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Abstract 
 

The paper studies the possibility of determining and classifying the crisis as a complex system by a remote observer on the basis of 
subjective information. Description and analysis of complex systems is a fundamentally unsolvable problem. However, there may be a 
partial solution to the problem through the use of multilevel modeling. Therefore, the development of new fairly common methods for 
modeling complex systems is an urgent task. The aim of the work is to develop fairly common methods of modeling complex systems in 
crisis. For this purpose, the evolution of the system is considered at three levels: micro level, meso level and macro level. At the micro 
level such concepts as unit of information, growth of information are considered. At the macro level, two models describing system 
crises are proposed. The simulation is based on stochastic differential equations and the theory of phase transitions. At the micro level, 
the process of transition from one stable state to another is studied. It is assumed that the remote macroscopic observer receives 

information about the evolution of the system. The new results include the following. A new interpretation of information from the 
quantum-statistical point of view. Unlike Shannon’s information in this paper, the information is associated with the phase space of the 
system. This makes it possible to apply basic physical and mathematical methods to the study of the evolution of different nature of 
systems. An analogue of the second principle of thermodynamics at the micro level-the principle of maximum information is obtained. 
The obtained results allowed justifying the use of Langevin equations for crisis modeling, as well as to obtain an analogy between the 
types of crises and phase transitions. The paper considers illustrating examples of complex systems in the process of transition from one 
stable state to another. 
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1. Introduction 
 
Modeling of complex systems is a task that is far from being 
solved at the moment. The paper presents one of the possible 
options for describing a complex system at the time of crisis. 
It is known that the functioning of a complex system is 
fundamentally impossible to describe with one universal model. 
Therefore, it is advisable to apply several mutually related models. 
This allows studying the processes taking place in the system from 

different sides, without losing the generality of the description. 
One of the effective methods of modeling is the division of a 
complex system into levels (macro level, micro level, meso level). 
At the macro level, the system is studied as a whole. At the micro 
level, the individual elements of the system are considered. The 
meso level describes the dynamics of the processes.  
In work, the crisis is understood as the process of transition of a 
complex system from one stable state to another. At the same 

time, the main characteristic of the crisis is the change in the 
information recorded by a remote macroscopic observer. This 
approach is the most common and will be effective for systems of 
different nature. 
The theoretical justification of the proposed model is given at the 
micro level. The connection of information and entropy is shown, 
the method of substantiation of the principle of maximum 
information with the use of discrete phase space is proposed. 

The results are used to build a macro-level model and describe the 
dynamics of the crisis. 

 

2. Purpose and objectives of the study 

 
Substantiate and build a general multi-level model of the crisis as 
a complex system based on the analysis of changes in information. 
The purpose of the study involves the following objectives. 
1. Definition of the unit of information using discrete phase space. 
2. Determination of the basic laws of increasing information. 

3. Classification of crises and description of their course. 

 

3. Methods and materials 

 
The main methods of research were: general theory of systems, 
statistical physics, theory of stochastic differential equations, and 
theory of phase transitions of LGD. 

 

4. The results and their discussion 

 
Are divided into several interrelated topics in the paper. 
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4.1. Source of uncertainty 

 
Let us recall that the main function of any open system from the 

point of view of an outside observer is to convert the input signal 
to the output (Fig. 1). 

 
Fig. 1: General operating model of the system 

 
Here X denotes the space of input signals, Y – the space of output 
signals, and A – the system operator. The mathematical model of 
the system can be presented in the following form ([10] p.26): 
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How can the system operator responsible for its functioning be 
identified? The classical theory of systems answers this question 

as follows. The pulse signal (t) function must be input. Then the 

following ratio is true: 
 










  dtAxdtxAtxAty )]([)()()()()(

 
It is almost impossible to influence the system with an 

instantaneous signal having infinitely large energy. The real signal 
has a certain energy ΔE and lasts for a period Δt. This leads to the 
fact that in the process of obtaining information by an external 
observer, the system changes randomly, while changing the output 
signal. Therefore, even the deterministic system from the point of 
view of an external observer is stochastic. 
To assess the uncertainty, we use the concept of action (phase 
volume) 
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Or 
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Using the Heisenberg relation ([7]p.70, [8]P. 41), we obtain the 

minimum size of the action (the minimum phase cell): 
nhS 0  

Here h – Planck constant, n – the number of degrees of freedom of 
the system. To go to the concept of information, we enter the 
value: 

0S

tE
  

Then under the information we will understand the discrete value: 
 

 2logI               (4) 

 
A complex system is a collection of subsystems (1, 2,..., k,...N), so 
the total amount of information of a complex system will be given 
by the formula: 

 kII  

We note that the size of the unit cell of the exaggeration of the 
degrees of freedom decreases according to the exponential law 

( 1h ). Therefore, in macroscopic systems, the discreteness of 

information associated with the uncertainty of the system state 
will become insignificant [19]. 

