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Annotation 

 

The article deals with the problem of optimal recovery of the solution of the wave equation at some time instant by known, but given 

with some error, functions determining the shape of the string at times t and T. The goal of the paper is to construct an optimal recovery 

method for the solution of the wave equation from inaccurate data. An important assumption used in the work is the possibility of 

representing the solution in the form of a Fourier series. The main solution method is the introduction of an auxiliary extremal problem 

for a conditional extremum, the solution of which determines the optimal recovery method. The result of the work is to find the optimal 

recovery method among all possible methods. The solution of the restoration problem and the value of the error of optimal recovery are 

obtained. Cases are indicated when it is possible to reduce the amount of initial information required for solving the problem.  
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1. Introduction 

When solving many problems of mathematical physics, and 

especially when they are being simulated numerically, problems 

arise related to the discretization of functions, the recovery of 

functions, functionals or operators from them according to some 

incomplete and inaccurate information about the function. Such 

tasks, which have been intensively studied recently (especially in 

connection with the development of information technologies), 

constitute the direction that has been called the optimal 

restoration. The problems studied in this area contain such 

important tasks as the construction of optimal methods for 

recovering functions specified exactly or approximately at a finite 

number of points, the construction of optimal quadrature 

formulas, the recovery of derivatives (numerical differentiation), 

the optimal choice of information that you need to know about the 

function in order to with the smallest error to reconstruct it, 

approximation of a function from its approximate Fourier 

coefficients or Fourier transform, etc. The results on these topics 

are contained in papers [4, 5]. If the classical approach, as a rule, 

sets the means of approximation (algebraic or trigonometric 

polynomials, rational functions, splines, wavelets, etc.), then in 

optimal recovery problems, the type of restoration method is not 

fixed in advance - it is searched for among all possible methods 

(algorithms) using values of the approximated function. The 

importance of such a statement is due to the fact that with fixed 

information the best way is chosen for approximating a function 

or functional (in the general case, an operator). It should be noted 

that the theory of approximation of functions originates from the 

works of P. L. Chebyshev. He introduced the concept of the best 

approximation of a function by polynomials, namely, he posed an 

extremal problem, the solution of which gives the polynomial of 

the best approximation. The next step is to consider the 

approximation of an objective function of a given class by 

functions from a previously specified set; an example of such a 

problem is the problem of approximating a function from a 

Sobolev space with polynomials of degree not higher than n. A. 

N. Kolmogorov also paid attention to the best approximation 

problems. In [2], the characteristics of a new type, called widths, 

which characterize the deviation of a set in a normalized space 

from a certain system of objects with a certain method of 

approximation, were determined. The idea of finding the best, in a 

given sense, width lies at the basis of the tasks formulated by S. 

A. Smolyak [9]. The approach proposed by Magaril-Il'yaev G. G., 

Osipenko K. Yu., Tikhomirov V. M. in [6, 7] is based on the 

Lagrange principle and is unified for solving optimal recovery 

problems.  In the problem under consideration, the optimal 

method for reconstructing the solution of the wave equation at an 

intermediate time is searched for among all possible methods, 

without imposing any restrictions on them. The optimal recovery 

method is obtained, the optimal error value is obtained for 

different ratios of the initial data errors, an equation solution is 

found that determines the shape of the string at a selected time 

instant. In addition, it is indicated that for some ratios of the initial 

errors, to obtain the optimal method, it is not necessary to use data 

on the shape of the string at the initial (or final) moment. In 

practice, this allows to reduce the number of measurements 

required to solve the problem. 
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2. Problem formulation 

 
Consider a wave equation with zero boundary conditions and zero 

initial velocity 

 

 

(1) 

𝑢𝑡𝑡 = 𝑢𝑥𝑥 , 
𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 

𝑢𝑡(𝑥, 0) = 0. 
 

