
 
Copyright © 2018 Luay S. Al-Ansari et al. This is an open access article distributed under the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4) (2018) 4866-4872 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  

doi: 10.14419/ijet. v7i4.25334 

Research paper 
 

 

 

 

Calculating the natural frequency of cantilever tapered beam 

using classical Rayleigh, modified Rayleigh and  

finite element methods 
 

Luay S. Al-Ansari 1 *, Ali M. H. Al-Hajjar 1, Husam Jawad A. 1 

 
1 University of Kufa – Faculty of Engineering – Mechanical Engineering Department 

*Corresponding author E-mail: luays.alansari@uokufa.edu.iq 

 

 

Abstract 
 

Beam is a structural element and can be used in different shapes according to its applications and the tapered beam is one of these struc-

tural elements. The frequency of tapered beam was investigated in this work using three calculation methods. These methods were Clas-

sical Rayleigh Method (CRM), Modified Rayleigh Method (MRM) and Finite Element Method (FEM) using ANSYS Workbench (17.2). 

The basic idea of Classical Rayleigh Method (CRM) and Modified Rayleigh Method (MRM) was changing the tapered beam into 

stepped beam with N-steps. The results showed that there was a good agreement between the natural frequency which was calculated by 

ANSYS and Modified Rayleigh Method (MRM) when the number of steps was (6) and the natural frequency increases when the larger 

width (or height) increases for different values of smaller width (or height).The frequency ratio is constant when the smaller width (or 

height) increases. Also, the frequency ratio increases when the width ratio (WL/WS) increases and when the number of divisions (N) 

increases, the slope of frequency ratio increases too. 
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1. Introduction 

Beam is a structural element and can be classified into different 

types depending on different attributes such as shape of cross-

section (circular , rectangular and I-section ), geometric profile 

(prismatic and Non-prismatic), boundary conditions(cantilever and 

simply support) etc. Non-prismatic beam has been used in many 

engineering applications like robotics, aeronautics, and other in-

novative engineering applications in order to provide suitable 

distribution of mass and strength. Therefore, many authors studied 

the vibration analysis of non-uniform beam and these studies con-

sidered generally one of the classical beam theories, such as Ber-

noulli-Euler [1-3] and Timoshenko [4-8] theory. 

Several studies were carried out in order to derive the analytical 

solution for calculating natural frequency of tapered cantilever 

beam. Mabie and Rogers [9] studied the free vibration of a canti-

lever beam by developing new differential equation and they start-

ed their development from the Bernoulli-Euler equation. They 

[10], also, used the equations of Bernoulli - Euler in order study 

the free vibrations of non-uniform cantilever beams. They consid-

ered two configurations of tapered beam (a) constant thickness 

and linearly variable width and (b) constant width and linearly 

variable thickness in order to plot Charts for each configuration. 

Naguleswaran [11] utilized an infinite power series in order to find 

the solution for wedge and conic beams and he employed the 

method of Frobenius. Other analytical solutions were performed 

based on Bessel functions [12] orthogonal polynomials [13], and 

hyper-geometric functions [14]. 

The fundamental natural frequency of non-uniform beams with 

various end support conditions was calculated by simple formulas 

which presented by Abrate S. [15] while De Rosa M. A. et al. [16] 

studied the dynamic behavior of non-uniform beams using Bessel 

functions and Izabela Zamorska [17] studied the free vibration 

problem of non-uniform Bernoulli-Euler beams using the Green’s 

function method. Stanisław Kukla and Izabela Zamojska [18], 

also, used the Green’s function method for studying frequency 

analysis of non-uniform beam. Mahmoud A. A. et al. [19] used the 

differential transformation method in order to calculate Natural 

frequencies and corresponding normalized mode shapes for uni-

form and non-uniform Euler beam with different cases of cross 

section and boundary conditions. 

Various approximation methods like Rayleigh-Ritz method, dif-

ferential quadrature method, finite element method and mesh-free 

method have also been used in order to study the vibrations of 

beams with variable cross-section have been studied in several 

studies [20-26]. 

