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Abstract 

 
This paper presents the application of artificial neural networks (ANN) in modeling of two continuous stirred tank heat echangers in 

series (2CSTHEs), which is a complex non-linear process. Non-linear models of the 2CSTHEs system were developed using ANN 

because of  ANN ability to model complex non-linear processes without requiring any explicit knowledge about input-output relationship. 

The ANN architecture  is based on the multilayer feed forward network and it is trained using the back-propagation algorithms. Three 

types of back-propagation algorithms are used in the study, namely, Levenberg-Marquardt, BFGS quasi-Newton, and conjugate gradient 

with Polak-Ribiére updates. Two dynamic models of the system are developed: ANN model for CSTHE 1and 2. Results from the study 

showed that the 2CSTHEs model trained using Levenberg-Marquardt algorithm produced the best predictive performance of the system 

behaviour. The results confirmed that ANN can be used in the modeling of the heat exchanger 2CSTHEs, and the model obtained can 

predict the outputs of the system process with very high accuracy. This proves that ANN modelling method can produce accurate system 

models that can simulate and predict the behaviour of complex non-linear processes. 
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1. Introduction 

Heat exchangers (HEs) are devices facilitating effective heat transfer between the two fluids by virtue of their temperature differences 

and widely used in engineering applications [1]. HEs are extremely complex devices for which the prediction of their operation from first 

principle is virtually impossible due to a large number of phenomena associated with flow and heat transfer [2]. Heat exchangers are 

essentially non-linear in behaviour and can be difficult to control effectively. Consequently, accurate prediction of the steady-state and 

dynamic performance of heat exchangers is vitally important for optimum system design and heat recovery. Among empirical models, 

artificial neural networks (ANNs) seem to be the most powerful mathematical tool to solve this modelling problem [3]. Artificial intelli-

gence techniques like ANN are widely accepted as a technique that is able to deal with non-linear problem, and once trained can perform 

prediction and generalization at high speed [4]. ANNs were extensively used in modelling of thermal systems for the purpose of heat 

transfer analysis, performance prediction and dynamic control of heat exchangers [5,6,7]. The objective of this study is to develop ANN 

models to predict the temperatures and levels of two simulated CSTHEs in series (2CSTHEs). These two predicted variables can be uti-

lized for controlling the temperatures and levels of the process in this case study. 

2. Methodology 

2.1 Mathematical model of 2CSTHEs 

The 2CSTHEs system as shown in Fig. 1, including the system design parameters, is adopted from [8]. Values for the parameters used in 

the equations are tabulated in Table 1. The mathematical model of the system based on the conservation of heat and mass principle are as 

follows: 

http://creativecommons.org/licenses/by/3.0/
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The input and output data are generated from the open loop model of the 2CSTHEs in dynamic state. Data generation is implemented 

using the MATLAB Simulink software. Simulink block diagrams of the open loop process for 2CSTHEs are built according to the Eqs. 

(1) to (6) as shown in Fig. 2 and 3. 

 

 
Fig. 1: Two Stirred Tank Heat Exchanger in Series 

 
TABLE 1: Parameter values for CSTHE system 

Parameter Meaning Value 

A Tannk cross section area 0.196 m
2

 

UAc1 Heat transfer term x Effective heat transfer area of coil 12.52 kJ/kg.m
3

 

UAc2 Heat transfer term x Effective heat transfer area of coil 98.21 kJ/kg.m
3

 

λ Latent heat of vaporization of steam 2260 kJ/kg 

ρ Water density 1000 kg/m
3

 

C
p
 Water heat capacity 4.187 kJ/kg.K 

 
Fig 2: Simulink open-loop model for tank T-101 
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Fig3: Simulink open-loop model for tank T-102 

 

Simulations of the Simulink data generation block as shown in Fig. 4 were run to generate the process data. Data collected is taken as 

real process data, and is used for system identification of the 2CSTHEs, where the data is supplied in the training of the network. In the 

simulation, 3300 data sets were generated for the 2CSTHEs system at dynamic state. 