We assume that the approximate values of the function 𝑢(𝑥, 𝑡) at 

𝑡 =  0 and 𝑡 =  𝑇 is:  

𝑢(𝑥, 0) ≈ 𝑦0(𝑥),  ‖𝑓0(𝑥) − 𝑦0(𝑥)‖𝐿2([0,𝜋]) ≤ δ0, 

𝑢(𝑥, 𝑇) ≈ 𝑦1(𝑥),  ‖𝑓1(𝑥) − 𝑦1(𝑥)‖𝐿2([0,𝜋]) ≤ δ1 , 

where 𝑓0(𝑥)and  𝑓1(𝑥)- the exact values of the function u(x,t) 

respectively, at𝑡 =  0 and 𝑡 =  𝑇, with 𝑓0,1, 𝑦0,1 𝜖 𝐿2 [0, 𝜋]. It is 

required to find the optimal approximation of the value of the 

function 𝑢(𝑥, 𝑡) at 𝑡 =  𝜏, 0 <  𝜏 <  𝑇. As is known, the exact 

solution to this problem is 

 

(2) 
𝑢(𝑥, 𝜏) =∑𝑎𝑗 cos 𝑗

∞

𝑗=1

𝜏 sin 𝑗 𝑥, 

 

 

where 

 
𝑎𝑗 =

2

π
∫ 𝑓0(𝑥) sin 𝑗
π

0

𝑥 𝑑𝑥 

 

Fourier coefficients of the function 𝑓0(𝑥). 
As recovery methods, we will consider arbitrary 

operators.𝜙: 𝐿2([0, 𝜋])  →  𝐿2([0, 𝜋]). The recovery error for this 

method 𝜙 is the value 

𝑒(𝑇, τ, δ0, δ1, φ) =            sup
𝑓0,1 ∈ 𝐿2([0,𝜋]),   𝑦0,1 ∈ 𝐿2([0,𝜋])

‖𝑓0(𝑥)−𝑦0(𝑥)‖𝐿2([0,𝜋])≤𝛿0
‖𝑓1(𝑥)−𝑦1(𝑥)‖𝐿2([0,𝜋])≤𝛿1

‖𝑢(∙, 𝜏)

− 𝜑(𝑦0,1)(∙)‖𝐿2([0,𝜋]).
  

The value 

𝑒(𝑇, 𝜏, 𝛿0, 𝛿1) =            inf
𝜑:𝐿2([0,𝜋])→𝐿2([0,𝜋]) 

𝑒(𝑇, 𝜏, 𝛿0, 𝛿1, 𝜑) 

is called the optimal recovery error, and the method, on which the 

lower bound is achieved, is called the optimal recovery method. 

 

3. Main results 

 
Choose τ =

𝑇

𝑛
 and consider two cases: 

1. 
𝑇

𝜋
∈ 𝑄. In this case, the set of values of cos2 𝑗𝑇 is finite. Then 

one can set the sequence 𝑠𝑘 , 
𝑘 = 0,1,… , 𝑟 , such that cos2 𝑠𝑘𝑇

 and cos2 𝑠𝑘𝜏  - descending 

sequences, 

cos2 𝑠𝑘𝜏 − cos
2 𝑠𝑘+1𝜏

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

<
cos2 𝑠𝑘+1𝜏 − cos

2 𝑠𝑘+2𝜏

cos2 𝑠𝑘+1𝑇 − cos
2 𝑠𝑘+2𝑇

, 

     𝑘 = 0,1,… , 𝑟 − 2 ,  
for all 𝑗 and 𝑘 

cos2 𝑗𝜏 ≤ cos2 𝑠𝑘𝜏 + 
cos2 𝑠𝑘𝜏 − cos

2 𝑠𝑘+1𝜏

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

(cos2 𝑗𝑇

− cos2 𝑠𝑘𝑇), 
cos2 𝑗𝑇 ≥ cos2 𝑠𝑟𝑇,   𝑗 = 0,1,… , and for any 𝑗 there is such  𝑠𝑘 , 

that cos2  𝑗𝑇  ≤ cos2 𝑠𝑘𝑇 . 

