

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.36) (2018) 1194-1198

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Early Stopping Criteria for Levenberg-Marquardt Based

Neural Network Training Optimization

1Azizah Suliman, 2Batyrkhan Omarov

1College of Computer Science & Information Technology, Universiti Tenaga Nasional, Kuala Lumpur, Malaysia

2International Information Technologies University, Almaty, Kazakhstan

*Corresponding author E-mail: azizah@uniten.edu.my

Abstract

In this research we train a direct distributed neural network using Levenberg-Marquardt algorithm. In order to prevent overtraining,

we proposed correctly recognized image percentage based on early stop condition and conduct the experiments with different stop

thresholds for image classification problem. Experiment results show that the best early stop condition is 93% and other increase in

stop threshold can lead to decrease in the quality of the neural network. The correct choice of early stop condition can prevent

overtraining which led to the training of a neural network with considerable number of hidden neurons.

Keywords: Early Stop Condition, Levenberg-Marquardt Method, Neural Network, Overtraining.

1. Introduction

Analysis of literatures shows that neural networks are

effectively used in crucial applications such as pattern

recognition [1], image classification [2, 8], speech

recognition, natural language processing [1 - 3]. There are

several key concepts that have been instrumental in the

success of learning the neural networks, including gradient

descent, parallel implementations, convolution neural

networks, supervised and unsupervised pre-learning [3, 9].

Artificial neural network(ANN) methods are widely used in

classification problems. Classification problem is a task to

include the sample to one of several disjoint sets. When

solving classification problems, ANN should include the

existing object characteristics (observable data) to one or

more specific classes.

One of the main challenges in implementing ANN is the

significant amount of time needed in the training phase

especially when solving complex problems. Depending on

the growth of a number of hidden layers and neurons, the

required time for ANN learning process and new instance

assessment time, grows by leaps and bounds.

On the other hand, the rate of successful classification

depends on the growth of a number of hidden layer and

neurons. So, in general, the more training instances the

network is guaranteed, the more effective result can be

achieved. Ideally, it is very important to carry out training

with a considerable number of neurons in the hidden layer

and with a large number of training examples, but with a

relatively low training time. So the challenge remains in

improving the ANN by improving the training algorithms,

selecting the best network topology, determining the number

of hidden layers neurons, interpretation of weighting

coefficients and bias, and their evaluation of optimality, etc.

The main goal of this research is developing an effective

neural network training algorithm with keeping the hidden

layers as minimum, without reducing recognition and

classification accuracy. A significant improvement in

performance can be achieved using second-order algorithms,

such as Newton's algorithms, the conjugate gradient

algorithm or the Levenberg-Marquardt (LM) algorithm. The

Levenberg Marquardt algorithm was chosen as the training

algorithm to be worked on in this research work because it

gives a higher accuracy as compared to the other gradient

algorithms [1].

It is believed that, despite the heuristic nature, the LM

algorithm makes it possible to achieve the smallest error of

the neural network, and, often with the least time. The

algorithm provides an acceptable compromise between the

convergence rate inherent in Newton's algorithms and the

stability inherent in the gradient descent. The algorithm

successfully combines the method of steepest descent (ie,

minimization along the gradient) and Newton's method (that

is, using a quadratic model to accelerate the search for a

minimum of the function). LM provides fast convergence and

regularization effect. It provides regularization to stabilize

the ill-condition cases during training.

The paper is devoted to the investigation and improvement of

one of the most effective algorithms for learning multi-layer

perceptions - the Levenberg-Marquardt algorithm, to avoid of

overtraining and get high classification rate with

considerable number of hidden neurons.

This paper is organized as follows: Section 2 briefly

introduces the Levenberg-Marquardt algorithm by detailing

its associated mathematical model. Section 3 introduces the

direct distributed neural network so readers can get a clearer

picture of where the training algorithm is associated to the

network and how it would later be manipulated to improve

training. Section 4 discusses the recommended improvement,

the early stop condition. The implementation of the algorithm

is explained. Section 5 presents the experiment results to

http://creativecommons.org/licenses/by/3.0/
mailto:azizah@uniten.edu.my

International Journal of Engineering & Technology 1195

demonstrate the improvement achieved. The subsection also

describes the database used in the experiments. Section 6

concludes the paper and present its contributions.

2. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is one of the

applications of the Newton’s optimization strategy. The main

expression of Newton's methods is the expression:

()  ()kkk wgwHp
1−

−= , (1)

where, kp - direction that guarantees the achievement of the

minimum of the object function for current step, ()kwg -

gradient value at the point of the last solution of kw ,

()kwH - Hessian value at the point of the last solution of

kw .