 

4.2. Brownian motion. The law of increasing 

information 

 
As it was shown in the previous paragraph, any system from the 
point of view of a remote macroscopic observer experiences 
random energy and momentum jumps, which corresponds to the 
Brownian motion of the particle. This representation allows 
building a model of increasing information system at the 

microscopic level. Let us note that the law of information growth 
associated with the second beginning of thermodynamics is 
usually considered at the micro level ([8]p.47). The use of the 
proposed model seems to the authors to be a promising direction 
for the general proof of the second principle of thermodynamics at 
the micro level. 
We consider a mathematical model of the evolution of a quantum 

particle in phase space ),(2 qpM n
. Here p is the generalized 

momentum, q is the generalized coordinate. To describe the 
evolution, we assume that the particle motion is described by the 
diffuse Ito process ([9], p. 141). Also we assume that the 
appropriate selection of the system of units can achieve that 

kk qp  .  In this case, we assume that the phase space is divided 

into concentric balls with volumes ω, 2 ω, … , n ω, … [4]. In this 

case, the radius of the balls will be expressed in terms of n
S

4

0 , 

n
S

4

2 0 , … , n
S

4

0  , … .  Let us note that as the cell number 

increases, the phase volume and the sphere radius tend to infinity. 
At the same time, the condition is true: 
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This suggests that if the points of the phase space ),( AA qpA
 

and ),( BB qpB  are located far enough from each other (the 

number of elementary cells between them is large enough), the 

evolution of the system will be characterized by a continuous 
deterministic process. 
Instead of the usual time, we use the notion of the moment of the 
first exit of the Ito diffuse process from the k-th ball. 
Let the particle be at a distance a  from the center of the balls.  

Definition 1. The first moment of the exit of the Ito process from 

the ball 
n

kR2

 
is called a random variable )( 2n

kR such that: 
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We determine the probability that a free particle in the process of 
evolution will fall from point A of the phase space to point B. And 

kmm RВRА  , . 

Let kmff ,
 
be a class function 

2С with compact support, 

which at kmm RxR 
 
is defined by the function 
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From the Dynkin formula, it follows that 
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Let us denote 
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Taking into account that 1 kk qp , we get: 
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Thus, at n>2, for example, when moving on a two-dimensional 
crystal ([14], [17]), the evolution of the system becomes 
irrevocable. It is aimed in the direction of increasing R. This 
increases the phase volume, which increases the entropy of the 
microsystem. This is in full agreement with the second beginning 
of thermodynamics, which is usually formulated for macrosystems 

[4]. The only case when the system is returned is the case n=1 
[13]. 
We consider it separately. 

1lim 


k
k

p  

This result can be interpreted as follows. In one-dimensional 
systems, the states of the system are distributed in the finite area 
of the phase space. This in turn means that stationary states are 
possible in the phase space of such a system [15]. 

 

4.3. Complex system crisis 

 
Under the complex system crisis, we will understand a fairly rapid 
restructuring of its external or internal structure. In this case, the 
system goes from one stable state to another. Such a transition can 
be influenced by both external and internal factors. 

According to the results of the previous paragraphs, such a 
transition is most likely to be influenced by one factor. If there are 
a sufficiently large number of factors, the system simply increases 
its entropy, approaching the equilibrium state; stable 
configurations are “blurred”. 
This statement is fully consistent with the so-called principles of 
synergetics. According to them, the functioning of the system can 
be described through the control and subordinate modes. The total 
number of modes can be large, but modes responsible for the 

crisis (control modes) are a little. Often there is one ([11]p.108). 
To move to the macroscopic description of the crisis, we use 
Langevin equations, which are darkly related to Brownian motion. 
In this view of the microscopically of the system it can be 
considered that the model is continuous. 
We write the Langevin equations as follows ([11]p.65) 
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The value n we call amplitudes of modes of order, n – 

amplitudes of subordinate modes, N (q,α) – deterministic 
(generally nonlinear) function, F (t) – fluctuating force. 
We study in detail the model (*) for one parameter. 

 

).(),( tFN s                                                 (8) 

 
Following the basic provisions of the LGD theory, we consider 
three main cases ([11]p.110). 

