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Abstract 
 

This paper establishes the existence of coincidence fixed-point and common fixed-point results for two mappings in a complete bipolar 

metric spaces. Some interesting consequences of our results is achieved. Finally, an illustration which presents the applicability of the 

results is achieved. 
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1. Introduction 

In 1922, S. Banach, [4] made the introduction to the concept of Ba-

nach contraction principle. It is considered as the most fundamental 

tool in non-linear analysis. It explains that in complete metric 

spaces, each contractive mapping has a solitary fixed point.  It has 

been extended and generalization of various types of metric spaces 

(see [6] - [9], [13]). Jungck [11] has introduced the concept of com-

mon fixed point in metric spaces for commuting mappings in 1966.  

Afterwards Jungck [12] initiated concept of compatibility and es-

tablished some results. Subsequently to improve many authors have 

established common and coincidence fixed point results for map-

pings (see [3], [5], [10]) and reference therein. 

Very recently, Mutlu and Gürdal [2] introduced notion of bipolar 

metric spaces in 2016. Also, they investigated some fixed and cou-

pled fixed point results on this space (see, [1] [2]) and reference 

therein. 

In this paper, we will continue to study fixed points in the frame of 

bipolar metric-spaces. More squarely, some common fixed-point 

results for two covariant and contravariant mappings under various 

contractive conditions will be established. We have illustrated the 

validity and effectiveness of the hypotheses of the results. The pre-

sent results extends and improves the concepts in some of the recent 

literatures [2]. 

Definition 1.1: [2] Let U and V be a two non-empty sets. Suppose  

d: U×V →[0,∞) be a mapping satisfying the below properties: 

(𝐵1)   If d (u, v) = 0, then u=v for all (u, v)  ∈ U×V, 

(𝐵2)   If u = v, then d (u, v) = 0, for all (u, v) ∈ U×V, 

(𝐵3)  If d (u, v) =d (v, u), for all u, v ∈ U∩V 

(𝐵4 ) If d (𝑢1, 𝑣2) ≤ d (𝑢1, 𝑣1) + d (𝑢2  , 𝑣1) + d (𝑢2, 𝑣2) for all 𝑢1, 

𝑢2 ∈U, and  𝑣1, 𝑣2 ∈V. 

Then the mapping d is termed as Bipolar-metric of the pair (U, V) 

and the triple (U, V, d) is termed as Bipolar-metric space. 

Example 1.2 ([2]): Let U= (1, ∞) and V= [-1, 1]. Define                       d: 

U×V →[0,∞) as d (a, b) =|𝑎2 -𝑏2 |, for all (a, b) ∈ U×V.  Then the 

triple (U, V, d) is a disjoint Bipolar-metric space. 

Definition 1.3: [2] Assume (𝑈1  ,𝑉1 ) and (𝑈2, 𝑉2) as two pairs of 

sets and a function as F: 𝑈1 ∪ 𝑉1  ⇉ 𝑈2 ∪ 𝑉2 is said to be a covar-

iant map. If F (𝑈1)⊆ 𝑈2 and F (𝑉1)⊆ 𝑉2 and denote this with        S: 

(𝑈1,  𝑉1) ⇉ (𝑈2 ,𝑉2). And the mapping S: 𝑈1 ∪ 𝑉1   ⇄ 𝑈2 ∪ 𝑉2  is 

said to be a contravariant map. If F (𝑈1) ⊆  𝑉2, and F (𝑉1)⊆ 𝑈2, and 

write F: (𝑈1,  𝑉1) ⇄ (𝑈2, 𝑉2). In particular, if 𝑑1 and 𝑑2 are bipolar 

metric on (𝑈1,  𝑉1) and (𝑈2, 𝑉2 ), respectively, we sometimes use 

the notation F: (𝑈1,  𝑉1, 𝑑1 ) ⇉ (𝑈2, 𝑉2, 𝑑2) and                        F: 

(𝑈1,  𝑉1, 𝑑1 ) ⇄ (𝑈2, 𝑉2, 𝑑2). 

 

Definition 1.4: [2] Assume (U, V, d) as a bipolar metric space. A 

point v ∈U ∪V is termed as a left point if v ∈ U, a right point if    v 

∈ V and a central point if both. Similarly, a sequence {𝑢𝑛} on the 

set U and a sequence {𝑣𝑛} on the set V are called a left sequence 

and right sequence respectively. In a bipolar metric space, sequence 

is the simple term for a left or right sequence. A sequence {𝑣𝑛}  is 

considered convergent to a point v,  if and only if  {𝑣𝑛}  is the left 

sequence, v is the right point and       lim
𝑛→∞

d(𝑣𝑛, v)  = 0;  or  {𝑣𝑛} is 

a right sequence, v is a left point and lim
𝑛→∞

d(v, 𝑣𝑛)  = 0.  A bi-se-

quence ({𝑢𝑛}, {𝑣𝑛}) on (U, V, d) is a sequence on the set U ×V. If 

the sequence {𝑢𝑛} and {𝑣𝑛} are convergent, then the bi-sequence   

({𝑢𝑛}, {𝑣𝑛}) is said to be convergent.  ({𝑢𝑛}, {𝑣𝑛}) is Cauchy se-

quence, if lim
𝑛→∞

d(𝑢𝑛, 𝑣𝑛)  = 0. In a bipolar metric space, every con-

vergent Cauchy bi-sequence is bi-convergent. A bipolar metric 

space is called complete, if every Cauchy bi-sequence is convergent 

hence bi-convergent.  

Definition 1.5: [2] Let (𝑈1,𝑉1,𝑑1) and (𝑈2,𝑉2,𝑑2) be a bipolar met-

ric spaces. 

(i) A map F is called continuous, if it left continuous at each 

point u∈ 𝑈1 and right continuous at each point v∈ 𝑉1 

(ii) A contravariant map F: (𝑈1, 𝑉1, 𝑑1) ⥤ (𝑈2, 𝑉2, 𝑑2) is 

continuous if and only if it is continuous as a covariant 

map F: (𝑈1, 𝑉1, 𝑑1) ⇉ (𝑈2, 𝑉2, 𝑑2).    