P.Nagalatha and P.sreenivas[27] used polynomial regression 

method for calculating natural frequencies by the reanalysis of 

structural modification of a beam element. They compared be-

tween the results of Regression method and Finite Element Meth-

od (FEM) and they found that there is a very good agreement be-

tween them. B. Rama Sanjeevasresta and Dr. Y. V. Mohan Red-

dy[28] and E Ozkaya [29] used reanalysis of simple beam struc-

ture using a polynomial regression method in their papers to calcu-

late the natural frequencies of Euler-Bernoulli beam. Dhyai Has-

san Jawad [30] considered non-uniform Euler-Bernoulli beam in 

his work and he used Finite Element Method (FEM) in order to 

study the buckling behavior and free vibration when the tapered 

parameter and degree of flexural bending change. Byoung Koo 

Lee et al. [31] solved, numerically, the ordinary differential gov-

erning equation of tapered beam and they used the combination of 

Runge Kutta method and the determinant search method in order 
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to calculate the natural frequencies. Firouz-Abadi R. D. et al. [32] 

solved the governing equation of motion of the Euler-Bernoulli 

beam considering the effect of axial force distribution using the 

Wentzel, Kramers, Brillouin (WKB) approximation method in 

order to calculate the transverse free frequency of variable-cross 

section beams. Rossi R. E. and Laura P. A. A. [33] used finite 

element method (FEM) in order to study the dynamic behavior 

and the natural frequencies of tapered beams. 

In this work, the fundamental natural frequency of cantilever ta-

pered beam is calculated using three numerical methods (Classical 

Rayleigh, Modified Rayleigh and Finite Element Methods) for 

different dimensions of square cross section area. 

2. Problem description 

The tapered beam with square cross section area is shown in Fig. 

(1). Due to change in dimensions (i.e. area) and Second Moment 

of Inertia, the Euler-Bernoulli and Timoshenko equations , which 

described the equation of motion of beam, cannot be used in this 

case. Several researchers tried to derive new equation of motion 

but they cannot found the solution of this equation (Others have 

found a solution for tapered beam but it was for special cases).  

 

 
Fig. 1: Geometry of Tapered Beam Used in this Work. 

 

In this work, Rayleigh method and FE method were adopted to 

obtain the natural frequency of the tapered beam. These methods 

are used in order to avoid the complexity in governing equation 

and its solution [34-36]. 

3. Rayleigh method (RM) 

Rayleigh method bases on calculating the kinetic energy and po-

tential energy of the system in order to find the fundamental natu-

ral frequency of the system. The general formula of Rayleigh 

method is [34-37]: 

 

ω2 =
∫ EI(

d2y(x)

dx2 )
2

dx
l

o

∫ ρA(y(x))2l

0
dx

=
g ∑ miyi

n+1
i=1

∑ mi(yi)
2n+1

i=1

                                                                                                                                                                   

(1) 

 

Where: (ω) is frequency, (E) is Modulus of Elasticity, (I) is Sec-

ond Moment of Inertia, (ρ)is Density, (A) is Cross Section Area, 

(m) mass, and (y) is Deflection. 

From the equation (1), the second moment of inertia is the main 

problem in this method because of the changing in the cross sec-

tion area along the beam. Therefore, the main idea of this work 

was converting the tapered beam into stepped beam with (N) steps. 

The tapered beam was divided into (N) parts with different width 

(or diameter) (see Fig.(2)) then the equivalent second moment of 

inertia can be calculated using the same procedure described in 

[34] and [35]. There are two methods in order to calculate the 

equivalent moment of inertia [34-36] and these methods are: 

1) Classical method 

In this method, the equivalent second moment of inertia for beam 

can be calculated using the following equation [34-36]: 

 

Ieq =
(LTotal)

3

∑ [
(Ln)3−(Ln−1)3

In
]N

n=1

                                                                                                                                                                                     

(2) 

 

2) Modified method 

The equivalent moment of inertia at any point in the beam can be 

calculated by applying the same idea described in [34] and [35]. 

For example, if the tapered beam is divided into two steps, the 

equivalent second moment of inertia can be written as: 

 

Ieq(x) =
(LTotal)

3

[
(L1(x))

3

I1
+

(L2)3−(L1(x))
3

I2
]

                                                                                                                                                                           

(3) 

 

And when the tapered beam is divided into three steps, the equiva-

lent second moment of inertia can be written as: 

 

Ieq(x) =
(LTotal)

3

[
(L1(x))

3

I1
+

(L2)3−(L1(x))
3

I2
+
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Fig. 2: Dividing the Tapered Beam into Stepped Beam with (N) Steps. 

4. Programming Rayleigh methods 

The Rayleigh Methods (i.e. Classical Rayleigh Method (CRM) 

and Modified Rayleigh Method (MRM)) were programing using 

MATLAB code. The general steps are: 

1) Input the material properties (i.e. density and modulus of 

elasticity) and beam dimensions (see Fig. (1)). 

2) Input number of divisions (N) and in this work N=2, 3, 4, 5, 

6, 20 and 50. 

3) Calculate the width (or diameter) of each steps. 

4) Dividing each steps calculated in step (3) into (M) parts (i.e. 

(M+1) nodes) and M=25 in this work.  

5) Calculate the equivalent second moment of inertia accord-

ing to the method (i.e. CRM or MRM). 

