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Abstract 
 

Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) electrolyte pellet was prepared by glycine-nitrate method, in which the electrolyte powders and pellets 

were systematically characterized for their application to proton-conducting solid oxide fuel cells (SOFCs). Thermogravimetric analysis 

revealed that impurities were formed in the electrolyte powders at the temperature of 1000 °C. X-ray diffraction analysis showed that the 

powder calcined at 1000 °C produced an electrolyte with high purity. Scanning electron microscopy analysis indicated that the sintered 

SBCG pellet had a clear morphology and grain boundaries. Therefore, SBCG is a promising electrolyte for SOFC applications. 
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1. Introduction 

Solid oxide fuel cells (SOFCs) are electrochemical devices that contain ceramic components and highly depend on oxide ions, and they 

are operated at temperatures of 800 °C to 1000 °C. This high operating temperature is necessary to enhance the ionic conductivity of 

ceramic electrolytes during the conversion of chemical energy into electricity through electrochemical reactions driven by the potential 

difference of the oxygen chemistry between anodes and cathodes. The challenges encountered for this type of fuel cell are the high oper-

ating costs and the reliability of the system [1]. The conventional operating temperature of SOFCs lead to stability and reliability prob-

lems. Thus, researchers have attempted to decrease the operating temperature from a high (800 °C to 1000 °C) to an intermediate range 

(400 °C to 700 °C) by developing new electrolyte and electrode materials [2]. Recent studies have shifted toward proton-conducting 

SOFCs (H+-SOFCs), which displayed better stability and higher reliability levels than conventional ones at high operating temperatures. 

H+-SOFCs can operate at moderate temperatures (< 800 °C) because of the production of water vapor at the cathode during chemical 

reactions. Consequently, the amount of fuel discharge can be minimized at the anode, resulting in high open circuit voltage values and 

the ability to control the amount of input fuel [3], [4]. 

In recent decades, doped BaZrO3, BaCeO3, SrCeO3, and SrZrO3 have been introduced as proton-conducting electrolytes for SOFC appli-

cations due to their ability to conduct proton efficiently even at moderate temperatures (< 800 °C). However, these materials are hindered 

by many challenges, including chemical instability, high grain boundary resistance, and high sintering temperatures [5], [6]. Considering 

these challenges, researchers have shifted toward developing new and improved proton conducting electrolytes by doping additional 

small amounts of aliovalent cations, such as Y3+ and In3+, and other rare-earth cations, such as Gd3+ and Sm3+ [7], [8]. The sintered pellet, 

such as yttrium-doped barium cerate zirconate (BZCY), exhibited a high conductivity at reduced temperature and a good chemical stabil-

ity under CO2, H2O, and H2S. However, the sinterability of this electrolyte remained low. In the present work, Ga was doped in the B-site 

of Ce, and Ba was doped in the A-site of Sr to determine the morphology and purity of this new and improved material for H+-SOFC 

application [9]. 

In this work, the Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) powder was synthesized by glycine-nitrate process. The effects of dopants on the struc-

tural and morphological characteristics of the materials were investigated by thermogravimetric analysis (TGA), X-ray diffraction (XRD) 

analysis, and scanning electron microscopy (SEM). The morphology and purity of the synthesized material are critical in evaluating the 

potentiality of the electrolyte for SOFC application. 

 

 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


154 International Journal of Engineering & Technology 

 

2. Materials and method 

2.1. Synthesizing the electrolyte powder 

The SBCG electrolyte powder was produced by glycine-nitrate process. Strontium nitrate Sr(NO3)2 and barium nitrate Ba(NO3)2 were 

dissolved together, and cerium nitrate Ce(NO3)3·6H2O and gallium nitrate Ga(NO3)3·xH2O were dissolved together in deionized water. 

Then, the two solutions were mixed and stirred together at room temperature to produce a homogeneous solution mixture. After which, 

glycine, which serves as a complexing agent and fuel during combustion reactions, was added to the solution [10]. Then, the temperature 

was raised exponentially to remove the water from the solution until a viscous and visible gel was formed. The heating process was con-

tinued until an ignition was triggered to burn the gel and form a fine powder. 

2.2. Structural characterization of the electrolyte powder 

The electrolyte powder was characterized using TGA and XRD. TGA was conducted starting from 25 °C to 1400 °C at a 10 °C min-1 

heating/cooling rate through the use of a thermogravimetric instrument, TG (Mettler Toledo, USA). The powder was then calcined at 

900 °C, 1000 °C, and 1100 °C for 5 h in a high-temperature furnace (Berkeley Scientific BSK-1700X-S, USA) to remove impurities. 

Then, the powdered phase structure was processed through the XRD analysis (XRD Bruker D8-Advance, Germany) at the angle of dif-

fraction of 2θ in the range of 20° to 80° with a value of λ = 0.15406 Å. 