Theorem 1. If  
𝑇

𝜋
∈ 𝑄, then: 

(i) At  
𝛿1
2

𝛿0
2 > 1 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) = 𝛿0, 
and method 

𝑢(𝑥, τ) ≈=∑𝑏𝑗(𝑦0) cos 𝑗

∞

𝑗=0

τ sin 𝑗 𝑥 

is optimal; 

(ii) If  cos2 𝑠𝜏𝑇 = 0, then with cos2 𝑠𝑘+1𝑇 ≤

 
𝛿1
2

𝛿0
2 < cos

2 𝑠𝑘𝑇 = 0 

𝐸(𝑇, τ, δ0, δ1) = 

= √
(cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇)𝛿0
2 + (cos2 𝑠𝑘𝜏 − cos

2 𝑠𝑘+1𝜏)𝛿1
2

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

 ,  

and the optimal method 

𝑢(𝑥, τ) ≈=∑
�̂�1𝑏𝑗(𝑦0) + �̂�2𝑐𝑗(𝑦1)

�̂�1 + �̂�2 cos
2 𝑗𝑇

∞

𝑗=0

cos 𝑗 τ sin 𝑗 𝑥, 

�̂�1 =
cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

, 

�̂�2 =
cos2 𝑠𝑘𝜏 − cos

2 𝑠𝑘+1𝜏

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

. 

𝑏𝑗(𝑦0), 𝑐𝑗(𝑦1) − Fourier coefficients of the function𝑦0 

and 𝑦1. 

(iii) if  cos2 𝑠𝜏𝑇 > 0, then at 0 <
𝛿1
2

𝛿0
2 ≤ cos

2 𝑠𝑟 𝑇 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) =
cos 𝑠𝑟𝜏

cos 𝑠𝑟 𝑇
𝛿1, 

 method 

𝑢(𝑥, 𝜏) ≈=∑
𝑐𝑗(𝑦1)

cos 𝑗𝑇
cos 𝑗𝜏 sin 𝑗𝑥 −

∞

𝑗=0

  

is optimal. 

Thus, the optimal method depends on the ratio of the errors with 

which the values of the function 𝑢(𝑥, 0) and 𝑢(𝑥, 𝑇) are given. If 

the error at 𝑡 =  0 is less than at 𝑡 =  𝑇, the optimal method uses 

only the coefficients 𝑏𝑗(𝑦0), which act as the Fourier coefficients 

at 𝑡 =  𝜏 (case (i)). If the error at 𝑡 =  0 is significantly larger 

than at  𝑡 =  𝑇 , then the construction of the optimal method 

requires only the coefficients 𝑐𝑗(𝑦1), but with some smoothing 

factors (case (iii)). Finally, in the most general case (ii), the 

smoothing factor is constructed using both approximations. 

Proof of Theorem 1. Denote 𝑢𝑗 = 𝑎𝑗
2  and consider the extremal 

problem 

   

(3) 

‖𝑢𝑗‖
2
→ 𝑚𝑖𝑛,  ∑𝑢𝑗

∞

𝑗=1

≤ δ0
2,∑𝑢𝑗 cos

2 𝑗𝑇

∞

𝑗=1

≤ 𝛿1
2 , 𝑢𝑗 ≥ 0. 

   

We introduce the Lagrange function for this problem 

𝐿(𝑢, λ1, λ2) =∑(λ1 + λ2 cos
2 𝑗𝑇 − cos2 𝑗𝜏)𝑢𝑗

∞

𝑗=1

, 

 

where 𝑢 = {𝑢𝑗}𝑗∈𝑁
,  𝜆1, 𝜆2 — Lagrange multipliers. 

