 2000×3 

for the proposed index tree in comparison with existing BDMRS 

[6] and SMSRQE [28] is shown in Figure 4(a).It shows that time 

cost to build index tree for proposed EMSRSE consumes less time 

when compared to existing BDMRS scheme due to the more 

number of internal nodes generates while building BDMRS index 

tree when compare to EMSRSE index tree. The SMSRQE 

consumes less time in comparison with proposed EMSRSE due to 

EMSRSE encrypts vector at internal nodes in addition to 

document vectors, whereas SMSRQE encrypts only document 

vectors but it is one-time work at data owner. Moreover, the time 

cost to construct index tree is linear with the number of 

documents, which is observed from the Figure 4(a).  

 
    (a)                                                                                      (b) 

Figure 4: Time to build index tree (a) for a different size document pool 
with a fixed number of dictionary keywords |n × t| = 2000×3. (b) For the 

different sizes of dictionary keywords with fixed size document pool |m|= 

1000. 
 

The time cost to build index tree for different sizes of dictionary 

keywords and fixed size document pool |m| = 1000 for the 

proposed EMSRSE scheme in comparison with other existing 

methods BDMRS and SMSRQE is shown in Figure 4(b). In 

Figure 4(b), EMSRSE consumes less time in comparison with 

existing BDMRS scheme due to 2001 index vectors need to 

encrypt in the BDMRS scheme whereas only 1251 index vectors 

need to encrypt in the EMSRSE scheme in order to construct 

encrypted index tree. Moreover, the SMSRQE scheme consumes 

less time in comparison with EMSRSE due to only1000 index 

vectors need to encrypt in SMSRQE. In addition, no need to 

construct an index tree in the SMSRQE scheme.  The Figure 4(b) 

shows that the time cost to build the index tree is almost 

proportional to the number of keywords in the dictionary. 

 
Figure 5: Time cost to build the index tree for a different number of 
documents and nodes with a fixed number of dictionary keywords |n × t| = 

2000×3. 
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The Time cost to build the index tree for a different number of 

documents and index tree nodes with a fixed number of dictionary 

keywords |n × t| = 2000×3 for the proposed EMSRSE scheme in 

comparison with existing scheme BDMRS is shown Figure 5. 

From the Figure 5, the proposed EMSRSE consumes less time 

when compared to existing BDMRS scheme due to the less 

number of internal nodes are generated to build EMSRSE index 

tree when compare to BDMRS index tree. Moreover, the number 

of nodes required for each set of documents to generate index tree 

are compared in Table 1for both schemes. Figure 5 shows that the 

time cost to construct index tree is linear with the number of 

documents and number of nodes in the index tree. 
 

Table 1: Time to Build an Index Tree for a Different Number of 

Documents and Nodes with a Fixed Number of Dictionary Keywords |n × 
t| = 2000×3 

S.N

o 

Numbe

r of 

Keywo

rds 

fixed 

Number 

of 

Docume

nts 

Numb

er of 

nodes 

in the 

BDM

RS 

Tree 

Time 

for 

BDMR

S(s) 

Numbe

r of 

nodes 

in the 

EMSR

SE 

Tree 

Time for 

EMSRS

E(s) 

1 2000 100 202 84.9 125 76.2 

2 2000 200 402 152.8 251 148 

3 2000 300 603 220.4 376 220.7 

4 2000 400 802 293.7 501 275.1 

5 2000 500 1001 387.4 625 334.2 

6 2000 600 1203 457.9 750 406.3 

7 2000 700 1402 536.7 877 488.4 

8 2000 800 1602 607.4 1002 551.5 

9 2000 900 1804 688.1 1127 654 

10 2000 1000 2001 765.5 1251 700.2 

11 2000 1200 2403 904.3 1501 838.1 

12 2000 1400 2802 1073.8 1752 972.3 

13 2000 1500 3002 1156.9 1876 1050.2 

14 2000 1600 3202 1237.1 2001 1126.3 

15 2000 1800 3604 1385.8 2251 1224.7 

16 2000 2000 4001 1646.1 2501 1404.1 

4.3.Storage efficiency 

The space complexity of the proposed balanced encrypted index 

tree depends on the number of nodes created for the index tree and 

dictionary size. The index tree nodes, in turn, depends on the 

number of documents. In an encrypted index tree, every node 

stores two vectors of dictionary size n. Thus, the space complexity 

of the proposed index tree is (2×n×o), where o is the number of 

nodes in the index tree, i.e. O (no). However, each vector element 

consumes eight bytes of storage due to a vector defined as double 

in Java language. As shown in Table 2(a), when the number of 

keywords is fixed (n=2000), the storage cost of the index tree is 

increasing with the number of documents. The Table 2(b) shows 

that the storage cost of index tree increasing with the number of 

keywords when fixed number of documents (m=1000). The Table 

2 shows that the proposed EMSRSE index tree consumes less 

storage cost when compared to existing BDMRS index tree.  