 

2.3. Morphological characterization of electrolyte pellet 

 
For morphological analysis, the electrolyte powder was suppressed into pellets through the process of suppression. For this purpose, 1 g 

of powder was blended with an agate mortar and placed in a 13 mm diameter pellet mold (Specac PT No. 300, USA). The powder was 

then pressed at a pressure of 5 tons for 1 min with the use of a hydraulic pressing machine (4350 Carver, USA). The formed pellets were 

sintered at 1400 °C for 5 h wat a heating/cooling rate of 10 °C min-1 in a high-temperature furnace (Berkeley Scientific BSK-1700X-S, 

USA). The relative density of the pellet was determined by Archimedes’ method. The microstructure of the sintered pellets was analyzed 

using a secondary electron microscope (SEM). The pellets were then broken down and analyzed by scanning electron microscopy (Tab-

letop Microscope, TM-1000 Hitachi, Japan). 

3. Results and discussion 

3.1. TG and DT analysis 

The TGA of the dried powder are shown in Figure 1. Based on the TG profile and differential thermal analysis, the powder experienced 

weight loss at three stages for the temperatures ranging from 25 °C to 1400 °C. The observed weight loss at stage 1 (T<480 °C) corre-

sponded to the dehydration of moisture and the decomposition of the remaining organics with low boiling points. The small weight loss 

that occurred at stage 2 (480 °C to 680 °C) was due to the decomposition of the organic residues to form a carbonate compound [11]. The 

major weight loss that contributed to the maximum loss recorded at stage 3 resulted from the release/liberation of CO from the carbonate 

compound [12]. After crossing these three stages, the TG and DT signals started to show horizontal lines, and no further weight loss was 

recorded. The thermal decomposition analysis indicated that the minimum recommended temperature for the calcination of the SBCG 

powder was 1000 °C.  

3.2. Crystallographic analysis 

Figure 2 shows the XRD patterns of the SBCG powders obtained at different calcination temperatures for 5 h. The selective enlargement 

of the powders can be observed at the diffraction angles of 27–31. As shown, the perovskite phase of SBCG was crystallized at the 

calcination temperature of 1000 °C. However, the XRD profiles showed a weak crystallinity at calcination temperatures above 1000°C 

because of the partial decomposition of SBCG [13] and the formation of traces of CeO2 phase [14]. 

The EDX spectrum verified the presence of Sr, Ba, Ce, and Ga, as presented in Table 1. As shown, the elemental composition in the 

SBCG compound was close to the actual mole ratio of the elements present in the compound. However, a slight deviation occurred, 

mainly at the B-site containing element of Ce and Ga, because the analysis was performed only on a number of specific areas that have 

different elemental distributions [15]. Furthermore, the difference in the amount of mole distribution among the elements was excessive-

ly large, which caused Ce to overlap onto Ga. Thus, Ga was difficult to detect in the EDX spectrum, leading to the low chemical compo-

sition in terms of the mole ratio [16], [17]. 
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Fig. 1: TG/DTA curves of Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) powders at temperature 25 to 1400 °C 

 
Fig. 2: XRD patterns of Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) powders calcined at 900 °C, 1000 °C, and 1100 °C 

Table 1: Elemental composition of Sr0.6Ba0.4Ce0.9Ga0.1O3-δ (SBCG) powder calcined at 1000 °C for 5 h 

Element Weight % Relative atomic mass Mol Actual mole ratio Experiment mole ratio 

Sr 18.47 87.62 0.21 0.60 0.57 

Ba 22.62 137.33 0.16 0.40 0.43 
Ce 44.04 140.12 0.31 0.90 0.93 

Ga 2.28 114.81 0.02 0.10 0.07 

3.3. Morphological characterization 

The morphology and grain boundary of the SBCG pellets obtained by SEM analysis are shown in Figure 3. As shown, the sintered pellet 

of SBCG calcined at 1000 C had compact, high-density, and well-distributed grains. However, slight porosity was observed at the cross-

section of the electrolyte. The specific density of this electrolyte was 99%, which was deemed appropriate for application as a proton 

conductor. The surface of the pellet indicated that the introduction of new dopants affected the chemical stability and sinterability of the 

compounds. Larger grain sizes (Figure 3) can offer a less overall grain boundary resistance. Thus, Ga can be added to base materials as a 

dopant and sintering additive [18]. 
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Fig. 3: Micrograph images for (a) cross section and (b) surface of SBCG pellet after sintered at 1400 °C for 5 hours 

4. Conclusions 

SBCG powder was successfully prepared using the glycine-nitrate process. The properties of the thermal decomposition of the SBCG 

powder were studied using TGA at a temperature of 1000 °C. The thermal decomposition consisted of three stages, namely, decomposi-

tion of water, decomposition of carbon and nitrate compounds, and the formation of carbonate. The SBCG powder sintered at 1400 °C 

showed compact and uniformly distributed grains with improved density. 1000 °C was determined as the suitable calcination temperature 

for the electrolyte pellet even though the grain size grew unevenly. The mixing time of the nitrate solution should be increased from 12 to 

24 h to enhance the purity of the SBCG powder. 
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