It follows from [3] (see also [8]), that if there are �̂�1, �̂�2 ≥ 0 such 

that the following conditions are satisfied for the sequence �̂� =

{�̂�𝑗}𝑗∈𝑁
 admissible in task (3) 

(a)                                           

min
𝑢𝑗≥0

Հ(𝑢, �̂�1, �̂�2) = Հ(�̂�, �̂�1, �̂�2), 

(b)                                           

�̂�1 (∑�̂�𝑗 − 𝛿0
2

∞

𝑗=1

)+ �̂�2 (∑�̂�𝑗 cos
2 𝑗𝑇 − 𝛿1

2

∞

𝑗=1

) = 0, 

then �̂� is a solution to task (3), and its value is  

�̂�1𝛿0
2 + �̂�2𝛿1

2 . 
If, moreover, for all 𝑦 ∈ 𝐿2([0, 𝜋]) there exists a solution𝑥𝑦 of the 

extremal problem 
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(4)                                                  �̂�1‖𝑥 − 𝑦0‖𝐿2([0,𝜋])

2 +

�̂�2‖𝑥 − 𝑦1‖𝐿2([0,𝜋]) → 𝑚𝑖𝑛 

then 

(5)                             𝐸(𝑇, τ, δ0, δ1) = √�̂�1δ0
2 + �̂�2δ1

2, 

and method 

�̂�(𝑦) =∑(𝑥𝑦)𝑗
cos 𝑗 𝜏

∞

𝑗=1

 

is optimal. 

Task (4) can be written as 

�̂�1∑(𝑥𝑗 − 𝑏𝑗(𝑦0))
2
+ �̂�2∑(𝑥𝑗 − 𝑐𝑗(𝑦1))

2
→ 𝑚𝑖𝑛,

∞

𝑗=1

∞

𝑗=1

 

where b𝑗  and 𝑐𝑗 are the Fourier coefficients of the functions 𝑦0 and 

𝑦1. It is easy to verify that for fixed �̂�1 and �̂�2 its solution is 

𝑥𝑦 =∑
�̂�1𝑏𝑗(𝑦0) + �̂�2𝑐𝑗(𝑦1)

�̂�1 + �̂�2 cos
2 𝑗𝑇

∞

𝑗=1

 

Therefore, it suffices to find  �̂�1, �̂�2 ≥ 0 nd the sequence 

admissible in (3) �̂� = {�̂�𝑗}𝑗∈𝑁
, for which conditions (a) and (b) 

are satisfied. The method 

(6) 

�̂�(𝑦) =∑
�̂�1𝑏𝑗(𝑦0) + �̂�2𝑐𝑗(𝑦1)

�̂�1 + �̂�2 cos
2 𝑗𝑇

∞

𝑗=1

cos 𝑗𝑇 

is optimal. 

Let 
𝛿1
2

𝛿0
2 > 1. Set 

�̂�1 = 1, �̂�2 = 0, �̂�0 = 𝛿0
2, �̂�𝑗 = 0, 𝑗 ≠ 0. 

It is easy to verify that the sequence {�̂�𝑗} — is admissible and 

conditions (b) are fulfilled. We have b 

𝐿(𝑢, �̂�1, �̂�2) =∑(1 − cos2 𝑗𝜏)𝑢𝑗 ≥ 0,

∞

𝑗=0

 

𝐿( �̂�, �̂�1, �̂�2) = (1 − cos2 0)𝛿0
2 = 0

= min
𝑢𝑗≥0

𝐿(𝑢, �̂�1, �̂�2) 

condition (a) is fulfilled. In this case, from (5) we obtain 

𝐸(𝑇, τ, δ0, δ1) = δ0,  �̂�(𝑦) =∑𝑏𝑗(𝑦0) cos 𝑗𝜏

∞

𝑗=0

 

 

For the case cos2 𝑠𝑘+1𝑇 ≤  
𝛿1
2

𝛿0
2 < cos

2 𝑠𝑘𝑇 we set 

�̂�1 =
cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇−cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇−cos
2 𝑠𝑘+1𝑇