When using the Levenberg-Marquardt algorithm, the exact

value of the Hessian ()wH in (1) is replaced with an

approximate value g(w), that is calculated on the basis of

information contained in the gradient, taking into account a

certain regularization factor. To describe this method, we

represent the objective function in a form corresponding to

the existence of a single training sample,

 
2

1

)(
2

1
)(

=

=
M

i

i wewE , (2)

where,  iii dwye −=)(. When using notation































































=



















=

n

nnn

n

n

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

J

we

we

we

we

)()()(

)()()(

)()()(

)(,

)(

...

)(

)(

)(

21

2

2

2

1

2

1

2

1

1

1

1

1

1











(3)

The gradient vector and the approximated Hessian matrix

corresponding to the objective function (2) are defined as:

 )()()(wewJwg
T

= (4)

 )()()()(wRwJwJwG
T

+= (5)

where,)(wR components of Hessian ()(wH), that

containing higher derivatives concerning w .

The essence of the Levenberg-Marquardt approach is to

approximate)(wR using a regularization factor vl in

which a variable v called the Levenberg-Marquardt

parameter is a scalar quantity that changes during

optimization. Thus, the approximated Hessian matrix at the

k-th step of the algorithm takes the following form:

  lvwJwJwG kk

T

kk +=)()()((6)

At the beginning of the learning process, when the actual

value is still far from the desired solution, a parameter value

much greater than the eigenvalue of the matrix

 )()(k

T

k wJwJ . In this case, the Hessian is actually

replaced by a regularization factor:

lvwG kk )((7)

and the direction of minimization is chosen by the method of

steepest descent:

k

k
k

v

wg
p

)(
−= (8)

As the error decreases and the approximation to the desired

solution decreases, the parameter kv decreases

 )()(wJwJ
T

 in the equation (5) becomes more important.

The efficiency of the algorithm is influenced by a competent

selection of the value kv . Too large initial value of kv with

the progress of optimization should decrease down to zero at

achievement of the actual decision close to the required one.

There are various ways of selecting this value, but we

consider only one original technique that proposed by

Marquardt:

)()(1  FJIJJ TT −+= (9)

where I – is the identity matrix. It may be, as indicated in [4],

that the curvature of the surface defined by the discrepancy

can be “not identical” in all directions. For example, if there

is a long and narrow trough on the surface of the

discrepancy, the gradient component in the direction pointing

along the base of the depression, it is very small and the

gradient component along the trough walls is quite large.

This leads to movement towards the walls of the trough,

while the need to travel long distances along the base and a

small - along its walls. To avoid this, in [5] it proposed to

replace the identity matrix with a diagonal matrix of the

approximate Hessian matrix. Then the formula (9) will take

the next form of:

)())((1  FJJJdiagJJ TTT −+= (10)

This rule is used as follows: If the residual is reduces for the

current iteration, (which means that the assumption of

quadratic works), we decrease (usually 10 times) to reduce

the effect of the gradient descent. On the other hand, if the

residual increases, we must follow the direction of the

gradient, and to increase (to the same amount).

3. Direct Distributed Neural Network

As a clarifying of the mathematical model of pattern

recognition, direct distributed neural network can be

represented as a vector function of vector argument [7]:

),(XYY = (10)

Here),...,(1 KxxX = - input data,),...,(1 M = –

weights of a network,),...,(1 pyyY = – network output.

Then the network error for one period will be expressed by

the formula

1196 International Journal of Engineering & Technology


= =

−=
L

i

p

j

ijij dyF
1 1

2)(
2

1
)( (11)

here ijd - desired output of j -th output neuron for i-th

element of a training set, L - number of elements of the

training sample.

Let,
T

LpLp eeeeE),...,,(11,...,11= - discrepancy vector for

a neural network, here ijijij dye −= . Then the formula

(11) can be rewritten as:

EEF T=)( (11)

and Jacobian matrix has the form:































































=

















=

M

ipipip

M

iii

M

iii

i

L
eee

eee

eee

J

J

J

J

















21

2

2

2

1

2

1

2

1

1

1

1
~

,
~

~

(12)

As described above, the increment of the weights of the

neural network should be sought to the form of solutions of

the equation (13).