 
Table 2: Storage cost of Index tree 

   
(a)  

    
(b) 

4.4. Trapdoor generation 

The trapdoor generation incurs two matrices’ (M1 and M2) inverse 

of size (n × n), query vector generation, query vector splitting 

operation, and two multiplications of size (n × n) matrix. The time 

complexity for matrix inverse is O (n3) and matrix multiplication 

O (n3). Thus, the overall time complexity for trapdoor generation 

is O (n3) as shown in Figure 6(a). The Figure 6(a) shows that the 

graph is equivalent to y=x3. The time required to generate trapdoor 

for a different number of dictionary keywords for proposed 

EMSRSE in comparison with other existing methods BDMRS and 

SMSRQE is shown in Figure 6(a). 

The Figure 6(a) shows that the time cost for all the three schemes 

almost equal in order to generate trapdoor for a different number 

of dictionary keywords.  

 
    (a) 

     
 (b) 

Figure 6: Time cost to generate trapdoor (a) for a different number of 
dictionary keywords. (b) For a different number of query keywords with a 

fixed size dictionary keywords |n| = 2000. 

 

The time cost to generate trapdoor for a different number of query 

keywords with a fixed size dictionary keywords |n| = 2000 for all 

the three schemes are compared in Figure 6(b). The Figure 6(b) 

shows that the query keywords are not a significant influence in 

the trapdoor generation. Moreover, all the three schemes are 

consumed almost equal time to generate trapdoor for a different 

number of query keywords.  

4.5. Search efficiency 

During search over an encrypted index tree, if the score at node u 

is larger than the minimum score in the resultant ranked list Lk, the 

CSP examines the children of node u; else, it returns. As a result, a 
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large number of nodes are not examined during the real search 

process.  

The time cost to search over an encrypted index tree for a different 

number of documents with a fixed number of dictionary keywords 

|n| = 2000 for all the three schemes is compared in Figure 7(a). 

From the Figure 7(a), the proposed EMSRSE scheme consumes 

very less time when compared to existing BDMRS and SMSRQE 

due to the proposed balanced index tree and search algorithm over 

an encrypted index tree. 

 
(a) 

 
 (b) 

Figure 7: Time cost to search over an encrypted index tree (a) for a 
different number of documents with a fixed number of dictionary 

keywords |n| = 2000. (b) For a different number of retrieved documents 

with a fixed number of dictionary keywords |n| = 2000 and a fixed number 
of documents |m| = 1000. 

 

The Figure 7(a)shows that the proposed EMSRSE consumes less 

time cost to search over an encrypted index tree in comparison 

with existing BDMRS due tothe less number of nodes in the index 

tree of EMSRSE scheme. Finally, it is observed that the proposed 

EMSRSE scheme more efficient in terms of search efficiency in 

comparison with other existing schemes such as BDMRS and 

SMSRQE.  

The time cost to search over an encrypted index tree for a different 

number of retrieved documents with a fixed number of dictionary 

keywords |n| = 2000 and a fixed number of documents |m| = 1000 

for all the three schemes is compared in Figure 7(b). The Figure 

7(b) shows that the time cost to search over an encrypted index 

tree is not influenced by a number of documents retrieved for all 

the three schemes. Nevertheless, the time cost of EMSRSE is very 

less when compared to existing BDMRS and SMSRQE schemes. 

Thus, the proposed EMSRSE is more efficient than the BDMRS 

and SMSRQE schemes in terms of search efficiency.  

5. Conclusion 

In this article, an efficient multi-keyword synonym based ranked 

search technique is proposed, which supports dynamic insertion 

and deletion of documents. To acquire better search efficiency 

than a linear search, the balanced index tree is proposed and 

proposes a searching technique over an encrypted index tree. In 

addition, the parallel search over the index tree further reduces the 

search time cost. In the EMSRSE scheme, the search process has 

computing and ranking relevance scores of relevant documents 

rather than all documents in the index tree. Moreover, the 

extensive research and experimental results show that the 

proposed scheme achieves better search efficiency in comparison 

with other existing SMSRQE and BDMRS schemes. In the future, 

multiple DO system model will be explored. Search approaches 

over encrypted cloud data can be extended to support anaphora 

resolution and other natural language processing technology. 
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