, 

�̂�2 =
cos2 𝑠𝑘𝜏 − cos

2 𝑠𝑘+1𝜏

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

, �̂�𝑗 = 0, 𝑗 ≠ 𝑠𝑘 , 𝑠𝑘+1, 

 

and   �̂�𝑠𝑘  and   �̂�𝑠𝑘+1 are chosen so that conditions (b) are fulfilled:  

�̂�𝑠𝑘 + �̂�𝑠𝑘+1 = 𝛿0
2 , 

�̂�𝑠𝑘 cos
2 𝑠𝑘𝑇 + �̂�𝑠𝑘+1 cos

2 𝑠𝑘+1𝑇 = 𝛿1
2, 

from where 

�̂�𝑠𝑘 =
𝛿1
2 − 𝛿0

2 cos2 𝑠𝑘+1𝑇

cos2 𝑠𝑘 𝑇 − cos
2 𝑠𝑘+1𝑇

, �̂�𝑠𝑘+1 =
𝛿0
2 cos2 𝑠𝑘𝑇 − 𝛿1

2

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

. 

In this case, the following relation is valid 

�̂�1 + �̂�2 cos
2 𝑗𝑇 − cos2 𝑗𝜏 = 

cos2 𝑠𝑘𝑇(cos
2 𝑠𝑘+1𝜏 − cos

2 𝑗𝜏) − cos2 𝑠𝑘+1𝑇(cos
2 𝑠𝑘𝜏 − cos

2 𝑗𝜏)

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

+ 

cos2 𝑗𝑇(cos2 𝑠𝑘𝜏 − cos
2 𝑠𝑘+1𝜏)

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

≥ 

cos2 𝑠𝑘+1𝜏 − cos
2 𝑗𝜏 +

cos2 𝑗𝑇(cos2 𝑠𝑘𝜏 − cos
2 𝑠𝑘+1𝜏)

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

≥ 

(cos2 𝑠𝑘𝜏 − cos
2 𝑠𝑘+1𝜏) (−1 +

cos2 𝑠𝑘𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

) ≥ 0. 

Consequently, 𝐿(𝑢, �̂�1, �̂�2) ≥ 0. Respectively 

𝐿(𝑢, �̂�1, �̂�2)

= (
cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

+
cos2 𝑠𝑘𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

−
cos2 𝑠𝑘𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

) �̂�𝑠𝑘

+ (
cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

+
cos2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇 − cos
2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

−
cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘+1𝑇

cos2 𝑠𝑘𝑇 − cos
2 𝑠𝑘+1𝑇

) �̂�𝑠𝑘+1 = 0

= min
𝑢𝑗≥0

𝐿(𝑢, �̂�1, �̂�2). 

Thus, conditions (a) and (b) are fulfilled, and from ( 
𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) =

√
(cos2 𝑠𝑘+1𝜏 cos

2 𝑠𝑘𝑇−cos
2 𝑠𝑘𝜏 cos

2 𝑠𝑘+1𝑇)𝛿0
2+(cos2 𝑠𝑘𝜏−cos

2 𝑠𝑘+1𝜏)𝛿1
2

cos2 𝑠𝑘𝑇−cos
2 𝑠𝑘+1𝑇

 . 5

) we obtain 

 

In the case when cos2 𝑠𝑟𝑇 > 0, we set 

�̂�1 = 0, �̂�2 =
cos2 𝑠𝑟𝜏

cos2 𝑠𝑟𝑇
,  �̂�𝑠𝑟 =

𝛿1
2

cos2 𝑠𝑟𝑇
, �̂�𝑗 = 0, 𝑗 ≠ 𝑠𝑟  . 