It can be seen from the definition (1.4) that a covariant or a contra-

variant map F: (𝑼𝟏, 𝑽𝟏, 𝒅𝟏) ⇉ (𝑼𝟐, 𝑽𝟐, 𝒅𝟐) is continuous if and 

only if (𝒖𝒏 )→ 𝒗  on   (𝑼𝟏, 𝑽𝟏, 𝒅𝟏)  implies  F((𝒖𝒏 )) → 𝑭(𝒗)  on  

(𝑼𝟐, 𝑽𝟐, 𝒅𝟐) 
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2. Main Results  

In this section, we will give some common fixed-point theorems for 

two covariant and contravariant mappings satisfying various con-

tractive conditions in complete bipolar metric spaces. 

 

Definition 2.1:  The mappings F and G on bipolar metric-space     

(U, V, d) are said to be compatible, if for arbitrary bisequences 

({𝑎𝑛}, {𝑏𝑛})⊆ (𝑈, 𝑉), such that lim
𝑛→∞

F𝑎𝑛  = lim
𝑛→∞

G 𝑏𝑛 = v∈ 𝑈 ∪ 𝑉, 

then d (𝐺F𝑎𝑛, 𝐹G 𝑏𝑛)→ 0 𝑎𝑠 𝑛 → ∞. 

Definition 2.2:  Assume that F and G are two covariant or contra-

variant mappings of the set U∪ V 

(i)   If v= Fv = Gv for some v∈U∪ V, then v is named as a common 

fixed point of F and G 

(ii)  If u=Fv=Gv  for some u∈U∪ V, then v is considered as a coin-

cidence point of F and G, and u is termed as the point of coincidence 

of F and G. 

(iii) If F and G commute at all of their coincidence points; 

 i.e. FGv = GFv for all v ∈{v∈U∪ V: Fv=Gv}, then F and G are 

called weakly Compatible. 

In the metric-space, if the mapping F and G are compatible, then 

they are weakly compatible, while the converse becomes untrue 

([12]). The same comes for the bipolar metric spaces. 

 

Lemma 2.3:  If the mapping F and G on the bipolar metric space 

(U, V, d) are compatible, then they are weakly compatible. 

Proof: Let F v = Gv for some v∈ 𝑈 ∪ 𝑉. It is sufficient to show 

that FGv = GF v.  

Putting 𝛼𝑛 ≡ v and 𝛽𝑛 ≡ v for every n ∈ N, we have                    

lim
𝑛→∞

𝐹𝛼𝑛 = lim
𝑛→∞

𝐺𝛽𝑛 

and then, since F and G are compatible,  

 we have d (GF𝛼𝑛; FG𝛽𝑛) → 0 as n→ ∞. 

Hence d (GF v; FGv) = 0, which means GF v = FGv.  

But, the converse does not hold. For example, Let U = (0;∞) and V 

= [-1; 1]. Define d: U × V → [0;∞) as d (v; u) =|𝑣2 − 𝑢2|, for all 

(v; u) ∈ (U; V). Then (U; V; d) is a Bipolar-metric space. Set 

Fv= {
𝑣,  𝑖𝑓 𝑣 ∈ (0,

3

2
  ]

1

3
,  𝑖𝑓 𝑣 ∈ (

3

2
, ∞)

     and                                                   

Gv= {
1 − 2𝑣,  𝑖𝑓 𝑣 ∈ [0,

2

5
  ]

𝑣

3
,  𝑖𝑓 𝑣 ∈ [−1, 0) ∪ ( 

2

5
, 1]

 

Firstly, we can calculate that set of their coincidence point is sin-

gleton set {
1

3
 }, and then we have F and G are commute at this 

point. Hence F and G are weakly compatible. However, we can 

prove they are not compatible. In this purpose, we 

construct a bisequence ({𝛼𝑛}, ({𝛽𝑛}) ⊆ (U, V) such that   

𝛼𝑛 =1- 
1

𝑛
∈ 𝑈 and 𝛽𝑛 =

1

𝑛
∈ 𝑉 for n∈ 𝑁 with n≥3. In this case, we 

have F𝛼𝑛 =1-
1

𝑛
 and G𝛽𝑛 =1- 

2

𝑛
. Then lim

𝑛→∞
𝐹𝛼𝑛 = lim

𝑛→∞
𝐺𝛽𝑛 = 1  In 

fact we have 

 

d (F𝛼𝑛 ,1)= d(1-
1

𝑛
, 1)=  |(1 −

1

𝑛
)2 − 12|=|1 +

1

𝑛2 −
2

𝑛
− 1| → 0  as 

n→ ∞. and 

d(1, G𝛽𝑛)=d(1, 1-
2

𝑛
)= |12−(1 −

2

𝑛
)2|=|1 − 1 −

4

𝑛2 +
4

𝑛
| → 0 as n→

∞. 

But d(G F𝛼𝑛, F G𝛽𝑛)=d(𝐺 (1 −
1

𝑛
) , 𝐹(1 −

2

𝑛
)) 

=d(
1−𝑛

𝑛
,

𝑛−2

𝑛
)=|(

𝑛−1

3𝑛
 )2 − (

𝑛−2

𝑛
 )2| 

= |
1

9𝑛2
(1 + 𝑛2 − 2𝑛) −

1

𝑛2 (𝑛2 + 4 − 4𝑛 )| →
8

9
 as n → ∞ . Which 

means that d(G F𝛼𝑛, F G𝛽𝑛)↛0. 

 

Lemma 2.4:  If the mappings F and G be weakly compatible map-

pings of a set U∪V. If F and G have a unique coincidence point, 

then F and G have a unique common fixed point. 

Proof: Since u = F v = Gv for some v; u ∈ U∪ 𝑉 and F and G are 

weakly compatible, we have Fu = FGv = GF v = Gu is a point of 

coincidence of F and G. But u is the only coincidence point of F 

and G, so u = Fu = Gu. Moreover, if 𝑣 ′= F𝑣 ′= G𝑣 ′, then 𝑣 ′ is co-

incidence point of F and G, and hence v = 𝑣 ′ by the uniqueness. 

Thus v is a unique common fixed point of F and G. 

2.1. Common fixed point theorems on covariant maps 

Theorem 2.5: Assume (U, V, d) be a complete bipolar metric 

spaces and given contractions, F, G: (U, V, d) ⇉ (U, V, d) satisfies     

d(Fu, Gv)≤ 𝜇 d(u, v)  for all (u, v)∈ U× V , where  𝜇 ∈(0, 1).    (1) 

Then the mappings F, G: U∪ V →U∪V have a unique common 

fixed point. 

Proof:  Let 𝛼0  ∈U and  𝛽0  ∈V and we construct a bisequences   

({𝛼𝑛},  {𝛽𝑛}) ⊆ (U, V) by the way: F 𝛼2𝑛= 𝛼2𝑛+1, G 𝛼2𝑛+1= 𝛼2𝑛+2 

and F𝛽2𝑛=𝛽2𝑛+1  G𝛽2𝑛+1=𝛽2𝑛+2, for all n∈ N.   