6) Calculate the mass matrix [m] ((M+1)*N).  

7) Calculate the delta matrix [δ] ((M+1)*N)* ((M+1)*N) using Table 

(1) 

8) Calculate the deflection at each node using the following 

equation and apply the boundary conditions: 

 

[y] ((M+1)*N) = [δ] ((M+1)*N)* ((M+1)*N) [m] ((M+1)*N)                                                                                                                                                

(5) 

 
Table 1: Formula of the Deflections of the Cantilever Beam [34-36]. 
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5. Finite element method (FEM) 

The finite elements method was applied in this work using the 

ANSYS – Workbench (17.2). The 3D model was built as shown in 

Fig. (3) and the Tetrahedrons element were used. Generally the 

number of elements were about (90,000) and the size of element 

was (1 mm ). 

 

 

 

A) Geometry of Tapered Beam 
when WS=0.02m,WL=0.04 M. 

B) Meshing of Tapered Beam when 
WS=0.02m,WL=0.04 M. 

  

C) First Shape Mode When 

WS=0.02m,WL=0.04 M. 

D) First Shape Mode When 

WS=0.01m,WL=0.0175 M. 

Fig. 3: Samples of Geometry, Meshing and Results of Tapered Beam. 

6. Results , discussion and conclusions 

Generally, the length of beam was (0.84) m and five values of 

smaller width (width of small square)(WS=0.01, 0.02, 0.03, 0.04 

and 0.05 m). The width ratio was (1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 

2.75 and 3) .The dimensions of tapered beams with square cross 

section area, used in this work, were summarized in Table (2).  

Figure (4) shows the comparison among the fundamental natural 

frequency due to change in larger width (or height) for different 

values of smaller width (or height). Three methods were used for 

calculating natural frequency of tapered beam. From Figure (4), 

the natural frequency increases linearly when the larger width (or 

height) increases for different values of smaller width (or height). 

The increasing in natural frequency can be explain according to: 

a) The increasing of the larger width (or height) leads to in-

crease supported area which causes increasing of natural 

frequency. 

b) The increasing of the larger width (or height) causes in-

creasing the volume of beam (i.e. the mass of beam) and 

this leads to increase the natural frequency.  

In CRM, the results show the coinciding in the results of natural 

frequency for the different values of smaller width (or height). In 

other words, the results appear as a single continues line. While a 

small shifting between the lines (i.e. values of smaller width (or 

height)) can be seen for the ANSYS and MRM calculation meth-

ods and this shifting increases when the number of divisions (N), 

used in MRM, increases. 

In order to study the effect of number of divisions (N) on the natu-

ral frequency of tapered beam, Figures (5-9) show the comparison 

of the three calculation methods (ANSYS, CRM and MRM) for 

different numbers of divisions (N). In these Figures, the results of 

ANSYS and MRM converge to each other when the number of 

division increases till (N=6) and then the natural frequency calcu-

lated by MRM was greater than ANSYS results. While the results 

calculated by CRM are smaller than that of ANSYS and MRM 

specially at high value of larger width (or height).  

The effect of number of divisions (N), smaller width (or height), 

calculation method and width ratio (WL/WS) on the frequency 

ratio  

((ωf) Tapered / ((ωf) Uniform) can be seen in Figure (10). The frequen-

cy ratio was constant when the smaller width (or height) increases. 

Also, the frequency ratio increases when the width ratio (WL/WS) 

increases. Finally, the frequency ratio changes when calculation 

method changes and when the number of divisions (N) increases, 

the slope of frequency ratio increases too.  

From the results, the following points can be concluded: 

1) The ANSYS, MRM are suitable methods that can be used to 

calculate the natural frequency of Tapered beam. 

2) In MRM, there is a critical number of divisions which can 

be used to get a good agreement with ANSYS results. 

3) The natural frequency of tapered beam depends on smaller 

width, number of divisions and width ratio (Tapered ratio). 

Finally, the experimental procedure can be studied in future work 

and a comparison between the results of these methods and the 

results of other theoretical and experimental methods can be done. 

Also, different length and different shape of tapered beam can be 

investigated theoretically and experimentally. 

 
Table 2: Cases Studied in this Work. 

No. 

