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Abstract 

 
In this research we train a direct distributed neural network using Levenberg-Marquardt algorithm. In order to prevent overtraining, 

we proposed correctly recognized image percentage based on early stop condition and conduct the experiments with different stop 

thresholds for image classification problem. Experiment results show that the best early stop condition is 93% and other increase in 

stop threshold can lead to decrease in the quality of the neural network. The correct choice of early stop condition can prevent 

overtraining which led to the training of a neural network with considerable number of hidden neurons.  
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1. Introduction 

Analysis of literatures shows that neural networks are 

effectively used in crucial applications such as pattern 

recognition [1], image classification [2, 8], speech 

recognition, natural language processing [1 - 3]. There are 

several key concepts that have been instrumental in the 

success of learning the neural networks, including gradient 

descent, parallel implementations, convolution neural 

networks, supervised and unsupervised pre-learning [3, 9]. 

Artificial neural network(ANN) methods are widely used in 

classification problems. Classification problem is a task to 

include the sample to one of several disjoint sets. When 

solving classification problems, ANN should include the 

existing object characteristics (observable data) to one or 

more specific classes. 

One of the main challenges in implementing ANN is the 

significant amount of time needed in the training phase 

especially when solving complex problems. Depending on 

the growth of a number of hidden layers and neurons, the 

required time for ANN learning process and new instance 

assessment time, grows by leaps and bounds.  

On the other hand, the rate of successful classification 

depends on the growth of a number of hidden layer and 

neurons. So, in general, the more training instances the 

network is guaranteed, the more effective result can be 

achieved. Ideally, it is very important to carry out training 

with a considerable number of neurons in the hidden layer 

and with a large number of training examples, but with a 

relatively low training time. So the challenge remains in 

improving the ANN by improving the training algorithms, 

selecting the best network topology, determining the number 

of hidden layers neurons, interpretation of weighting 

coefficients and bias, and their evaluation of optimality, etc. 

The main goal of this research is developing an effective 

neural network training algorithm with keeping the hidden 

layers as minimum, without reducing recognition and 

classification accuracy. A significant improvement in 

performance can be achieved using second-order algorithms, 

such as Newton's algorithms, the conjugate gradient 

algorithm or the Levenberg-Marquardt (LM) algorithm. The 

Levenberg Marquardt algorithm was chosen as the training 

algorithm to be worked on in this research work  because it 

gives a higher accuracy as compared to the other gradient 

algorithms [1]. 

It is believed that, despite the heuristic nature, the LM 

algorithm makes it possible to achieve the smallest error of 

the neural network, and, often with the least time. The 

algorithm provides an acceptable compromise between the 

convergence rate inherent in Newton's algorithms and the 

stability inherent in the gradient descent.  The algorithm 

successfully combines the method of steepest descent (ie, 

minimization along the gradient) and Newton's method (that 

is, using a quadratic model to accelerate the search for a 

minimum of the function). LM provides fast convergence and 

regularization effect. It provides regularization to stabilize 

the ill-condition cases during training. 

The paper is devoted to the investigation and improvement of 

one of the most effective algorithms for learning multi-layer 

perceptions - the Levenberg-Marquardt algorithm, to avoid of 

overtraining and get high classification rate with 

considerable number of hidden neurons.  

This paper is organized as follows: Section 2 briefly 

introduces the Levenberg-Marquardt algorithm by detailing 

its associated mathematical model. Section 3 introduces the 

direct distributed neural network so readers can get a clearer 

picture of where the training algorithm is associated to the 

network and how it would later be manipulated to improve 

training. Section 4 discusses the recommended improvement, 

the early stop condition. The implementation of the algorithm 

is explained. Section 5 presents the experiment results to 
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demonstrate the improvement achieved. The subsection also 

describes the database used in the experiments. Section 6 

concludes the paper and present its contributions. 

2. Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm is one of the 

applications of the Newton’s optimization strategy. The main 

expression of Newton's methods is the expression: 

 

( )  ( )kkk wgwHp
1−

−= , (1) 

 

where, kp  - direction that guarantees the achievement of the 

minimum of the object function for current step, ( )kwg - 

gradient value at the point of the last solution of kw , 

( )kwH  - Hessian value at the point of the last solution of 

kw .  

When using the Levenberg-Marquardt algorithm, the exact 

value of the Hessian ( )wH  in (1) is replaced with an 

approximate value g(w), that is calculated on the basis of 

information contained in the gradient, taking into account a 

certain regularization factor. To describe this method, we 

represent the objective function in a form corresponding to 

the existence of a single training sample, 
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The gradient vector and the approximated Hessian matrix 

corresponding to the objective function (2) are defined as:  

 

  )()()( wewJwg
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=  (4) 
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where, )(wR  components of Hessian ( )(wH ), that 

containing higher derivatives concerning w . 

