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Abstract 
 

We present in this paper the technique Branch and Bound with new quadratic approch over a boxed arrangement of Rn. We develop an 

inexact arched quadratic capacity of the target capacity to decide a lower bound of the worldwide ideal estimation of the first non raised 

issue (NQP) over every subset of this boxed set. We connected a segment and specialized lessening on the feasable area of (NQP)to 

quicken the intermingling of the proposed calculation. Finally,we think about the assembly of the proposed calculation and we give a 

straightforward examination between this strategy and another technique wish have a similar guideline.  
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1. Introduction 

We consider the accompanying non raised quadratic programming 

issues: 

 (NQP) 

where: 

 

 
                                   (1) 

Q : is a real (n × n) non positive symetric matrix 

A : is a real (n × n) symetric matrix 

dT = (d1,d2,...,dn) ∈ Rn 

In ower life ,each thing ,each issue is make as a mathematic issues 

[5] ,we can likewise  

take the statements of Gualili "The word is made at numerical 

language or scientific issues" ,specialy "quadratic one".  

In this paper we present another square shape Branch and Headed 

methodology for taking care of non arched quadratic 

programming issues were we consruct a lower rough raised 

quadratic elements of the target quadratic capacity f over a boxed 

arrangement of Rn introduced as a n−rectangle [2].  

This lower inexact capacity is given to decide a lower bound of 

the worldwide ideal estimation of the first issue (NQP) over every 

square shape.  

The paper is sorted out as followes:  

Area 1: In this segment we give a basic presentation of our 

examinations ;in which we give and characterize the standard type 

of our concern.  

Area 2: another proportional type of the target work proposed as 

un lower rough straight elements of the quadratic structure over 

the n - square shape [6]. We can likewise proposed as an upper 

inexact direct capacities ,however we should regard the procedur 

of ascertain the lower and the upper bound of the first central 

square shape  S0 which noted by in the 

k-step [4]. 

Area 3: In this segment we characterize another lower surmised 

quadratic elements of the quadratic non raised capacity over a n-

square shape as for a square shape to ascertain a lower bound on 

the worldwide ideal estimation of the first no arched issue (NQP) 

[7].  

 

Segment 4: We give another straightforward square shape appor-

tioning strategy and depict square shape lessening strategies [3].  

Segment 5: Gives another Branch and Decrease Calculation so as 

to take care of the first non raised issue (NQP).  

Segment 6: We examine the intermingling of the proposed Calcu-

lation and we give a straightforward examination between this 

technique and different strategies which have a similar rule [1].  

At long last ,a finish of the paper is given to appear and explaine 

the proficiency of the proposed Calculation. 

2. The Equivalent forms of f over the 

n−rectangle 

In this area we build and characterize the equal type of the non 

raised quadratic capacity which proposed as a lower inexact 

straight capacities over an n−rectangle Sk = 
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.this work is proposed to decide the lower bound of the worldwide 

ideal estimation of the first issue (NQP).  

 

Let λmin and λmax be the min eigenvalue and the maximum ei-

genvalue of the framework Q respectivelly ,and we demonstrate 

the number θ that θ ≥ |λmin| . 

The equivalent linear form of the objective function f is given by: 

 (2) 

by the use of the lower bound Lk, and is given by: 

 (3) 

by the use of the upper bound Uk of the rectangle Sk. 

In the other hand , we have the following definition: 

 

Definition 1: Let the function f : C ⊆ Rn −→ R and S◦ ⊆ C ⊆ Rn a 

rectangle, the convex envelope of the function f is given by: 

 
fi(xi) = δixi + ηi : i = 1,n 

with: 

 
So, by the use of this definition the convex envelope of the func-

tion h(x) = (−x2
j) over the interval  is given by 

the function: 

 
h(x) = −(Ujk + Lkj )xi + Lkj Ujk 

n 

which is a linear function , then we get the best linear lower bound 

of h(x) = P(−x2
j) given 

j=1 

by:    

ϕSk(x) = 

n 

X k k k k 

(−(Uj + Lj )xi + Lj Uj ) 

j=1 

(4) 

 = −(Uk + Lk)T x + (Lk)T Uk (5) 

3. Lower Approximate functions and Error 

Calculation 

By definition, the initial rectangle S0 is given by: 

 
We subdivise this rectangle into two sub-rectangles defind by: 

 (6) 

Where, we calculate the point hs by a normal rectangular subdivi-

sion (ω−subdivision). 

3.1. The lower approximate linear function of f over the 

rectangle SK: 

The best lower inexact direct capacity of the target non raised 

capacity f over the square shape SK is given in the accompanying 

hypothesis: 

Theorem1 : Let the function f : C ⊆ Rn −→ R and the rectangle S0 

⊆ Rn where C ⊆ S0 ⊆ Rn, the lower approximate linear function of 

f is given by: 

    (7) 

where:  

 (8) 

3.2. The new lower approximate quadratic convex func-

tion of f over the rectangle SK: 

We utilize the former lower estimated direct capacity of f over the 

square shape SK to characterize the new lower inexact quadratic 

arched capacity of f over a similar square shape by: 

 

Definition 2: 

 
and: 

where: 

K is a positive real number given by the spectral radius of the 

matrix (Q + θI) 

 θ ≥ |λmin| 

LSK(x) the best lower approximate lineair function of f over the 

rectangle SK 

3.3. The New Lower Approximate Linear Function of f 

over the Rectangle SK : 

By the utilization of the first new lower inexact quadratic capacity 

of f over the square shape SK we can characterize the new lower 

estimated straight capacity of f over a similar square shape by: 

Definition 3: 

and: 

 
 with: 

 

3.3.1. The relation between the convex quadratic approxima-

tion and the linear one 

We have the following theorem: 
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Theorem 3.4 : The tow following inequality are satisfied: 

 (10) 

for all x ∈ (Df) ∩ SK and  and 

 (the normality condition). 