1. If 0),( sN  , then 

).(tF   

This case corresponds to the case of the usual Brownian motion. 
Under its influence, the system has one stable state corresponding 
to the global minimum of the generalized thermodynamic 
potential Φ (Fig. 2). 
 

 
Fig. 2: Schematic representation of the dependence of the thermodynamic 

potential of the system Φ on the parameter ξ 

 
In this case, the crisis of the system is impossible. 

2. If 
3),(  sN . Then 
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We assume that the fluctuating force is governed by the Gaussian 

distribution. 
Then the corresponding Fokker-Planck equation has the form: 
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Here f – distribution function. 
In the stationary case, we obtain 
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Here the value Q-1(2 - 1/24) plays the role of generalized 

thermodynamic potential 

)
2

1
()( 421   Q  . 

We investigate the form of the function Ф() depending on the 

sign of the parameter . 

 

 
Fig. 3: Schematic representation of the dependence of the thermodynamic 

potential of the system Φ on the parameter ξ at 0 

 

If 0. Then there is one global minimum at =0 (Fig. 3), which 

corresponds to the stability of the initial phase А. 

If >0. Then the function () has two global minima at values  
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 3,1

 

and one local maximum 2=0 (Fig. 4). 

 

 
Fig. 4: Schematic representation of the dependence of the thermodynamic 

potential of the system Φ on the parameter ξ at >0 

 
This corresponds to the fact that the initial phase A becomes 
unstable and the system goes into phase B, two realizations 

(bifurcations) are possible. In this case, the transition is smooth. 
1. If 
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In this case, the Fokker-Planck equation has the form 
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In the stationary case, the thermodynamic potential is given by the 

formula 
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The dependence of the function Φ() depending on the value of 

the control parameter  is shown in Fig. 5a, 5b, 5c. 

 

 
Fig. 5a: Stable initial phase А 

 

 
Fig. 5b: Energetically favorable phase A. Local minima 1 and 2 

correspond to the metastable state of the phase B  

 
Fig. 5c: The energy balance of the phases  

 

 
Fig. 5: Phase B (global minima 1 and 2) is energetically advantageous. 

The local minimum 0 corresponds to the metastable state of phase A  

 
Thus, in such a crisis, the change of phases occurs with some 
delay, which generates the phenomenon of hysteresis, which is a 
characteristic feature of the transition of the 1st kind. 

 

4.4. Mesodynamics of crisis 

 
The studies allowed reducing the main types of crises of complex 
systems to the well-known theory of LGD, used to describe the 
phase transitions. 
As for the dynamics of the crisis, we can draw the following 
conclusions ([1], [2]). 
1. The crisis of the type (9) is characterized by a smooth flow, 

which allows it to be controlled throughout its entire length ([1] 
p.73)(Fig. 6). 
 

 
Fig. 6: Mesodynamics of the first type crisis 
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Here Sn – system macro states, S0 –system death 
2. The crisis is characterized by “overheating” of the system. As a 
result, the crisis becomes irreversible, poorly managed, and passes 
quickly enough (Fig. 7). 
 

S1

S
2

S
3

S4

S
n

S1

S
2

S
3

S4

S
n

S0

K1 K2

Зона
управляемости

Нестабильная
зона

Зона слабой
управляемости

S1

S
2

S
3

S4

S
n

S1

S
2

S
3

S4

S
n

S0

K1 K2

Зона
управляемости

Нестабильная
зона

Зона слабой
управляемости

 
Fig. 7: Mesodynamics of the second type crisis 

 

5. Conclusions 

 
The work offers a theoretical basis for the development of 
mathematical models and control methods for complex systems of 
different nature. It deals with the functioning of the system in a 
crisis from the point of remote observer. The micro-level of the 
system is considered, the transition to the macro-level and to the 
aerodynamics of the process is carried out. At the same time, the 

authors tried to use a simple, convenient and, at the same time, 
adequate mathematical apparatus. 
In conclusion, we give some recommendations on the use of the 
results. 
It should be noted that in the first part the usual notion of time was 
not used and the space of generalized coordinates was not 
considered separately. This approach will be useful when working 
on quantization of fields of different nature, as it eliminates the 

appearance of singularity. 
The conclusion about the “dominance” of Brownian motion in any 
real system shows that in order to transfer a complex social system 
to a new stable position, external control must work with 
sufficiently large objects of the system. However, these objects 
should not be comparable to the system itself. In this case, a 
managed crisis would be too energy-consuming. This position 
justifies the theory of cluster management ([5], [6]).  

In particular, the cluster approach is currently being implemented 
to restore flax growing in Smolensk region. 
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