The essence of the Levenberg-Marquardt approach is to 

approximate )(wR  using a regularization factor vl  in 

which a variable v  called the Levenberg-Marquardt 

parameter is a scalar quantity that changes during 

optimization. Thus, the approximated Hessian matrix at the 

k-th step of the algorithm takes the following form:  

 

  lvwJwJwG kk

T

kk += )()()(  (6) 

 

At the beginning of the learning process, when the actual 

value is still far from the desired solution, a parameter value 

much greater than the eigenvalue of the matrix 

  )()( k

T

k wJwJ . In this case, the Hessian is actually 

replaced by a regularization factor: 

 

lvwG kk )(  (7) 

 

and the direction of minimization is chosen by the method of 

steepest descent: 
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As the error decreases and the approximation to the desired 

solution decreases, the parameter kv  decreases 

  )()( wJwJ
T

 in the equation (5) becomes more important. 

The efficiency of the algorithm is influenced by a competent 

selection of the value kv . Too large initial value of kv  with 

the progress of optimization should decrease down to zero at 

achievement of the actual decision close to the required one. 

There are various ways of selecting this value, but we 

consider only one original technique that proposed by 

Marquardt:  

 

)()( 1  FJIJJ TT −+=  (9) 

 

where I – is the identity matrix. It may be, as indicated in [4], 

that the curvature of the surface defined by the discrepancy 

can be “not identical” in all directions. For example, if there 

is a long and narrow trough on the surface of the 

discrepancy, the gradient component in the direction pointing 

along the base of the depression, it is very small and the 

gradient component along the trough walls is quite large. 

This leads to movement towards the walls of the trough, 

while the need to travel long distances along the base and a 

small - along its walls. To avoid this, in [5] it proposed to 

replace the identity matrix with a diagonal matrix of the 

approximate Hessian matrix. Then the formula (9) will take 

the next form of: 

 

)())(( 1  FJJJdiagJJ TTT −+=  (10) 

 

This rule is used as follows: If the residual is reduces for the 

current iteration, (which means that the assumption of 

quadratic works), we decrease (usually 10 times) to reduce 

the effect of the gradient descent. On the other hand, if the 

residual increases, we must follow the direction of the 

gradient, and to increase   (to the same amount). 

3. Direct Distributed Neural Network 

As a clarifying of the mathematical model of pattern 

recognition, direct distributed neural network can be 

represented as a vector function of vector argument [7]: 

 

),( XYY =  (10) 

 

Here ),...,( 1 KxxX =  - input data, ),...,( 1 M =  – 

weights of a network, ),...,( 1 pyyY =  – network output. 

Then the network error for one period will be expressed by 

the formula  
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here ijd - desired output of j -th output neuron for i-th 

element of a training set, L - number of elements of the 

training sample. 

Let, 
T

LpLp eeeeE ),...,,( 11,...,11=   - discrepancy vector for 

a neural network, here ijijij dye −= . Then the formula 

(11) can be rewritten as: 

 

EEF T=)(  (11) 

 

and Jacobian matrix has the form: 
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As described above, the increment of the weights of the 

neural network should be sought to the form of solutions of 

the equation (13). 

 

                                                      
( ) EJJJdiagJJ TTT =+  )(  (13) 

 

Within the framework of the research we consider a neural 

network training which consists of three layers: input layer (n 

neurons), hidden layer (m neurons) and output layer (p 

neurons). In addition, each layer is present neuron, called 

threshold neurons that the output of which, in contrast to the 

usual neuron is always equal to one. The introduction of such 

neuron makes the learning algorithm of the neural network 

more flexible. This statement can be illustrated by a simple 

example. Let, a neural network consists of one neuron with a 

single input. For a neural network with one hidden layer formula 

(10) takes the form: 
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Here 
)1(W  is weight matrix of the hidden layer neurons, 

)2(W is weight matrix of output layer neurons, 
)1(B  is 

weights of the hidden layer threshold neurons. 
)2(B is 

weights of the output layer threshold neurons,   - activation 

function of a neuron.  

Then, elements of Jacobian matrix will be the following: If 

  is the weight of hidden layer neuron, that is 
)1(

'' jir w  
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Here, kx  - output of k-th neuron of the hidden layer, )('   

- value of the derivative of activation function at the point.  

If   is the weight of output layer neuron, i.e. 
)2(

'' jiw  

then 
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If   is the weight of hidden layer neuron, i.e. 
)1(

'ib , 

then 
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If   is weight of threshold neuron of the output layer, i.e. 

)2(

'ib , then 
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Thus, the neural network learning algorithm based on the LM 

algorithm will be as follows: 

 
Fig.1. Training the neural network with Levenberg-Marquardt 

algorithm 

4. Early Stop Condition 

One of the most important moments in the training of neural 

networks is the selection of stop criteria for the training and 

evaluation of their effectiveness. To avoid losing the 

generalization properties and to reduce the number of epochs we 
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used so-called “early stop method”. Its essence lies in the fact that 

the training set is divided into two types: the actual training set 

used to train and test set used to test the trained network. In the 

training process the neural network is constantly being tested 

using a test set. As soon as early stop condition is achieved, 

training stops. 