Let 𝜇 ∈(0, 1), put K=d (𝛼0,  𝛽0) + d(𝛼0, 𝛽1) and 𝑆𝑛= 
𝜇𝑛+1

1−𝜇
  K  . Then 

for each positive integer n and   l from (1) , we have 

d(𝛼2n+1,  𝛽2n+2) = d(F𝛼2n,  ,G𝛽2n+1) 

 ≤μ d(𝛼2n,  𝛽2n+1) 

≤ μ2n+1 d (𝛼0, 𝛽1) 

and also 

d(𝛼2n+1,  𝛽2n+1)  = d(F𝛼2n,  ,G𝛽2n) 

≤μ d(𝛼2n,  ,𝛽2n) 

 

≤ μ2n+1 d (𝛼0, 𝛽0) 

Therefore, 

d(𝛼2n+1,  𝛽2n+2) + d(𝛼2n+1,  𝛽2n+1) 

≤ μ2n+1 (d (𝛼0, 𝛽1) + d (𝛼0, 𝛽0))  ≤ μ2n+1 K 

Now we can obtain that for any n ∈ N 

d(𝛼n,  𝛽n+1) + d(𝛼n,  𝛽n)  ≤ μn+1 (d (𝛼0, 𝛽1) + d (𝛼0, 𝛽0))  

≤ μn+1 K 

for all n, l ∈ 𝑁  with   n> l 

d(𝛼n+l,  𝛽n) ≤ d(𝛼n+l,  𝛽n+1) + d(𝛼n,  𝛽n+1) + d(𝛼n,  𝛽n) 

≤ d(𝛼n+l,  𝛽n+1) +μn+1 K 

≤ d(𝛼n+l,  𝛽n+2) + d(𝛼n+1,  𝛽n+2) + d(𝛼n+1,  𝛽n+1)        

+μn+1 K 

≤ d(𝛼n+l,  𝛽n+2) +(μn+1 + μn+2 )K 

≤  d( 𝛼n+l ,  𝛽n+l ) + (μn+l + ⋯ … . . +μn+2 +
                               μn+1 )K 

≤ (μn+l+1 + μn+l + ⋯ … … . . +μn+2 + μn+1 )K 

= 
𝜇𝑛+1

1−𝜇
  K  =𝑆𝑛 

And similarly, d(𝛼n,  𝛽n+l) ≤ 𝑆𝑛. 
Let 𝜖 > 0 and 0 <μ < 1,  there exist a positive integer 𝑛0 ∈ 𝑁 such 

that    𝑆𝑛0
= 

𝜇𝑛0+1

1−𝜇
  K<

𝜖

3
   then  

d(𝛼n,  𝛽m) ≤ d(𝛼n,  𝛽𝑛0
) + d(𝛼𝑛1

,  𝛽𝑛0
)+ d(𝛼𝑛1

,  𝛽𝑛0
) ≤3𝑆𝑛0

< 𝜖   

  and hence  ({𝛼𝑛},  {𝛽𝑛})  𝑖𝑠 a Cauchy  bisequence . (U, V, d) is 

complete, the bisequence ({𝛼𝑛},  {𝛽𝑛}) converges, and thus bicon-

verges to point v ∈ U∩ V such that lim
𝑛→∞

𝛼n= lim
𝑛→∞

𝛽n= v.  

Then there exist 𝑛1 ∈ 𝑁 with d(𝛼𝑛, 𝑣 ) <
𝜖

3
   and  d(𝛽𝑛 , 𝑣 ) <

𝜖

3
   for 

all n ≥  𝑛1 and  𝜖 > 0 . Since ({𝛼𝑛},  {𝛽𝑛})  𝑖𝑠 a Cauchy  bisequence, 

we get d(𝛼𝑛,  𝛽𝑛)<
𝜖

3
.     Now using the (𝐵4 ) and from (1), we have 

 

d(Fⱴ, ⱴ )≤ d(Fⱴ,  𝛽n+l) +d(𝛼n+1,  𝛽n+l)+d(𝛼n+1,  ⱴ) 

 ≤ d(Fⱴ,  𝐺𝛽n) + d(𝛼n+1,  𝛽n+l)+ d(𝛼n+1,  ⱴ) 

≤μ d(ⱴ,  𝛽n) + d(𝛼n+1,  𝛽n+l)+ d(𝛼n+1,  ⱴ) 

≤μ
𝜖

3
   +

𝜖

3
   +

𝜖

3
   < 𝜖 .  

 

For each n∈ N and 0 <μ < 1. Then d(Fⱴ, ⱴ )=0, and hence Fⱴ= ⱴ.  

Again, nothing that 

d(ⱴ, Gⱴ )≤ d(Fⱴ, Gⱴ )≤ μ d(ⱴ, ⱴ ) < d(ⱴ, ⱴ ) =0.  

We have d(ⱴ, Gⱴ )= 0,  which implies that  Gⱴ= ⱴ. 

 Hence ⱴ is common fixed point of F and G. 
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In the following, we will prove the uniqueness of common fixed 

point in U ∪V. For this purpose, let  ⱴ΄ ∈U ∪V be another fixed 

point of F and G such that F ⱴ΄=G ⱴ΄ =  ⱴ΄ implies  ⱴ΄ ∈U ∩V. 

 From (1), we have  

d(ⱴ,  ⱴ΄)= d(Fⱴ,  Gⱴ΄) 

 ≤ μ d(ⱴ,  ⱴ΄)< d(ⱴ,  ⱴ΄) 

  Thus, it’s holds only when d(ⱴ,  ⱴ΄)=0 which gives that  ⱴ = ⱴ΄. 

Hence F and G have a unique common fixed point in U ∪V. 

Remark 2.6:  In theorem 2.5, if F=G, (1) becomes 

 d(Fu,  Fv) ≤ 𝜇 d(u, v)  for all (u, v)∈ U× V , where  𝜇 ∈(0, 1). (2) 

In this case, we have the following corollary, which can also be 

found in [2]. 

Corollary 1: Assume (U, V, d) be a complete bipolar metric spaces 

and given contractions, F: (U, V, d) ⇉ (U, V, d) satisfies (2).  

Then the mappings F: U∪ V →U∪V has a unique fixed point. 

