International Journal of Engineering & Technology, 7 (4.36) (2018) 1199-1202

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

On a Pseudo Smarandache Ideals of BH-algebra

Husein Hadi Abbass^{1*}, Ahmed Abdulhussein Jabbar²

¹Department of Mathematics, Faculty of Computer Science and Mathematics, Iraq. ²Department of Mathematics, Faculty of Computer Science and Mathematics, Iraq.

Abstract

In this paper the notion of a pseudo Samarandache BH-algebra, a pseudo Samarandache ideal, a pseudo Smarandache closed ideal and a pseudo Samarandache completely closed ideal of a pseudo Samarandache BH-algebra are defined. There notion are stadied. The relationships among these types of ideals are discussed.

Keywords: BCK-algebra, BH-algebra, ideal of BH-algebra, a Smarandache of BH-algebra, a pseudo BH-algebra, apseudo ideal of a pseudo BH-algebra, a pseudo BH-algebra, a pseudo BH-algebra, a pseudo BH-algebra, a pseudo Smarandache ideal of BH algebra, a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache closed ideal of BH-algebra.

1. Introduction

In 1966 by Y .Imai and K.Iseki introduceed the notion of BCK-algebra[8], In 1998, Y. B. Jun, E. H. Rogh and H. S. Kim introduceed the notion of a BH- algebra, and the notion of ideal of a BH- algebra[6]. In 2005, Y. B. Jun introduceed the notion Q-Smarandache of $\mathcal{B}\text{CH}$ - algebra and Q-Smarandache ideal of $\mathcal{B}\text{CH}$ - algebr[5]. In 2012, H. H. Abbass and H. A. Dahham introduced the notion of completely closed ideal of a BH-algebr[2]. In 2013 H. H. Ab bass and S.J. Mohammed introduced the notion of Q-Smarandache closed ideal and Q-Smarandache completely closed ideal of a Smarandache BH-algebra[4]. In 2015, Y. B. Jun.and S.S. Ahn introduceed the notion of a pseudo BH- algebra and a pseudo ideal of a pseudo \mathcal{BH} —algebr[7]. , In 2017, H. H. Abbass and A. H.Nouri introduceed the notion of a pseudo completely closed ideal of a pseudo BH-algebra[1]

In this paper, we define the concepts of a pseudo Smarandache completely closed ideal and a pseudo Smarandache closed ideal of a pseudo Smarandache BH-algebra. We stated and proved some theorems which determine the relationships between these notions and some types of a pseudo Smarandache ideals of a Smarandache BH-algebra.

2. Materials and Methods

In this section, some basic concepts about a BCK-algebra, a BH-algebra, apseudoBH-algebra, pseudo ideal and a pseudo closed ideal of a pseudo BH-algebra are given.

Definition (1.1) [8]A BCk-algebra is an algebra (X,*,0), where X is a nonempty set, "*" is a binary operation And 0 is a constant, satisfying the following axioms:

i.
$$((x * y) * (x * z)) * (z * y) = 0$$
, $\forall x, y, z \in X$

ii.
$$(x * (x * y)) * y = 0$$
, $\forall x, y, z \in X$. iii. $x * x = 0$, $\forall x \in X$.

iv.
$$x * y = 0$$
 and $y * x = 0 \implies x = y$, $\forall x, y \in X$

 $v. \ 0 * x = 0 \ , \ \forall x \in X$

Definition (1.2) [6] A BH-

algebrais a nonempty set Xwith constant 0 and a binaryoperation conditio i.x*x=0, $\forall x \in X$.ii. x*0=x, $\forall x \in X$.iii. x*y=0 and $y*x=0 \Rightarrow x = y$, $\forall x$, $y \in X$.

Definition (1.3) [4]A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X such that i. $0 \in Q$ and $|Q| \ge 2$

ii. Q is a BCK – algebra under the operation of X.

Definition (1.4)[6]Let I be a nonempty subset of a BH-algebra X and I $(\neq \emptyset)\subseteq X$. Then I is called an ideal of X if it is satisfies: i. $0 \in I$. ii. $x * y \in and y \in I imply x \in I$, $\forall x, y \in X$ Now, we define the a Smarandache ideal of X to the Smarandache BH algebra X.