 
Fig.4: Simulink data generation block for 2CSTHEs at dynamic state 

2.2 ANN modelling of 2CSTHEs  

Neurons are processing units in an ANN where a set of neurons grouped together in layers which inter-relate with others by parameter 

called weights and these weights are used to model complex relationships between inputs and outputs by adjusted their values. The neu-

ral network consists of three layers: The first layer is the inlet layer which receives input data, the second layer may made up of one or 

more layers known as ‘hidden’ layer and the third layer is the output layer which propagates the information from network back to the 

outside as predicted output [9]. In the present study, the hidden layer neuron applied differentiable transfer function in the form of the 

hyperbolic tangent sigmoid (TANSIG) to predict the outputs with respect to the generated data. In the output layer the linear transfer 

function (PURELIN) was used. The transfers are given by the following [10]: 
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where Sn  is the sum of the weighted inputs and bias. Then, the output (k)y  for the general function is given by [11]: 
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where J is the neuron number in the hidden layer, IW are the weights in the input-hidden layer, b1 are the biases in the hidden layer. LW 

are the weights in the hidden output layer, R is the input-neuron number and b1, b2 are the biases in the output layer. Two ANN models 

of 2CSTHEs at dynamic state are developed; ANN model for tank T-101 and T-102. The multilayer feed-forward network or MLFFN is 

used in this study using the MATLAB software. Fig. 5 and 6 show the MLFFN network structures, with its input and output variables, 

for tanks T-101 and T-102, respectively. 
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Fig.5:  MLFFN network for T-101 at dynamic state 
 

 
 

Fig. 6:  MLFFN network for T-102 at dynamic state 

 

In the training of MLFFN, a number of parameters of the network need to be determined, like the number of hidden layers in the network, 

number of neurons in the hidden layer, and distribution of data between training, validation, and testing of network. In the study, the 

main method used to determine the performance of the ANN models are the mean squared error, mse. The mse value is obtained using 

Eq. 10: 
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where; t = Number of completed training epochs, yk
i = Value of kth output predicted by the network for i training pattern, dk

i = Value of 

kth output of real system for i training pattern, N  = Total number of training pattern. Three different back-propagation training algorithms 

were used in the training of neural network; Levenberg-Marquardt back-propagation (LM), BFGS Quasi-Newton backpropagation 

(BFG), and conjugate gradient back-propagation with Polak-Ribiére updates (CGP). The network training was carried out using the 

MATLAB Neural Network Toolbox. 

3. Results and discussion 

The optimum ANN structures for every ANN model for tank T-101and T-102 are tabulated in Tables 2 and 3, respectively.  

 
TABLE 2: Optimum ANN structures of tank T-101 for every training algorithm 

Parameter Structure 1 Structure 2 Structure 3 

Training algorithm Levenberg Marquardt BFGS quasi-Netwon Conjugate gradient backpropagation 

Number of hidden layers 2 2 2 

Number of neurons in hidden 

layers 

First – 8,  

Second – 7 

First – 10 

Second – 6 

First – 6 

Second – 6 

Data distribution during training 

Training – 70% 

Validation – 15% 

Testing – 15% 

Training – 70% 

Validation – 15% 

Testing – 15% 

Training – 60% 

Validation – 20% 

Testing – 20% 

 
TABLE 3: Optimum ANN structures of tank T-102 for every training algorithm 

Parameter Structure 1 Structure 2 Structure 3 

Training algorithm Levenberg Marquardt BFGS quasi Netwon 
Conjugate gradient backpro- 

pagation 

Number. of hidden layers 2 2 2 

number of neurons in hidden 

layers 

First – 9 

Second – 8 

First – 9 

Second – 8 

First – 9 

Second – 2 
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Data distribution during training 

Training – 80% 

Validation–  10% 

Testing – 10% 

Training – 80% 

Validation – 10% 

Testing – 10% 

Training – 60% 

Validation – 20% 

Testing – 20% 

 

The results of the ANN training are shown in Table 4. From the results, the mse values obtained were able to be minimized down to 0.01, 

with the exception of tank T-102 ANN models trained using the BFG and CGP algorithms. ANN models with structure 1 which trained 

using LM algorithm produces the best mse values, showing the best prediction performance of the 2CSTHEs system. After the optimum 

numbers of neurons for every model are determined, the designed ANN models are tested for their prediction performance of the 

2CSTHEs system behavior 

 
TABLE 4: Results of ANN training of the 2CSTHEs ANN Models 

Training ANN Model Parameter 
Structure 

1 2 3 

Tank T-101  Mean squared error 0.0100 0.0213 0.0849 
 Tank T-102  Mean squared error 0.0356 0.1042 0.4588 

 

Tank 
 (Green – real output; Blue – Predicted output) 

 

T-

101 

 

T-

102 

 
Fig.7: The predicted outputs and real process outputs for structure 1 

 

These prediction outputs are compared with the testing data of the real system outputs [12,13]. Fig. 7 shows the graph of predicted out-

puts and the real system outputs for structure 1 for every ANN model tested for tank T-101 and T-102, respectively. In general, all the 

models are able to predict the system outputs with good accuracy.  LM-trained ANN models are shown to produce the best predictions of 

the system output, with the least errors in the prediction. 