Theorem 2.7: Assume (U, V, d) be a complete bipolar metric 

spaces and given contractions, F, G: (U, V, d) ⇉ (U, V, d) satisfies     

d(Fu, Fv)≤ 𝜇 d(Gu, Gv)  for all (u, v)∈ U× V , where  𝜇 ∈(0, 1). (3) 

If R(F)⊆R(G) and R(G) is complete in U∪V. Then F and G have a 

unique point of coincidence in U∪V. Furthermore, if F and G are 

weakly compatible, then the mappings F, G: U∪ V →U∪V have a 

unique common fixed point. 

Proof:  Let 𝛼0 ∈U and  𝛽0 ∈V and choose 𝛼1 ∈U and  𝛽1 ∈V such 

that F 𝛼0= 𝐺𝛼1 and F𝛽0=𝐺𝛽1  which can be done R(F)⊆R(G). Let 

𝛼2 ∈U and  𝛽2 ∈V such that F 𝛼1= 𝐺𝛼2 and F𝛽1=𝐺𝛽2 ,  Repeating 

the process, we get a bi-sequences   ({𝛼𝑛},  {𝛽𝑛}) ⊆ (U, V) satisfy-

ing   F 𝛼𝑛−1= 𝐺𝛼𝑛 and F𝛽𝑛−1=𝐺𝛽𝑛 ,  for all n∈N. 

Let 𝜇 ∈(0, 1), put K=d (𝐺𝛼0,  𝐺𝛽0) + d(𝐺𝛼0, 𝐺𝛽1) and 𝑆𝑛= 
𝜇𝑛

1−𝜇
  K  . 

Then for each positive integer n and   l from (3) , we have 

d(𝐺𝛼n,  𝐺𝛽n) = d(F𝛼n−1,  ,F𝛽n−1) 

≤μ d(𝐺𝛼n−1,  𝐺𝛽n−1) 

≤ μn d (𝐺𝛼0, 𝐺𝛽0) 

and also 

d(𝐺𝛼n,  𝐺𝛽n+1)  = d(F𝛼n−1,  ,F𝛽n) 

≤μ d(G𝛼n−1,  ,G𝛽n) 

≤ μn d (𝐺𝛼0, 𝐺𝛽1) 

Therefore, 

d(𝐺𝛼n,  𝐺𝛽n+1)  + d(𝐺𝛼n,  𝐺𝛽n) 

  ≤ μn (d (𝐺𝛼0, 𝐺𝛽0)+ d (𝐺𝛼0, 𝐺𝛽1))  ≤ μn K 

for all n, l ∈ 𝑁  with   n> l 

d(𝐺𝛼n+l,  𝐺𝛽n) ≤ d(𝐺𝛼n+l,  𝐺𝛽n+1) + d(𝐺𝛼n,  𝐺𝛽n+1)  

+ d(𝐺𝛼n,  𝐺𝛽n) 

≤ d(𝐺𝛼n+l,  𝐺𝛽n+1) +μn K 

≤ d(𝐺𝛼n+l,  𝐺𝛽n+2) + d(𝐺𝛼n+1,  𝐺𝛽n+2)  

+ d(𝐺𝛼n+1,  𝐺𝛽n+1) +   μn K 

≤ d(𝐺𝛼n+l,  𝐺𝛽n+2) +(μn+1 + μn )K 

≤ d(𝐺𝛼n+l,  𝐺𝛽n+l)  

+(μn+l + ⋯ … . . +μn+1 +  μn )K 

≤ (μn+l + μn+l−1 + ⋯ … … . . +μn+1 + μn )K 

= 
𝜇𝑛

1−𝜇
  K  =𝑆𝑛. 

And similarly, d(𝐺𝛼n,  𝐺𝛽n+l) ≤ 𝑆𝑛. 
Let 𝜖 > 0 and 0 <μ < 1,  there exist a positive integer 𝑛0 ∈ 𝑁 such 

that    𝑆𝑛0
= 

𝜇𝑛0

1−𝜇
  K<

𝜖

3
  , then  

d(𝐺𝛼n,  𝐺𝛽m) ≤ d(𝐺𝛼n,  𝐺𝛽𝑛0
) + d(𝐺𝛼𝑛1

,  𝐺𝛽𝑛0
)+ d(𝐺𝛼𝑛1

, G 𝛽𝑛0
)  

  ≤3𝑆𝑛0
< 𝜖   

and hence  ({𝐺𝛼𝑛},  {𝐺𝛽𝑛})  𝑖𝑠 a Cauchy  bisequence in R(G).  Since 

R(G) is complete in  U∪V, so the bisequence ({𝐺𝛼𝑛},  {𝐺𝛽𝑛}) con-

verges, and thus biconverges to point v ∈ U∩ V such that lim
𝑛→∞

𝐺 𝛼n= 

lim
𝑛→∞

𝐺 𝛽n=G v.  

Then there exist 𝑛1 ∈ 𝑁 with d(𝐺𝛼𝑛, 𝐺𝑣 ) <
𝜖

3
   and  d( 𝑣 , 𝐺𝛽𝑛) <

𝜖

3
   

for all n ≥  𝑛1 and  𝜖 > 0 .  Since ({𝐺𝛼𝑛},  {𝐺𝛽𝑛})  𝑖𝑠 a Cauchy  bis-

equence, we get d(𝐺𝛼𝑛,  𝐺𝛽𝑛)<
𝜖

3
.     Now using the (𝐵4 ) and from 

(3), we have 

d(G𝛼𝑛, Fⱴ )= d(𝐹𝛼n−1,  Fⱴ) 

≤μ d(𝐺𝛼n−1,  𝐺ⱴ)  

≤μ
𝜖

3
   < 𝜖.   

 

For each n∈ N and 0 <μ < 1. Then lim
𝑛→∞

𝐺 𝛼n= Fv. 

  Since lim
𝑛→∞

𝐺 𝛼n= Gv. Then it follows that Gv=Fv. Hence F and G 

have a unique point of coincidence in U ∪V. It follows from 

Lemma (2.4) that F and G have unique common fixed point. 