Definition (1.5) [4] A nonempty subset I of a Smarandache BH – algebra X is called a Smarandache ideal of X if:

i. $0 \in I$

ii.
$$x * y \in I$$
 and $y \in I \implies x \in I$, $\forall x \in Q$

Proposition (1.6) [4] Every ideal of a Smarandache BH-algebra X is a Smarandache ideal of X.

Definition (1.7)[3]An ideal I of a BH-algebra X is called a closed ideal of X if and only if $0 * x \in I$ for all $x \in I$

Now, we define the Smarandache closed ideal of X to the Smarandache BH algebra X.

Definition (1.8) [4]A Smarandache ideal I of a Smarandache BH –algebra X is called a Smarandache closed ideal of X if: for all $x \in I$, $0 * x \in I$

Proposition (1.9) [4] Every closed ideal of a Smarandache BH-algebra X is a Smarandache closed ideal of X.

Definition (1.10) [2] An ideal I of a BH-algebra X is called a completely closed ideal of X if it is Satisfies: $x * y \in I$, $\forall x, y \in I$ **Remark** (1.11) [2] Every a completely closed ideal of BH-algebra X is closed ideal of X.

Now, we define the Smarandache a completely closed ideal of X to the Smarandache BH algebra X.

Definition (1.12) [4] A Smarandache ideal I of a Smarandache BH-algebra X is called a Smarandache completely closed ideal of X if: $x * y \in I$, $\forall x, y \in I$.

Proposition (1.13) [4] Every completely closed ideal of a BH-algebra X is a Smarandache completely closed ideal of X

Remarks (1.14) [4] Every a Smarandache completely closed ideal of Smarandache BH-algebra X is a Smarandache closed ideal of X

Definition (1.15)[7]

A pseudoBH algebrais a nonempty set X with aconstant 0and two binary operations "*"and "#" satisfying the

following conditioni. $x * x = x \# x = \forall x \in X$.ii. x * 0 = x # 0 = x, $\forall x \in X$. iii. $x * y = y \# x = 0 \Rightarrow x = y$, $\forall x y \in X$

Definition (1.16)[7] Let $(X_*, \#, 0)$ be a pseudoBH – algebra, Then I is called pseudo ideal of \mathfrak{X} if it satisfies:

 $i.0 \in I. \ ii.x *y, x \# y \in I, y \in I \Rightarrow x \in , \forall x, y \in X.$

Definition (1.17) [7] A pseudoidealI of a pseudoBH-algebraX is called a pseudo closed idealof X, if for every $x \in I$, we have 0*x, $0 \# x \in I$

Definition (1.18) [1] A pseudoideal**l** of a pseudoBH -algebra X is called a pseudo completely closed idealof X, if satisfies: $x * y, x # y \in I$, for all $x, y \in I$

Remarks (1.19) [1] Every a pseudo completely closed ideal of a pseudo BH-algebra X is a pseudo closed ideal of X.

3. Main Results

In this section, the concepts a pseudo Smarandache BH-algebra, a pseudo Smarandache ideal, a pseudo Smarandache closed ideals and a pseudo Smarandache compeletly closed ideals of a pseudoSmarandache BH-algebra are given.

Definition (2.1) A peusdo Smarandache BH-algebra (X, *, #, 0) is defined to be a pseudo BH-algebra in which there exists a proper subset Q of X such that

 $i.0 \in Q$ and $|Q| \ge 2$

ii. Q is BCK – algebra under the operations "*" and "#" of X. **Example** (2.2) the a pseudo BH- algebra $X = \{0,1,2,3,4\}$ with constant 0 and binary operations" *" and" #" defined the following tables and $Q = \{0,1,2\}$ is a pseudo Smarandache BH-algebra.

*	0	1	2	3	4	#	0	1	2	3	4
0	0	0	0	0	4	0	0	0	0	2	4
1	1	0	0	2	4	1	1	0	2	3	1
2	2	1	0	2	4	2	2	2	0	1	0
3	3	2	0	0	4	3	3	0	0	0	2
4	4	2	1	0	0	4	4	1	1	1	0

Definition (2.3) let X be a pseudo Smarandache BH- algebra An on empty subset I of X is called a pseudo Smarandache ideal of X related to Q (or briefly, a pseudo Smarandache ideal of X if.

i. $0 \in I$

ii. $\forall \ y \in I, \ x * y, \ x \# y \in I \ imply \ x \in I, \ \forall \ x \in Q$

Example(2.4) Consider the pseudo Smarandache BH- algebra $X=\{0,1,2,3,4\}$ with the binary Operations "*" and "#" defined by the tables.