Classical early stop condition is criterion of “no increase” 

error on the test set. Its essence is that the training is stopped 

as soon as the error on the test set will start to increase. This 

approach has a significant drawback. Neural network trained 

by an early stop to such criteria may have too many errors 

and, therefore, be of little use for practical calculations. As a 

rule, during training the neural network, the error on the test 

set is not monotonically decreasing. As a result, if we take as 

a stop criterion a simple increase in errors on a test set, 

training can stop when the neural network is not enough 

trained. 

In [4] proposes three early stop criterion. Let )(tEtr  is error 

of the neural network training set for the epoch t, )(tEva – 

the error on the test set (or a validation error) for the epoch t, 

)'(min)( ' tEtE vattopt = .  The first criterion: Training 

must be stopped, when the loss of generalization exceeds a 

certain threshold. 
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However, during the growth of the generalization loss, neural 

network can overcome this, if the training error is reduced 

quickly enough. This speed can be estimated using learning 

progress for k epochs that defined by formula: 
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Second stop criteria may be the ratio of the loss to the 

generalization of training progress. Training must be stopped 

when this ratio exceeds a certain threshold: 
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Next, the training should stop after validation error increases 

for several epochs. 

In our research, as a stop criterion we formulated the 

following rule: Training should be stopped when the error on 

the test set has decreased to a certain value. Recognition rate 

of the test set element selected as the error on the test set. 

Then the stop criteria can be expressed by the formula (22): 

 

]100,0[,)(  tEva  (22) 

 

With this choice of stop criterion is important to choose the 

right value of  . Too high a value can lead to a loss of 

generalization because of the retraining, and too little - to the 

"half-taught" neural network, of little use for practical tasks. 

5. Experiment Results 

To test the approach, object classification problem (human, 

car, and other objects) has been applied. To test the problem 

the data set was divided into two parts, a training set and a 

test set. The training set data were 300 instances of each 

species, and in the test were about 200 instances data.  

5.1. Data 

The main purpose of the problem is to identify human, car 

from the images or video. Our data set consists of 1,500 

instances, 500 of them are car images, 500 are human 

images, and the last 500 instances are other objects [6]. 

Fig. 2. Human, car, and other objects example 

5.2. Results 

In this calculation, we performed neural network training 

with “stop threshold” variable, to determine its best value. 

Stop threshold ranged in 80-100% diapason with 1% 

increment. As soon as the number of correctly recognized 

items exceeded the “stop threshold” the test set training 

stopped. After training, each neural network was tested on 

the same test together. The criteria for selecting the stop 

threshold, as is the case with the training sample was a 

minimum number of epoch of training and the best 

recognition accuracy. Figure 3a shows a comparison of the 

number hidden layer neurons and Figure 3b shows a 

comparison of the number of epochs of training a neural 

network with a different “stop threshold” at the training set. 

 

 

(a) 

 
(b) 

(b) 

Fig. 3. Experiment results to determine the best stop threshold value 
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As can be seen from the figure, the change in stop threshold 

has practically no effect on the rate of neural network 

training, measured in the number of training epoch. However, 

changing the “stop threshold” affects the quality of the 

resulting neural network. Figure 4 illustrates a graph 

indicating the number of the recognized test cases from the 

test set, trained with different “stop threshold”. From the 

graph, we can conclude, that quality of the resulting neural 

network depends on the size of the “stop threshold”. 

However, maximization of the stop threshold does not lead to 

maximization of the quality of the neural network. Neural 

network trained with a “stop threshold” gave 93% best 

results where its graph lie above the other lines with the other 

stop thresholds. Further increasing of “stop threshold” 

reduces the quality of the neural network recognition. This 

can be explained by the fact that an excessive increase in the 

threshold of training leads to the fact that the neural network 

is "forced" to spend the training epoch to unjustified 

minimize errors on the test set, resulting in unnecessary 

iterations that the neural network can "forget" about the 

previously presented samples. 

 
Fig. 4. The number of the recognized test cases from the test set, 

trained with different “stop threshold” 

6. Conclusion 

In this research, we considered Levenberg-Marquardt method 

as a neural network training algorithm for image 

classification problem. Based on the Levenberg-Marquardt 

method with early stop condition, direct distributed neural 

network was constructed.  In order to determine the 

effectiveness of early stop condition, several experiments 

with different stop threshold were conducted. The most 

preferred value of hidden layer neurons and value of early 

stop threshold were determined. Impact of the number of 

hidden layer for the neural network, to the performance of 

the program complex was explored. The obtained results 

gave better results comparing the corresponding figures in 

the research of other authors. The proposed method performs 

better in classification task and also maintains a good trade-

off between sensitivity and specificity. The proposed method 

is also computationally cost effective. Therefore, the 

proposed method can be a useful tool for classification.  
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