Example 2.8: In Theorem 2.7, the condition that R(G) is complete 

in U∪ V is essential. For example, let U = {𝐔𝐦(R)/𝐔𝐦(R) is upper 

triangular matrices over R} and   V = {𝐋𝐦(R)/𝐋𝐦(R) is lower tri-

angular matrices over R}. Define  d: 𝐔𝐦(R)× 𝐋𝐦(R)   → [0, ∞)  

by d (P,Q) = ∑ |𝐩𝐢𝐣-𝒒𝐢𝐣| 
𝐦
𝐈,𝐣=𝟏  for all  P = (𝐩𝐢𝐣)𝐦×𝐦

 ∈ 𝐔𝐦(R) and  Q 

= (𝐪𝐢𝐣)𝐦×𝐦
 ∈ 𝐋𝐦(R).  Then obviously, (U, V, d) is a complete bi-

polar metric space. Define two mappings   F, G: (𝑼, 𝑽) ⇉ (U, V) 

by the following way: 

 F (P) = {

𝟏

𝟒
𝐏𝐦×𝐦, 𝟎 ≠ (𝐩𝐢𝐣)𝐦×𝐦

∈ 𝐔𝐦(𝐑) ∪ 𝐋𝐦(𝐑)

𝐈𝐦×𝐦,   (𝐩𝐢𝐣)𝐦×𝐦
= 𝟎

   

G (P) = {
𝐏𝐦×𝐦, 𝟎 ≠ (𝐩𝐢𝐣)𝐦×𝐦

∈ 𝐔𝐦(𝐑) ∪ 𝐋𝐦(𝐑)

𝟐𝐈𝐦×𝐦,   (𝐩𝐢𝐣)𝐦×𝐦
= 𝟎.

 

Then we have 

d(F P, , F Q) = d (
𝟏

𝟒
 (𝒑𝒊𝒋)

𝒎×𝒎
 
𝟏

𝟒
 (𝒒𝒊𝒋)

𝒎×𝒎
) 

= 
1

4
∑ |pij-𝑞ij| 

m
i,j=1 ≤

1

2
∑ |pij-𝑞ij| 

m
i,j=1  

≤ 𝜇d(GP, GQ). 

Where μ=
1

2
∈(0,1) and R(F)⊆ R(G) but R(G) is not complete in 

U∪V. We can compute that F and G don’t have a point of coinci-

dence in U ∪ V. 

2.2. Common fixed point theorems on contravariant 

maps 

Theorem 2.9:  Let (U, V, d) be a complete bipolar metric spaces 

and given contravariant contractions, F, G: (U, V, d) ⇄ (U, V, d) 

satisfies   

 d(Fv, Gu)≤ 𝜇 d(u, v)    for all (u, v)∈ U× V , where  𝜇 ∈(0, 1). (4) 

Then the mappings F, G: U∪ V →U ∪V have a unique common 

fixed point. 

Proof:  Let 𝛼0  ∈U and  𝛽0  ∈V and we construct a bisequences   

({𝛼𝑛},  {𝛽𝑛}) ⊆ (U, V) by the way: F 𝛼2𝑛= 𝛽2𝑛 , G 𝛼2𝑛+1= 𝛽2𝑛+1 

and F𝛽2𝑛=𝛼2𝑛+1  G𝛽2𝑛+1=𝛼2𝑛+2, for all n∈ N.  

 Let 𝜇 ∈(0, 1), put 𝑆𝑛= 
𝜇2𝑛−1

1−𝜇
   . Then for each positive integer n and   

l from (4), we have 

d(𝛼2n+1,  𝛽2n+1) = d(F 𝛽2𝑛,  ,G𝛼2𝑛+1) 

 ≤μ d(𝛼2n+1,  𝛽2n) 

≤μ d(𝐹𝛽2n, 𝐺𝛼2n) 

≤ μ2 d(𝛼2n, 𝛽2n) 

≤ μ4n+1 d (𝛼0, 𝛽0) 

and also 

d(𝛼2n+1,  𝛽2n)  = d(F𝛽2n,  G𝛼2n) 

≤ μ4n d (𝛼0, 𝛽0) 

Therefore, 

d(𝛼2n+1,  𝛽2n+1) + d(𝛼2n+1,  𝛽2n)  ≤ (μ4n+1 + μ4n ) d (𝛼0, 𝛽0)   

Now we can get that for any n ∈ N 

d(𝛼n+1,  𝛽n+1) + d(𝛼n+1,  𝛽n)  ≤  (μ2n+1 + μ2n ) d (𝛼0, 𝛽0)   

for all n, l ∈ 𝑁  with   n> l we have  

d(𝛼n+l,  𝛽n) ≤ d(𝛼n+l,  𝛽n+1) + d(𝛼n+1,  𝛽n+1) + d(𝛼n+1,  𝛽n) 

≤ d(𝛼n+l,  𝛽n+1) +(μ2n+1 + μ2n ) d (𝛼0, 𝛽0) 

≤ d(𝛼n+l,  𝛽n+2) + d(𝛼n+2,  𝛽n+2) + d(𝛼n+2,  𝛽n+1)  
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+(μ2n+1 + μ2n ) d (𝛼0, 𝛽0) 

≤ d(𝛼n+l,  𝛽n+2) 

+(μ2n+3 + μ2n+2 + μ2n+1 + μ2n ) d (𝛼0, 𝛽0) 

≤ (μ2n+2l + μ2n+2l−1 + ⋯ + μ2n+1 + μ2n ) d (𝛼0, 𝛽0) 

 

≤  μ2n  ∑ μ𝑘∞
𝑘=0  d (𝛼0, 𝛽0) 

= µ𝑆𝑛 < 𝑆𝑛 

Now 

d(𝛼n,  𝛽n+l) ≤ d(𝛼n,  𝛽n) + d(𝛼n+1,  𝛽n)) + d(𝛼n+1, 𝛽n+l) 

≤ (μ2n−1 + μ2n ) d (𝛼0, 𝛽0)+ d(𝛼n+1,  𝛽n+l) 

≤ (μ2n−1 + μ2n +μ2n+1 + μ2n+2 ) d (𝛼0, 𝛽0)       

+d(𝛼n+2,  𝛽n+l)  

 

≤ (μ2n−1 + μ2n + … … … + μ2n+2l−2  ) d (𝛼0, 𝛽0)       

+d(𝛼n+l,  𝛽n+l)  

≤ (μ2n−1 + μ2n+2l−2 + ⋯ … . +μ2n+2l−1 ) d (𝛼0, 𝛽0) 

≤  μ2n−1  ∑ μ𝑘∞
𝑘=0  d (𝛼0, 𝛽0) 

< 𝑆𝑛 

 

Let 𝜖 > 0 and 0 <μ < 1,  there exists 𝑛0 ∈ 𝑁 such that    

 𝑆𝑛0
= 

𝜇2𝑛0−1

1−𝜇
  d (𝛼0, 𝛽0)<

𝜖

3
  hence   

d(𝛼n,  𝛽m) ≤ d(𝛼n,  𝛽𝑛0
) + d(𝛼𝑛1

,  𝛽𝑛0
)+ d(𝛼𝑛1

,  𝛽𝑛0
) 

≤3𝑆𝑛0
< 𝜖  

and hence  ({𝛼𝑛},  {𝛽𝑛})  𝑖𝑠 a Cauchy  bisequence . Since (U, V, d) 

is complete, the bisequence ({𝛼𝑛},  {𝛽𝑛}) converges, and thus bi-

converges to point v ∈ U∩ V such that lim
𝑛→∞

𝛼n= lim
𝑛→∞

𝛽n= v.  