*	0	1	2	3	4	#	0	1	2	3	4
0	0	0	0	3	4	0	0	0	0	3	4
1	1	0	0	2	3	1	1	0	0	2	1
2	2	1	0	2	4	2	2	2	0	1	0
3	3	3	2	0	4	3	3	3	2	0	2
4	4	2	1	0	0	4	4	1	2	1	0

And Q={0,1,2} the subset $\ I=\{0,1,3\}$ is a pseudo Smarandache ideal of X .

Proposition (2.5)Let X be a pseudo Smarandache – BH algebra .Then every a pseudo ideal of X is a pseudo Smarandache ideal of X

Proof: It is clear

Remark (2.6) The following example shows that convers of proposition is not correct in general.

Example (2.7)Consider the a pseudo Smarandache BH- algebra $X=\{0,1,2,3\}$ with binary operations "*" and "#" defined by the following tables.

*	0	1	2	3	#	0	1	2	3
0	0	0	2	3	0	0	0	2	3
1	1	0	1	2	1	1	0	0	2
2	2	2	0	1	2	2	2	0	1
3	3	3	2	0					
	Ĵ				3	3	3	2	0

And Q = $\{0,1\}$. The subset $I = \{0,2\}$ is a pseudo Smarandache ideal of X but it is not a pseudo ideal of X

since $3 * 2 = 2 \in I$ and $3#2 = 2 \in I$ but $3 \notin I$

Theorem (2.8)Let X be a pseudo Smarandache BH- algebra and I be a pseudo Smarandache ideal such that $x*y, x\#y \notin I$ for all $x \notin I$ and $y \in I$, then I is a pseudo ideal of X.

Proof:

Let I be a pseudo Smarandache ideal of X, $x \in X$, and $y \in I$. $0 \in Iii.$ let $x * y, x # y \in I$ and $y \in I$

Then we have two cases. Case 1 if $x \in Q \implies x \in I$

Case 2 if $x \notin Q$, either $x \in I$, or $x \notin I$

If $x \in I \implies I$ is a pseudo idealif $x \notin I \implies x * y, x \# y \notin I$

And this contradiction since x * y, $x # y \in I$

Therefore, I is a pseudo ideal

Definition (2.9)A pseudo Smarandache ideal of a pseudo Smarandache BH-algebra is called a pseudo Smarandache closed ideal of X if $0 * x , 0 # x \in I$, $\forall x \in I$

Example(2.10) the a pseudo Smaranadche ideal $I=\{0,1,3\}$ of X in example (2,4) is a pseudo Smaranadche closed ideal of X.

Definition (2.11) A pseudo Smarandache ideal of a pseudo Smarandache BH-algebra is called a pseudo Smarandache completely closed ideal of X if x*y and $x\#y \in I$, $\forall x,y \in I$ **Example** (2.12) the a pseudo Smaranadche ideal $I=\{0,4\}$ of X in example (2.4) is a pseudo Smaranadche completely closed ideal of X

Proposition (2.13) Let X is a pseudo Smarandache BH –algebra .Then every a pseudo Smarandache completely closed ideal of X is a pseudo Smarandache closed ideal of X.

Proof: It is clear

Remark(2.14) The following example shows that convers of proposition is not correct in ganeral.

Example(2.15) Consider the a pseudo Smarandache BH-algebra $X=\{0,1,2,3\}$ with binary operation"*" "#" defined by the following tables.

*	0	1	2	3	#	0	1	2	
0	0	0	1	3	0	0	0	2	
1	1	0	3	1	1	1	0	3	
2	2	3	0	2	2	2	3	0	
3	3	2	1	0	3	3	3	1	

And $Q=\{0,1\}$, Then X a pseudo Smarandache BH- algebra where The pseudo Smarandache ideal $I = \{0,1,2\}$ is a pseudo Smarandache closed ideal of X.

But is not a pseudo Smarandache completely closed ideal of X. Since, $1 * 2 = 3 \notin I$, $1#2 = 3 \notin I$ and $1, 2 \in I$

Remark (2.16)let X a pseudo Smarandache BH- algebra and I be a pseudo completely closed ideal of X then I is a pseudo Smarandache completely closed ideal of X.