Then 

�̂�1 + �̂�2 cos
2 𝑗𝑇 − cos2 𝑗𝜏

=
cos2 𝑠𝑟𝜏

cos2 𝑠𝑟𝑇
cos2 𝑗𝑇

− cos2 𝑗𝜏

= cos2 𝑗𝑇 (
cos2 𝑠𝑟𝜏

cos2 𝑠𝑟𝑇
−
cos2 𝑗𝜏

cos2 𝑗𝑇
) ≥ 0 

that is 

𝐿(𝑢, �̂�1, �̂�2) ≥ 0;  𝐿(�̂�, �̂�1, �̂�2) = 0 = min
𝑢𝑗≥0

𝐿(𝑢, �̂�1, �̂�2) − 

condition (a) is fulfilled. The fulfillment of condition (b) is 

obvious, therefore, 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) =
cos 𝑠𝑟𝜏

cos 𝑠𝑟𝑇
𝛿1. 

The theorem is proved completely.  

2. If the ratio 
𝑇

𝜋
 is an irrational number, then the set of 

values cos2 𝑗𝑇  is everywhere dense on the interval [0,1]. 

Therefore, for any 𝑥 ∈  [0,1], one can find a sequence 𝑥𝑛 , 𝑥𝑛 =
cos2 𝑛𝑇, such that  lim

𝑛→∞
𝑥𝑛 = 𝑥. 

Theorem 2. At  
𝛿1
2

𝛿0
2 > 1 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) = 𝛿0, 
method 

u(𝑥, 𝜏) ≈=∑𝑏𝑗(𝑦0) cos 𝑗

∞

𝑗=0

𝜏 sin 𝑗 𝑥 

is optimal; 

at  
𝛿1
2

𝛿0
2 ≤ 1 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) = √
𝛿1𝛿0 + 𝛿0

2

2
,  

method 

u(𝑥, 𝜏) ≈=∑
�̂�1𝑏𝑗(𝑦0) + �̂�2𝑐𝑗(𝑦1)

�̂�1 + �̂�2 cos
2 𝑗𝑇

∞

𝑗=0

cos 𝑗𝜏 sin 𝑗𝑥, 

  

where 
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�̂�1 = cos
2 (
1

𝑛
arccos

𝛿1
𝛿0
) −

𝛿1
𝛿0
sin (

2
𝑛
arccos

𝛿1
𝛿0
)

2√1 −
𝛿1
2

𝛿0
2

, 

�̂�2 =
sin (

2
𝑛
arccos

𝛿1
𝛿0
)

2
𝛿1
𝛿0
√1 −

𝛿1
2

𝛿0
2

, 

is optimal. 

As in Theorem 1, to construct the optimal method, it is necessary 

to use the approximate values of the function 𝑢(𝑥, 𝑡) at the points 

𝑡 = 0  and 𝑡 =  𝑇 , if the error at 𝑡 =  𝑇  is less than at 𝑡 = 0 . 

Otherwise, it suffices to use only  𝑏𝑗(𝑦0) values. 

Proof of the theorem 2. The proof for the case 
𝛿1
2

𝛿0
2 > 1 coincides 

with the proof of the corresponding statement of Theorem 1. 

For the case of 
𝛿1
2

𝛿0
2 ≤ 1 , consider the curve 

(7)                                                             𝑦 = cos2 (
1

𝑛
arccos√𝑥) . 

The set of points with coordinates  

𝑥 = cos2 𝑗𝑇,   𝑦 = cos2 𝑗𝜏 
is everywhere dense on this curve. Choose a point on (7) with the 

abscissa 𝑥0 =
𝛿1
2

𝛿0
2. If there is a value  𝑗 = 𝑗0, such that cos2 𝑗0𝑇 =

𝑥0 , then we set �̂�1 and �̂�2  such that the line 𝑦 = �̂�1 + �̂�2𝑥   is 

tangent to  (7) at 𝑥 = 𝑥0.  Then, by virtue of the convexity of the 

curve (7), all its points will lie below the tangent, that is, for any j, 

condition cos2 𝑗𝜏 ≤ �̂�1 + �̂�2 cos
2 𝑗𝑇, will be fulfilled, whence it 

follows that Հ(𝑢, �̂�1, �̂�2) ≥ 0. 