Then there exist 𝑛1 ∈ 𝑁 with d(𝛼𝑛, 𝑣 ) <
𝜖

3
   and  d(𝛽𝑛 , 𝑣 ) <

𝜖

3
   for 

all n ≥  𝑛1 and  𝜖 > 0 . Since ({𝛼𝑛},  {𝛽𝑛})  𝑖𝑠 a Cauchy  bisequence, 

we get d(𝛼𝑛,  𝛽𝑛)<
𝜖

3
.     Now using the (𝐵4 ) and from (4), we have 

 

d(Gⱴ, ⱴ )≤ d(Gⱴ,  𝛽n+l) +d(𝛼n+1,  𝛽n+l)+d(𝛼n+1,  ⱴ) 

≤ d(Gⱴ,  F𝛼n+1) + d(𝛼n+1,  𝛽n+l)+ d(𝛼n+1,  ⱴ) 

≤μ d(𝛼n+1, ⱴ) + d(𝛼n+1,  𝛽n+l)+ d(𝛼n+1,  ⱴ) 

≤μ
𝜖

3
   +

𝜖

3
   +

𝜖

3
   < 𝜖   

 

For n∈ N and 0 <μ < 1. Then d(Gⱴ, ⱴ )=0, and hence Gⱴ= ⱴ.  

Again, nothing that 

d(ⱴ, Fⱴ )≤ d(Gⱴ, Fⱴ )≤ μ d(ⱴ, ⱴ ) < d(ⱴ, ⱴ ) =0. 

 We have d(ⱴ, Fⱴ )= 0,  which implies that  Fⱴ= ⱴ.  

 Hence ⱴ is common fixed point of F and G. 

In the following we will prove the uniqueness of common fixed 

point in U ∪V. For this purpose, let  ⱴ΄ ∈U ∪V be another fixed 

point of F and G such that F ⱴ΄=G ⱴ΄ =  ⱴ΄ implies  ⱴ΄ ∈U ∩V. 

 From (3), we have  

d(ⱴ,  ⱴ΄)= d(Gⱴ,  Fⱴ΄) 

              ≤μ d(ⱴ,  ⱴ΄)< d(ⱴ,  ⱴ΄) 

Thus, it’s holds only when d(ⱴ,  ⱴ΄)=0 which gives that  ⱴ = ⱴ΄. 

Hence F and G have a unique common fixed point in U ∪V. 

Remark 2.10:  In theorem 2.9, if F=G, (4) becomes 

d(Fv, Fu) ≤ 𝜇 d(u, v)  for all (u, v)∈ U× V , where  𝜇 ∈(0, 1). (5) 

In this case, we have the following corollary, which can also be 

found in [2]. 

Corollary 2: Assume (U, V, d) be a complete bipolar metric 

spaces and contravariant contractions, F: (U, V, d)⇄  (U, V,d) sat-

isfies (5). Then the mappings F: U∪ V →U ∪V has a unique fixed 

point. 

Theorem 2.11: Assume (U, V, d) be a complete bipolar metric 

spaces and given contractions, F, G: (U, V, d) ⇄ (U, V, d) satisfies     

d(Fv, Fu)≤ 𝜇 d(Gu, Gv)  for all (u, v)∈ U× V , where  𝜇 ∈(0, 1). (6) 

If R(F)⊆R(G) and R(G) is complete in U∪V. Then F and G have a 

unique point of coincidence in U∪V. Furthermore, if F and G are 

weakly compatible, then the mappings F, G: U∪ V →U∪V have a 

unique common fixed point. 

 

Theorem 2.12: Assume (U, V, d) be a complete bipolar metric 

spaces and given covariant contractions, F, G: (U, V, d) ⇄ (U, V, d) 

satisfies     d(Fv, Fu)≤ 𝜇(𝑑(𝐺𝑢, 𝐹𝑢) + 𝑑(𝐹𝑣, 𝐺𝑣))                          (7) 

for all (u, v)∈ U× V , where  𝜇 ∈(0, 
1

2
). If R(F)⊆R(G) and R(G) is 

complete in U∪V. Then F and G have a unique point of coincidence 

in U∪V. Furthermore, if F and G are weakly compatible, then the 

mappings F, G: U∪ V →U∪V have a unique common fixed point. 

Proof: Let 𝛼0 ∈U and  𝛽0 ∈V, for each nonnegative integer n, we 

construct a bi-sequences   ({𝛼𝑛},  {𝛽𝑛}) ⊆ (U, V) as   F 𝛼𝑛= 𝐺𝛽𝑛 

and F𝛽𝑛=𝐺𝛼𝑛+1,  for all n∈N. 

Then for each positive integer n and from (7), we have 

d(𝐺𝛼n,  𝐺𝛽n) = d(F𝛽n−1,  ,F𝛼n) 

≤ (d(𝐺𝛼n, 𝐹𝛼n) + d(𝐹𝛽n−1, 𝐺𝛽n−1)) 

≤ (d(𝐺𝛼n, 𝐺𝛽n) + d(𝐺𝛼n, 𝐺𝛽n−1)) 

 

For all integers n≥ 1, we have 

d(𝐺𝛼n,  𝐺𝛽n)≤
𝜇

1−𝜇
 d(𝐺𝛼n, 𝐺𝛽n−1) 

and also 

d(𝐺𝛼n,  𝐺𝛽n−1)  = d(F𝛽n−1, F𝛼n−1) 

≤μ(d(G𝛼n−1, , F𝛼n−1) + d(F𝛽n−1, , G𝛽n−1)) 

≤μ(d(G𝛼n−1, , F𝛽n−1) + d(G𝛼n, , G𝛽n−1)) 

 

So that we have  

    d(𝐺𝛼n,  𝐺𝛽n−1)≤
𝜇

1−𝜇
 d(𝐺𝛼n−1, 𝐺𝛽n−1) 