4. Conclusion 

Mathematical modeling of 2CSTHEs in series has been conducted, and the Simulink model of the system was built and used in the data 

generation for ANN training. The ANN models were trained using three different training algorithms. The designed ANN models were 

able to predict the behavior of 2CSTHEs system with very high accuracy and produces small errors despite the fact that the process is 

highly non-linear. From the three ANN training algorithms, the LM is found to be the best algorithm for the modeling of 2CSTHEs. The 

prediction performances of LM-trained models are the most accurate of the three, and the rate of convergence is the fastest during net-

work training.  

 

Acknowledgments 

 
This research is supported by the Exploratory Research Grant Scheme (ERGS/1/2013/TK05/UKM/02/1) under the Ministry of Education 

Malaysia.  

 

References 

 
[1] Mohanraj M, Jayaraj S, and Muraleedharan C (2015),  Application of Artificial Neural Networks for Thermal Analysis of Heat Exchangers. Inter-

national Journal of Thermal Sciences. 90,150-172. 

[2] Diaz G, Sen M, Yang KT, and McClain RL (2001), Dynamic prediction and control of heat exchangers using artificial neural networks. Interna-
tional Journal of Heat and Mass Transfer, 44,1671-1679. 

[3] Lazrak A, Boudehem F, Bannot S, Fraisse G, Leconte A, Papillon & Souyri B (2016), Development of a dynamic artificial neural network model 

of an absorption chiller and its experimental validation. Renewable Energy, 86, 1009-1022. 
[4] Mikulandric R, Loncar D, Bohning D, Bohme R & Beckmann M (2014), Artificial neural network modelling approach for biomass gasification. 

Energy Conversion and Management, 87, 1210-1223. 
[5] Al-Dawery SK, Alrahawi AM, and Al-Zobai KM (2001), Dynamic modelling and control of plate heat exchanger. International Journal of Heat 

and Mass Transfer, 55, 6873-6880. 

[6] Bakosova M, Oravec J (2014), Applied Thermal Engineering. Robust model predictive control for heat exchanger network. Applied Thermal Engi-
neering, 73, 924-930. 

[7] Lazrak, A, Boudehem F, Bannot S, Fraisse G, Leconte A, Papillon P & Souyri B (2016), Development of a dynamic artificial neural network mod-

el of an absorption chiller and its experimental validation. Renewable Energy, 86, 1009-1022. 



International Journal of Engineering & Technology 255 

 
[8] Kiu MY, Thesis: Optimal control design of two continuous stirred tank heaters is Series. Bangi: National University of Malaysia (UKM), (20120). 

[9] Alvarez EM, Hernandez JA & Bourous, M (2016), Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithi-
um, potassium, sodium) nitrate solution using artificial neural networks. Energy, 102, 313-323. 

[10] Morales LI, Conde-Gutierrez R A, Hernandez JA, Huicochea A, Juares-Romero D, Siqueiros J (2015), Optimisation of an absorption heat trans-

former with two-duplex components using inverse neural network and solved by genetic algorithm. Applied Thermal Engineering. 85, 322-333. 
[11] Morales LI, Conde-Gutierrez R A, Hernandez JA, Huicochea A, Juares-Romero D, Siqueiros J (2015), Optimisation of an absorption heat trans-

former with two-duplex components using inverse neural network and solved by genetic algorithm. Applied Thermal Engineering, 85:322-333. 

[12] Annuar MH. Thesis: Modelling of two heaters in series using neural networks. Bangi, National University of Malaysia (UKM), (2015) Malaysia. 
[13] Ahmad ZAG, Norliza AR & Faezah Esa*.2014. Pembangunan Kawalan Logik Kabur dalam Reaktor Lapisan Terpadat. Jurnal Kejuruteraan, 

26(2014): 55-61. 

 

 