Considering that at 𝑗0𝑇 = arccos
𝛿1

𝛿0
  𝑗0𝜏 =

1

𝑛
arccos

𝛿1

𝛿0
 , we 

obtain a system of equations for �̂�1 and �̂�2  
(8)  

{
 
 
 

 
 
 �̂�1 + �̂�2

𝛿1
𝛿0
= cos2 (

1

𝑛
arccos

𝛿1
𝛿0
)

�̂�2 =
sin (

2
𝑛
arccos

𝛿1
𝛿0
)

2
𝛿1
𝛿0
√1 −

𝛿1
2

𝛿0
2

,
 

from where  

(9)  

�̂�1 = cos
2 (
1

𝑛
arccos

𝛿1
𝛿0
) −

sin (
2
𝑛
arccos

𝛿1
𝛿0
)

2√1 −
𝛿1
2

𝛿0
2

. 

Set �̂�𝑗0 = 𝛿0
2, �̂�𝑗 = 0, 𝑗 ≠ 𝑗0. Then 

𝐿(𝑢, �̂�1, �̂�2) = 0 = min
𝑢𝑗≥0

𝐿(𝑢, �̂�1, �̂�2) − 

condition (a) is fulfilled. Check the condition (b). 

∑�̂�𝑗 − 𝛿0
2 = �̂�𝑗0 − 𝛿0

2 = 0,

∞

𝑗=0

 

∑�̂�𝑗 cos
2 𝑗𝑇 − 𝛿1

2 = �̂�𝑗0 cos
2 𝑗0𝑇 − 𝛿1

2 = 𝛿0
2
𝛿1
2

𝛿0
2 − 𝛿1

2 = 0,

∞

𝑗=0

 

that is, condition (b) is fulfilled. 

In the case when 𝑥0 ≠ cos
2 𝑗𝑇 , choose a sequence 

cos2 𝑗𝑇 such that lim
𝑘→∞

cos2 𝑘𝑇 = 𝑥0, and  

consider the corresponding sequence {𝑢𝑘}, 𝑢𝑘 =
𝛿1
2

cos2 𝑘𝑇
. Then for 

�̂�1, �̂�2, given as (9), (8), 

lim
𝑘→∞

𝐿(𝑢𝑘 , �̂�1, �̂�2) = 0, 

lim
𝑘→∞

(�̂�1 (∑�̂�𝑘 − 𝛿0
2

∞

𝑗=1

) + �̂�2(∑�̂�𝑘 cos
2 𝑗𝑇 − 𝛿1

2

∞

𝑗=1

)) = 0. 

Then it follows from Theorem 4 ([8]) that the error of optimal 

recovery and the optimal method are given, as in the previous 

case, by the formulas 

𝐸(𝑇, 𝜏, 𝛿0, 𝛿1) = √
𝛿1𝛿0 + 𝛿0

2

2
 

and 

 

𝑢(𝑥, 𝜏) ≈=∑
�̂�1𝑏𝑗(𝑦0) + �̂�2𝑐𝑗(𝑦1)

�̂�1 + �̂�2 cos
2 𝑗𝑇

∞

𝑗=0

cos 𝑗𝜏 sin 𝑗𝑥. 

Conclusion 

In this paper, we consider a method for reconstructing the solution 

of a one-dimensional oscillation equation with Dirichlet 

conditions and for an inaccurately given initial form and zero 

initial velocity. We constructively constructed recovery methods 

in the form of a Fourier series in eigenfunctions of the 

corresponding Dirichlet problem. The conditions under which the 

constructed methods are optimal are formulated and proved. The 

errors of optimal recovery are calculated. 
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