() EJJJdiagJJ TTT =+ )((13)

Within the framework of the research we consider a neural

network training which consists of three layers: input layer (n

neurons), hidden layer (m neurons) and output layer (p

neurons). In addition, each layer is present neuron, called

threshold neurons that the output of which, in contrast to the

usual neuron is always equal to one. The introduction of such

neuron makes the learning algorithm of the neural network

more flexible. This statement can be illustrated by a simple

example. Let, a neural network consists of one neuron with a

single input. For a neural network with one hidden layer formula

(10) takes the form:

()())2()1()1()2(),(BBXWWXYY ++==  (14)

Here
)1(W is weight matrix of the hidden layer neurons,

)2(W is weight matrix of output layer neurons,
)1(B is

weights of the hidden layer threshold neurons.
)2(B is

weights of the output layer threshold neurons,  - activation

function of a neuron.

Then, elements of Jacobian matrix will be the following: If

 is the weight of hidden layer neuron, that is
)1(

'' jir w

then





































=










==

m

k

kikjj

n

j

jiji

ji

i

r

i xwxxww
w

ee

1

)2(

'

1

)1(

'

)2(

'')1(

''

'' 


 (15)

Here, kx - output of k-th neuron of the hidden layer,)(' 

- value of the derivative of activation function at the point.

If  is the weight of output layer neuron, i.e.
)2(

'' jiw

then




















=







 =

=



',0

' ','

1

)2(

)2(

''
ii

xxw

w

ee iij

m

k

kik

ji

i

r

i



 (16)

If  is the weight of hidden layer neuron, i.e.
)1(

'ib ,

then





































=










==

m

k

kik

n

j

jjiji

i

i

r

i xwxww
b

ee

1

2

1

)1(

'

)2(

'')1(

'

' 


 (17)

If  is weight of threshold neuron of the output layer, i.e.

)2(

'ib , then




















=







 =

=



',0

,' ','

1

)2(

)2(

'
ii

xw

b

ee iij

m

k

kik

i

i

r

i



 (18)

Thus, the neural network learning algorithm based on the LM

algorithm will be as follows:

Fig.1. Training the neural network with Levenberg-Marquardt

algorithm

4. Early Stop Condition

One of the most important moments in the training of neural

networks is the selection of stop criteria for the training and

evaluation of their effectiveness. To avoid losing the

generalization properties and to reduce the number of epochs we

International Journal of Engineering & Technology 1197

used so-called “early stop method”. Its essence lies in the fact that

the training set is divided into two types: the actual training set

used to train and test set used to test the trained network. In the

training process the neural network is constantly being tested

using a test set. As soon as early stop condition is achieved,

training stops.

Classical early stop condition is criterion of “no increase”

error on the test set. Its essence is that the training is stopped

as soon as the error on the test set will start to increase. This

approach has a significant drawback. Neural network trained

by an early stop to such criteria may have too many errors

and, therefore, be of little use for practical calculations. As a

rule, during training the neural network, the error on the test

set is not monotonically decreasing. As a result, if we take as

a stop criterion a simple increase in errors on a test set,

training can stop when the neural network is not enough

trained.

In [4] proposes three early stop criterion. Let)(tEtr is error

of the neural network training set for the epoch t,)(tEva –

the error on the test set (or a validation error) for the epoch t,

)'(min)(' tEtE vattopt = . The first criterion: Training

must be stopped, when the loss of generalization exceeds a

certain threshold.














−= 1

)(

)(
100)(

tE

tE
tGL

opt

va
 (19)

However, during the growth of the generalization loss, neural

network can overcome this, if the training error is reduced

quickly enough. This speed can be estimated using learning

progress for k epochs that defined by formula:














−=

+−=

+−
1

)'(

)'(
1000)(

min

,1'

1

tEk

tE
tP

trtktt

t

kt tr

k (20)

Second stop criteria may be the ratio of the loss to the

generalization of training progress. Training must be stopped

when this ratio exceeds a certain threshold:

)(

)(
)(

tP

tGL
tPQ

k

k = (21)

Next, the training should stop after validation error increases

for several epochs.

In our research, as a stop criterion we formulated the

following rule: Training should be stopped when the error on

the test set has decreased to a certain value. Recognition rate

of the test set element selected as the error on the test set.

Then the stop criteria can be expressed by the formula (22):

]100,0[,)( tEva (22)

With this choice of stop criterion is important to choose the

right value of  . Too high a value can lead to a loss of

generalization because of the retraining, and too little - to the

"half-taught" neural network, of little use for practical tasks.

5. Experiment Results

To test the approach, object classification problem (human,

car, and other objects) has been applied. To test the problem

the data set was divided into two parts, a training set and a

test set. The training set data were 300 instances of each

species, and in the test were about 200 instances data.