Proposition (2.17)Let X be a pseudo Smarandache BH- algebra and I be apseudo Smarandache closed ideal such that x*y, x#y∉ I for all x∉I and y∈I, then I is a pseudo closed ideal of X.

Proof: Let I be a pseudo Smarandache closed ideal of X ⇒I is a pseudo Smarandache ideal of X

By theorem 1 I is a pseudo Smarandache closed ideal of X Implies that $0 * x, 0 # x \in I$

Therefore, I is a pseudo closed ideal of X

Proposition (2.18) Let X be a pseudo Smarandache BH- algebra and I be a pseudo Smarandache completely closed ideal such that x * y, $x # y \notin I$ for all $x \notin I$ and $y \in I$, then I is pseudo completely closed ideal of X

Proof: Let I be a pseudo Smarandache completely closed ideal of X. This yield

I is a pseudo Smarandache ideal of X. by theorem (2.8) we have I is a pseudo ideal of X [since I a pseudo Smarandache completely closed ideal of X]

It follows x * y and $x # y \in I$, for all $x, y \in I$ Hence, I is a pseudo completely closed ideal of X

Proposition (2.19) Let $\{I, i \in \lambda\}$ be a family of

A Pseudo Smarandache ideal of pseudo Smarandache BH algebra. Then $\bigcap_i I_i$ is a pseudo Smarandache ideal of X .

Proof:
$$i. \ since \ 0 \in \underset{i}{I} \ , \forall \ i \in \lambda \implies 0 \in \bigcap_{i \in \lambda} \ \underset{i}{I}$$

$$ii.\, let \ \ x * y \ \ , x \# y \ \in \bigcap_{i \in \lambda} \quad \underset{i}{I} \ \ , \, \mathbf{y} \in \bigcap_{i \in \lambda} \underset{i}{I}$$

$$\Rightarrow x * y, x \# y \in \underset{I}{I} and y \in \underset{i}{I}, \forall i \in \lambda$$

 $\Rightarrow x \in I \forall i \in \lambda$ [since I is a pseudo Smarandache ideal of

$$\Rightarrow x \in \bigcap_{i \in \lambda} \underset{i}{I} \Rightarrow \bigcap_{i \in \lambda} \underset{i}{I} \quad \text{is a pseudo Smarandache ideal of X}.$$

Proposition (2.20) Let $\{I, i \in \lambda\}$ be a family of a pseudo

Smarandache closed ideal of a pseudo Smarandache BH - algebra . Then $\bigcap_{i} I_i$ is a pseudo Smarandache closed ideal of X.

Proof: Since I is a pseudo Smarandache closed ideal of X, $\forall i \in \lambda$

$$\Rightarrow$$
 I_i is a pseudo Smarandache ideal of X, $\forall i \in \mathcal{X}$. [From propos

$$\bigcap_{i\in\lambda} \begin{matrix} I \\ i \end{matrix} \text{ is a pseudo Smarandache ideal of X. Now, let} \\ x \in \bigcap_{i\in\lambda} \begin{matrix} I \\ i \end{matrix} \Rightarrow x \in I \\ i, \forall i \in \lambda \Rightarrow 0*x, 0\#x \in I \\ i \end{matrix}$$

$$x \in \bigcap_{i \in \lambda} I \Rightarrow x \in I, \forall i \in \lambda \Rightarrow 0 * x, 0 \# x \in I$$

$$\Rightarrow 0 * x, 0 # x \in \bigcap_{i=1}^{n} I_i$$

3 1 3

0

So,
$$\bigcap_{i\in\lambda}I_i$$
 is a pseudo Smarandache closed ideal of X.

Proposition (2.21) Let $\{I, i \in \lambda\}$ be a family of a pseudo Smarandache completely closed ideal of a pseudo Smarandache BH – algebra . Then $\bigcap_{i \in \lambda} I_i$ is a pseudo Smarandache completely

Proof Since I is a pseudo Smarandache completely closed ideal

of X , $\forall i \in \mathcal{X}$ I is a pseudo Smarandache ideal of X , $\forall i \in \mathcal{X}$

.[From proposition (2.9)] we get

$$\bigcap_{i \in \lambda} I \text{ a pseudo Smarandache ideal of X, Now ,let } x, y \in \bigcap_{i \in \lambda} I \Longrightarrow$$

Then
$$x*y, x\#y \in I_i$$
, $\forall i \in \lambda$. [since I_i is a pseudo Smarandache completely closed ideal of X . Hence, $x*y, x\#y \in \bigcap_{i \in \lambda} I_i$, $\forall i \in \lambda$

Therefore, $\bigcap_{i \in \lambda} I_i$ a pseudo Smarandache completely closed

Remark (2.22) Let $\{I_i, i \in \lambda\}$ be a family of a pseudo

Smarandache ideal of a pseudo Smarandache BH-algebra X. $\bigcup I_i$

may not be a pseudo Smarandache ideal of X.