Length 

of 

Beam 
(m) 

Smaller 

Width 

of Beam 
(m) 

Larger 

Width 

of Beam 
(m) 

Smaller 

Height 

of Beam 
(m) 

Larger 
Height of 

Beam (m) 

WL/WS 

1 

0.84 0.01 

0.01 

0.01 

0.01 1 

2 0.0125 0.0125 1.25 

3 0.015 0.015 1.5 
4 0.0175 0.0175 1.75 

5 0.02 0.02 2 

6 0.0225 0.0225 2.25 

7 0.025 0.025 2.5 

8 0.0275 0.0275 2.75 

9 0.03 0.03 3 
10 

0.84 0.02 

0.02 

0.02 

0.02 1 

11 0.025 0.025 1.25 

12 0.03 0.03 1.5 
13 0.035 0.035 1.75 

14 0.04 0.04 2 

15 0.045 0.045 2.25 
16 0.05 0.05 2.5 

17 0.055 0.055 2.75 
18 0.06 0.06 3 

19 

0.84 0.03 

0.03 

0.03 

0.03 1 

20 0.0375 0.0375 1.25 
21 0.045 0.045 1.5 

22 0.0525 0.0525 1.75 

23 0.06 0.06 2 

24 0.0675 0.0675 2.25 

25 0.075 0.075 2.5 

26 0.0825 0.0825 2.75 
27 0.09 0.09 3 

28 

0.84 0.04 

0.04 

0.04 

0.04 1 

29 0.05 0.05 1.25 
30 0.06 0.06 1.5 

31 0.07 0.07 1.75 

32 0.08 0.08 2 
33 0.09 0.09 2.25 

34 0.1 0.1 2.5 



International Journal of Engineering & Technology 4869 

 
35 0.11 0.11 2.75 

36 0.12 0.12 3 

37 

0.84 0.05 

0.05 

0.05 

0.05 1 

38 0.0625 0.0625 1.25 

39 0.075 0.075 1.5 
40 0.0875 0.0875 1.75 

41 0.1 0.1 2 

42 0.1125 0.1125 2.25 
43 0.125 0.125 2.5 

44 0.1375 0.1375 2.75 

45 0.15 0.15 3 

 

 

ANSYS 

 
 

MRM - N=2. CRM - N=2. 

 

 

MRM - N=3. CRM - N=3. 

  

MRM - N=4. CRM - N=4. 

  

MRM - N=5. CRM - N=5. 

  

MRM - N=6. CRM - N=6. 

 

 

MRM - N=20. CRM - N=20. 

  

MRM - N=50. CRM - N=50. 

Fig. 4: The Variation of the Fundamental Natural Frequency Due to 

Change in Larger Width (WL) for Different Values of Smaller Width 
(WS). 

 

  

N=2. N=3. 

  

N=4. N=5. 

 

 

N=6. N=20. 

 

N=50. 

Fig. 5: The Comparison Among the Fundamental Natural Frequencies 

Calculated by ANSYS, Classical Rayleigh Method and Modified Rayleigh 
Method for Different Values of Larger Width (WL) when the Smaller 

Width (WS) is (0.01) M. 
 

  

N=2. N=3. 

  

N=4. N=5. 

 

 

N=6. N=20. 

 

N=50. 

Fig. 6: The Comparison among the Fundamental Natural Frequencies 

Calculating by ANSYS, Classical Rayleigh Method and Modified 
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Rayleigh Method for Different Values of Larger Width (WL) when the 

Smaller Width (WS) is (0.02) M. 

 

 

 

N=2. N=3. 

 

 

N=4. N=5. 

 

 

N=6. N=20. 

 

N=50. 

Fig. 7: The Comparison among the Fundamental Natural Frequencies 

Calculated by ANSYS, Classical Rayleigh Method and Modified Rayleigh 

Method for Different Values of Larger Width (WL) when the Smaller 
Width (WS) is (0.03) M. 

 

 

 

N=2. N=3. 

 

 

N=4. N=5. 

  

N=6. N=20. 

 

N=50. 

Fig. 8: The Comparison among the Fundamental Natural Frequencies 

Calculated by ANSYS, Classical Rayleigh Method and Modified Rayleigh 
Method for Different Values of Larger Width (WL) when the Smaller 

Width (WS) Is (0.04) M. 

 

 

 

N=2. N=3. 

 

 

N=4. N=5. 

 

 

N=6. N=20. 

 

N=50. 

Fig. 9: The Comparison among the Fundamental Natural Frequencies 

Calculated by ANSYS, Classical Rayleigh Method and Modified Rayleigh 
Method for Different Values of Larger Width (WL) when the Smaller 

Width (WS) Is (0.05) M. 

 

 

ANSYS 

  

MRM - N=2. CRM - N=2. 

 

 

MRM - N=3. CRM - N=3. 
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MRM - N=4. CRM - N=4. 

  

MRM - N=5. CRM - N=5. 

 

 

MRM - N=6. CRM - N=6. 

 

 

MRM - N=20. CRM - N=20. 

 

 

MRM - N=50. CRM - N=50. 

Fig. 10: The Variation of the Frequency Ratio Due to Change in Width 

Ratio (WL/WS) for Different Values of Smaller Width (WS). 
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