  If we say λ=
𝜇

1−𝜇
  then we have λ∈ (0, 1) and since μ∈ (0, 

1

2
  )                                  

Therefore, 

d(𝐺𝛼n,  𝐺𝛽n)≤ 𝜆2𝑛  d(𝐺𝛼0, 𝐺𝛽0) 

and d(𝐺𝛼n, 𝐺𝛽n−1) ≤  𝜆2𝑛−1 d(𝐺𝛼0, 𝐺𝛽0). 
Hence 

d(𝐺𝛼n,  𝐺𝛽n)  + d(𝐺𝛼n,  𝐺𝛽n−1) )≤ (𝜆2𝑛 + 𝜆2𝑛−1)d(𝐺𝛼0, 𝐺𝛽0) 

  Now, for all n, m ∈ 𝑁  with   m> n 

d(𝐺𝛼n,  𝐺𝛽m) ≤ d(𝐺𝛼n,  𝐺𝛽n) + d(𝐺𝛼n+1,  𝐺𝛽n) + d(𝐺𝛼n+1,  𝐺𝛽m) 

≤ (𝜆2𝑛 + 𝜆2𝑛−1)d(𝐺𝛼0, 𝐺𝛽0) + d(𝐺𝛼n+1,  𝐺𝛽m)  

≤ (λ2n + λ2n+1 + ⋯ +  λ2m ) d(𝐺𝛼0,  𝐺𝛽0) 

And if for all n, m ∈ 𝑁  with   m< n,   

 d(𝐺𝛼n,  𝐺𝛽m) ≤ d(𝐺𝛼m+1,  𝐺𝛽m) + d(𝐺𝛼m+1,  𝐺𝛽m+1)   

+ d(𝐺𝛼n,  𝐺𝛽m+1) 

≤ (𝜆2𝑚+1 + 𝜆2𝑚+2)d(𝐺𝛼0, 𝐺𝛽0) + d(𝐺𝛼n,  𝐺𝛽m+1) 

≤ (λ2m+1 + λ2n+1 +  λ2n+1 ) d(𝐺𝛼0,  𝐺𝛽0) 

Since λ∈ (0, 1), this gives d(𝐺𝛼n,  𝐺𝛽m) can be made arbitrarily 

small by larger m and n, hence ({𝐺𝛼𝑛},  {𝐺𝛽𝑛})  𝑖𝑠 a Cauchy  bise-

quence in R(G). Since R(G) is complete in  U∪V, so the bise-

quence ({𝐺𝛼𝑛},  {𝐺𝛽𝑛}) converges, and thus biconverges to point 

v ∈ U∩ V such that lim
𝑛→∞

𝐺 𝛼n= lim
𝑛→∞

𝐺 𝛽n=G v.  

Then there exist 𝑛1 ∈ 𝑁 with d(𝐺𝛼𝑛, 𝐺𝑣 ) <
𝜖

3
   and  d( 𝑣 , 𝐺𝛽𝑛) <

𝜖

3
   

for all n ≥  𝑛1 and  𝜖 > 0 . Since ({𝐺𝛼𝑛},  {𝐺𝛽𝑛})  𝑖𝑠 a Cauchy  bis-

equence, we get d(𝐺𝛼𝑛,  𝐺𝛽𝑛)<
𝜖

3
.     Now using the (𝐵4  ) and from 

(7), we have 

d( Fⱴ, G𝛽𝑚 )= d(Fⱴ, 𝐹𝛼m,  ) 

≤μ (d(𝐺𝛼m, 𝐹𝛼m) + d(𝐹𝑣, 𝐺ⱴ) ) 

≤ μ (d(𝐺𝛼m, 𝐺𝛽m) + d(𝐹𝑣, 𝐺ⱴ) ) 

Therefore, d( Fⱴ, G𝛽𝑚 )≤
𝜇

1−𝜇
 d(𝐺𝛼m, 𝐺𝛽m) 

≤ 𝜆 d(𝐺𝛼m, 𝐺𝛽m) <
𝜖

3
.      

For each m∈ N and 0 <λ < 1. Then lim
𝑛→∞

𝐺 𝛽m= Fv. 

  Since lim
𝑛→∞

𝐺 𝛽m= Gv. Then it follows that Gv=Fv. Hence F and G 

have a unique point of coincidence in U ∪V. If there is a another 

point 𝜅 ∈ 𝑈 ∪ 𝑉 such that Fκ=Gκ implies κ∈ 𝑈 ∩ 𝑉. 
From (7), we have 

d(Gκ, Gν)=d(Fκ, Fν) 

≤ 𝜇(𝑑(𝐺𝜈, 𝐹𝜈) + 𝑑(𝐹𝜅, 𝐺𝜅)  

≤ 𝜇(𝑑(𝐺𝜈, 𝐺𝜈) + 𝑑(𝐹𝜅, 𝐹𝜅)=0. 

Thus, consequently Gκ= Gν. Hence F and G have a unique point 

of coincidence in U∪ 𝑉, it follows from Lemma (2.4) that F and G 

have unique common fixed point. 
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Example 2.13: In Theorem 2.12, the condition that R(G) is com-

plete in U∪ V is essential. For example,                                                

let U = {𝐔𝐦(R)/𝐔𝐦(R) is upper triangular matrices over R} and   

V = {𝐋𝐦(R)/𝐋𝐦(R) is lower triangular matrices over R}. Define  

d: 𝐔𝐦(R)× 𝐋𝐦(R)   → [0, ∞)  by d (P,Q) = ∑ |𝐩𝐢𝐣-𝒒𝐢𝐣| 
𝐦
𝐈,𝐣=𝟏  for all  

P = (𝐩𝐢𝐣)𝐦×𝐦
 ∈ 𝐔𝐦(R) and  Q = (𝐪𝐢𝐣)𝐦×𝐦

 ∈ 𝐋𝐦(R).  Then obvi-

ously, (U, V, d) is a complete bipolar metric space. Define two 

mappings   F, G: (𝑼, 𝑽) ⇉ (U, V) by the following way: 

 F (P) = {

𝟏

𝟑
𝐏𝐦×𝐦, 𝟎 ≠ (𝐩𝐢𝐣)𝐦×𝐦

∈ 𝐔𝐦(𝐑) ∪ 𝐋𝐦(𝐑)

𝐈𝐦×𝐦,   (𝐩𝐢𝐣)𝐦×𝐦
= 𝟎

   