Example(2.23)Consider the a pseudo Smarandache BH- algebra $X=\{0,1,2,3,4\}$ with the binary operation "*" and "#"defined by the following tables.

		-6									
*	0	1	2	3	4	#	0	1	2	3	4
0	0	0	2	3	4	0	0	0	0	0	1
1	1	0	3	2	1	1	1	0	2	3	4
2	2	2	0	1	4	2	2	1	0	2	2
3	3	3	2	0	2	3	3	2	3	0	1
4	4	4	1	2	0	4	4	4	1	2	0

and Q ={0,1} the subsets $I = \{0,2\}$ and $I = \{0,3\}$ are a pseudo Smarandache ideal of X.

But $I \cup I_2 = \{0,2,3\}$ is not a pseudo Smarandache ideals of X.

Since
$$1*2=3 \in I \cup I$$
, $1#2=2 \in I \cup I$ but $1 \notin I \cup I$

Proposition (2.24) Let $\{I, i \in \lambda\}$ be a chain of a pseudo Smarandache ideal of a pseudo Smarandache BH -algebra X. Then $\bigcup I$ is a pseudo Smarandache ideal of X.

Proof
i.
$$0 \in I_i$$
, $\forall i \in \lambda$ [since each I_i is a pseudo Smarandache ideal of X , $\forall i \in \lambda$] $\Longrightarrow 0 \in \bigcup_{i \in \lambda} I_i$
ii. let $x * y$, $x \# y \in \bigcup_{i \in \lambda} I_i$ and $y \in \bigcup_{i \in \lambda} I_i$. There exists $I_i \in \{I_i\}_i \in \lambda$ such that $x * y$, $x \# y \in I_i$ and $y \in I_i$ since $\{I_i\}_i \in \lambda$ a chain. So, $x \in I_i$ since I_i is a pseudo Smarandache ideal of X . Therefore $X \in \bigcup_{i \in \lambda} I_i$

$$\bigcup_{i \in \lambda} I_i$$
 a pseudo Smarandache ideal of X

4. Conclusion

In this paper, the notions of a pseudo Smarandache BH-algebra, a pseudo Smarandache ideal of BH-algebra, a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache completely closed ideal of a BH-algebra are introduced. Furthermore, the results are examined in terms of the relationships between a pseudo Smarandache closed ideal of BH-algebra, a pseudo Smarandache completely closed ideal of BH-algebra

References

- Abbass HH & Nouri AH, "On some types of pseudo ideals of a pseudo BH-Algebra", Applied Mathematical Sciences, Vol.11, No.43, (2017), pp.2113-2120.
- Abass HH & Dahham HB, "Some types of Fuzzy Ideals with [2] Respect to An Element of a BH-Algebra", Journal of Kerbala University, Vol. 10, No. 3, (2012), pp.302-312.
- Abass HH & Saeed HMA, The Fuzzy closed ideal with Respect To [3] An Element of a BH-Algebra, M.S.c thesis, Kufa University,
- Abass HH & Mohammed SJ, "On a Q-Smarandache Completely Closed Ideals with Respect to an Element of a Smarandache BH-Algebra", Journal of Kerbala University, Vol.11, No.3, (2013).
- Jun YB, "Smarandache BCI-Algebras", Scientiac Mathematicae, [5] (2005), pp. 271-276 271.
- Jun YB, Roh EH & Kim HS, "On BH-algebras", Scientiae [6] Mathematicae, Vol.1, No.1, (1998), pp.347-354.
- [7] Jun YB & Ahn SS, "On pseudo BH-algebras", Honam Mathematical J., Vol.37, No.2, (2015), pp.207-219.
- [8] Imai Y & ISEKI K, "On Axiom System of Propositional Calculi XIV", Proc. Japan Acad., Vol.42, (1966), pp.19-20.