5.1. Data

The main purpose of the problem is to identify human, car

from the images or video. Our data set consists of 1,500

instances, 500 of them are car images, 500 are human

images, and the last 500 instances are other objects [6].

Fig. 2. Human, car, and other objects example

5.2. Results

In this calculation, we performed neural network training

with “stop threshold” variable, to determine its best value.

Stop threshold ranged in 80-100% diapason with 1%

increment. As soon as the number of correctly recognized

items exceeded the “stop threshold” the test set training

stopped. After training, each neural network was tested on

the same test together. The criteria for selecting the stop

threshold, as is the case with the training sample was a

minimum number of epoch of training and the best

recognition accuracy. Figure 3a shows a comparison of the

number hidden layer neurons and Figure 3b shows a

comparison of the number of epochs of training a neural

network with a different “stop threshold” at the training set.

(a)

(b)

(b)

Fig. 3. Experiment results to determine the best stop threshold value

1198 International Journal of Engineering & Technology

As can be seen from the figure, the change in stop threshold

has practically no effect on the rate of neural network

training, measured in the number of training epoch. However,

changing the “stop threshold” affects the quality of the

resulting neural network. Figure 4 illustrates a graph

indicating the number of the recognized test cases from the

test set, trained with different “stop threshold”. From the

graph, we can conclude, that quality of the resulting neural

network depends on the size of the “stop threshold”.

However, maximization of the stop threshold does not lead to

maximization of the quality of the neural network. Neural

network trained with a “stop threshold” gave 93% best

results where its graph lie above the other lines with the other

stop thresholds. Further increasing of “stop threshold”

reduces the quality of the neural network recognition. This

can be explained by the fact that an excessive increase in the

threshold of training leads to the fact that the neural network

is "forced" to spend the training epoch to unjustified

minimize errors on the test set, resulting in unnecessary

iterations that the neural network can "forget" about the

previously presented samples.

Fig. 4. The number of the recognized test cases from the test set,

trained with different “stop threshold”

6. Conclusion

In this research, we considered Levenberg-Marquardt method

as a neural network training algorithm for image

classification problem. Based on the Levenberg-Marquardt

method with early stop condition, direct distributed neural

network was constructed. In order to determine the

effectiveness of early stop condition, several experiments

with different stop threshold were conducted. The most

preferred value of hidden layer neurons and value of early

stop threshold were determined. Impact of the number of

hidden layer for the neural network, to the performance of

the program complex was explored. The obtained results

gave better results comparing the corresponding figures in

the research of other authors. The proposed method performs

better in classification task and also maintains a good trade-

off between sensitivity and specificity. The proposed method

is also computationally cost effective. Therefore, the

proposed method can be a useful tool for classification.

References

[1] Omarov, B., Suliman, A., Kushibar, K. Face recognition using

artificial neural networks in parallel architecture. Journal of
Theoretical and Applied Information Technology 91 (2), pp. 238-

248. (2016). Islamabad

[2] Omarov, B., Suliman, A., Tsoy, A. Parallel backpropagation neural
network training for face recognition. Far East Journal of

Electronics and Communications. Volume 16, Issue 4, December
2016, Pages 801-808. (2016)

[3] A. Altayeva, B. Omarov, H.C. Jeong, Y.I. Cho. Multi-step face

recognition for improving face detection and recognition rate. Far
East Journal of Electronics and Communications 16(3), pp. 471-491,

2016

[4] Lutz P. 1998. Early Stopping-But When? Neural Networks: Tricks

of the Trade. London, UK: Springer-Verlag

[5] Marquardt D. 1963. An Algorithm for Least-Squares Estimation of
Nonlinear Parameters SIAM Journal on Applied Mathematics. T.

11. № 2. C. 431-441

[6] Pinz A. 2016. Human, car, other object database, Electronic resource,

http://cvrg.iyte.edu.tr/datasets.htm.

[7] Xu J., Ho D.W.C., Zheng Y. 2004. A Constructive Algorithm for
Feedforward Neural Networks Control Conference. Shanghai: Inst,

of Syst. Sei., East China Normal Univ., C. 659-664.
[8] Sattar, M.A., Achanta, S. “Development and validation of a simple

method for simultaneous estimation of memantine and donepezil in

pharmaceutical dosage forms by using RP-HPLC”, (2018)
International Journal of Pharmaceutical Research, 10 (2), pp. 155-

166.
[9] V. Franc and J. Cech, Learning CNNs for Face Recognition from

Weakly Annotated Images, 2017 12th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2017),
Washington, DC, 2017, pp. 933-940. doi: 10.1109/FG.2017.115,

2017