G (P) = {
𝟐𝐏𝐦×𝐦, 𝟎 ≠ (𝐩𝐢𝐣)𝐦×𝐦

∈ 𝐔𝐦(𝐑) ∪ 𝐋𝐦(𝐑)

𝟑𝐈𝐦×𝐦,   (𝐩𝐢𝐣)𝐦×𝐦
= 𝟎

 

Then we have 

d(F Q, , F P) = d (
𝟏

𝟑
 (𝒒𝒊𝒋)

𝒎×𝒎
 
𝟏

𝟑
 (𝒑𝒊𝒋)

𝒎×𝒎
) 

= 
1

5
∑

5

3
|qij-𝑝ij| 

m
I,j=1  

≤
1

2
(∑ |2qij-

1

3
𝑞ij| 

m
i,j=1 + ∑ |2pij-

1

3
𝑝ij| 

m
i,j=1 )  

≤ 𝜇(𝑑(GP, FP) + d(FQ, GQ)) 

Where μ=
1

2
∈(0,1) and R(F)⊆ R(G) but R(G) is not complete in 

U∪V. We can compute that F and G do not have a point of coinci-

dence in U ∪ V. 

3. Applications 

3.1. Application to the existence of solutions of 

integral equations 

Theorem 3.1: Let us consider the integral equation 

𝜸(κ)=f(κ)+∫ 𝑺𝟏(𝜿, 𝝂, 𝜸(𝝂))dν,  κ∈ 𝑬𝟏 ∪ 𝑬𝟐     

𝜸(κ)=f(κ)+∫ 𝑺𝟐(𝜿, 𝝂, 𝜸(𝝂))dν,  κ∈ 𝑬𝟏 ∪ 𝑬𝟐                                                     

Where 𝐄𝟏 ∪ 𝐄𝟐 is Lebesgue measurable set with               m(𝐄𝟏 ∪ 

𝐄𝟐) < ∞. Suppose that 

(𝒂) 𝑺𝟏: (𝑬𝟏
𝟐 ∪ 𝑬𝟐

𝟐) × [𝟎, + ∞) → [0, +∞) and                     𝑺𝟐: 

(𝑬𝟏
𝟐 ∪ 𝑬𝟐

𝟐) × [𝟎, + ∞) → [0, +∞), f∈ 𝑳∞(𝑬𝟏)∪ 𝑳∞(𝑬𝟐) 

There is a continuous function  

Γ: 𝐸1
2 ∪ 𝐸2

2 →[0, ∞)  and μ∈ (0, 1)such that for all                              

(κ, ν)∈ 𝐸1
2 ∪ 𝐸2

2 

|𝑆1(𝜅, 𝜈, 𝛾(𝜈)) − 𝑆2(𝜅, 𝜈, β(𝜈))| ≤ 𝜇Γ(κ, ν)|𝛾(𝜈) − β(𝜈)| . 

 

‖∫ Γ(κ, ν)dν‖  ≤ 1    i.e sup
κ∈ 𝐸1∪ 𝐸2

∫|Γ(κ, ν)dν| ≤ 1.  

Then, the equation has unique solution in 𝐿∞(𝐸1)∪  𝐿∞(𝐸2).      

Proof:  Let U=𝑳∞(𝑬𝟏)  and V=𝑳∞(𝑬𝟐) be two normed linear 

spaces, where 𝑬𝟏, 𝑬𝟐 are two Lebesgue  measurable sets with 

m(𝑬𝟏 ∪ 𝑬𝟐) < ∞. Consider d: U×V→ [𝟎,∞) be defined by        

d(f, g)=‖𝒇 − 𝒈‖∞ for all (f, g)∈ U×V. Then (U, V, d) is complete 

bipolar metric spaces. Define covariant map                                   

F, G:  𝑳∞(𝑬𝟏) ∪ 𝑳∞(𝑬𝟐) → 𝑳∞(𝑬𝟏)∪  𝑳∞(𝑬𝟐)  by   

    F( 𝜸(κ))= ∫ 𝑺𝟏(𝜿, 𝝂, 𝜸(𝝂))dν+ f(κ)  κ∈ 𝑬𝟏 ∪ 𝑬𝟐.  
 G( 𝜸(κ))= ∫ 𝑺𝟐(𝜿, 𝝂, 𝜸(𝝂))dν+ f(κ)  κ∈ 𝑬𝟏 ∪ 𝑬𝟐.  
Notice that  

d(F 𝜸(𝝂), 𝑮𝛃(𝝂))=‖𝐅 𝜸(𝝂) −  𝑮𝛃(𝝂)‖ 

=‖∫ 𝑺𝟏(𝜿, 𝝂, 𝜸(𝝂)) 𝐝𝛎 +  𝐟(𝛋) − ∫ 𝑺𝟐(𝜿, 𝝂, 𝜷(𝝂)) 𝐝𝛎 −  𝐟(𝛋)‖ 

=|∫ 𝑺𝟏(𝜿, 𝝂, 𝜸(𝝂)) 𝐝𝛎 − ∫ 𝑺𝟐(𝜿, 𝝂, 𝜷(𝝂)) 𝐝𝛎| 

≤ ∫|𝑺𝟏(𝜿, 𝝂, 𝜸(𝝂)) − 𝑺𝟐(𝜿, 𝝂, 𝜷(𝝂))|𝐝𝛎  

≤ 𝝁 ∫ 𝜞(𝜿, 𝝂) |𝜸(𝝂) −  𝛃(𝝂)|𝐝𝛎           
≤ 𝝁‖𝜸(𝝂) −  𝛃(𝝂)‖∞ ∫‖𝜞(𝜿, 𝝂)‖𝐝𝛎 

 Then 

 d(F 𝛾(𝜈), 𝐺β(𝜈)) ≤ 𝜇‖ 𝛾(𝜈) −  β(𝜈)‖ sup
κ∈ 𝐸1∪ 𝐸2

∫|Γ(κ, ν)dν|. 

≤ 𝝁‖𝜸(𝝂) −  𝛃(𝝂)‖∞  

Hence d(F 𝜸, 𝑮𝛃)≤ 𝝁 d(𝜸, 𝛃) 

Thus, it is verified that the functions F and G satisfy all the condi-

tions of Theorem 2.5, and then F and G have a unique common 

fixed point in U ∪ V. 

4. Conclusion  

In the present research, we have presented unique common fixed 

point results on various contractive conditions defined on bipolar 

metric spaces, suitable examples that supports our main results. 

Also, applications to integral equations are provided.  
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