 

Proof: Let the function g1 : Rn −→ R defind by: 

 
Passing to the first derivation of g1,then, we get: 

 
Thus: 

 
The critical point of the function g1is the middle point of the edge 

, in the other hand, the function g1 is concave, imme-

diatelly, it atteind here max at the middle point 

K K , then we have: 

 
Then; 

Lequad(x) − Lquad(x) ≤ 0 

In the other hand, we define the function g2 : Rn −→ R given by: 

 
Passing to the first derivation of g2, then, we get: 

 
Then, passing to the second derivation: 

 
We have the condition: 

(the normality condition) 

Then, we obtain: 

 
Thus, the function g2 is concave over SK,and by this we have: 

 
Then: 

(g2(x) = f(x) − Lquad(x) ≥ 0) =⇒ Lquad(x) ≤ f(x) 

Finally, we get: 

Lequad(x) ≤ Lquad(x) ≤ f(x) : x ∈ SK 

The same thing whene we use the upper bound Uquad(x) with the 

equivalent linear form of the objective function f and we obtain: 

 

3.4. Approximation errors 

We can assess the guess mistake by the separation between the 

non arched target work f and here lower aproximation capacities. 

3.4.1. The linear approximation error 

Is introduced by the separation between the capacity f and here 

new lower surmised direct capacity Lequad over the boxed set SK 

, then we have the accompanying suggestion: 

 

Proposition 3.5 : Let the function f : C ⊆ Rn −→ R where C ⊆ S0 

⊆ Rn and θ ≥ |λmin| for this the matrix (Q + θI) be semi-positive, 

then we have: 

 
 

Proof: we have: 

 
In the other hand, we have: 

(x − LK)(UK − x) = (LK + UK)T x − xT x − (LK)T UK 

Then we get: 

 
so: 

 
The same thing whene we use the upper bound Uquad(x) with the 

equivalent linear form of the objective function f and we obtain: 

 
Then, the proof is complete. 

3.4.2. The quadratic approximation error 

Is exhibited by the separation between the capacity f and here 

lower rough quadratic capacity Lequad over the square shape SK, 

at that point we have the accompanying recommendation: 

 

Proposition 3.6 : let the function f : C ⊆ Rn −→ R where C ⊆ S0 ⊆ 

Rn and θ ≥ |λmin| for this the matrix (Q + θI) be semi-positive, then 

we have: 

 
 

Proof: By the definition of the function Lquad(x) as well as the 

meaning of ϕSk(x), we have: 

 (11) 

Then: 

(9) 
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The same thing whene we use the lower bound Uquad(x) with the 

equivalent linear form of the objective function f and we obtain: 

 (13) 

So, the proof is complete. 

 

 

3.5. The quadratic approximate problem (QAP) 

3.5.1. costruction of the interpolate problem (IP) 

It’s clear that: 

 (14) 

This function present the best quadratic lower bound of f, similar-

ly, we construct the following interpolate problem by: 

( 

αh = maxx 

 

 b (LBP) 

x ∈ {Lquad(x),Uquad(x)} : ∀x ∈ (Df) ∩ SK b 

And the convex quadratic problem define by: 

( 

minαh 

(AQP) ∀x ∈ (Xf) ∩ SK 

the question is: what’s the relation between the optimal values 

f(x), f(x∗) and Lquad(x)? 

 e e 

We have the following proposition: 

 

Proposition 3.7 : Let the function f : C ⊆ Rn −→ R and S0 ⊆ Rn 

where C ⊆ S0 ⊆ Rn, we have: 

 
with f∗ = f(x∗) is the global optimal value of the original problem 

(NQP) and x be the e optimal solution of (ACQP) 

 

Proof: From the previous proposition, we have: 

(15) 

And for 

 (16) 

Thus: 

(17) 

And: 

(18) 

As well as Lquad(x) − f∗ ≤ 0, we have: e 

(19) 

In the other hand, we have: 

 

(20) 

Then, the proof is complete. 

3.5.2. Question: is the solution x present the best lower bound 

of the globale 

optimal solution of (NQP)? 

We have the following proposition: 

 

Proposition 3.8 Let take the estimate function noted by: 

E(x) := f(x) − Lquad(x) For all x ∈ SK ∩ (Df), the foolowing 

inequality is satisfied: 

(21) 

E(x) ≥ f(x) − f∗ e e 

 

Preuve: 

We have: 

f(x) − f∗ = f(x) − Lquad(x) + Lquad(x) − f∗ e e e e 

= E(x) + Lquad(x) − f∗ e e 

(22) 

And, from the previeus proposition we have: 

Lquad(x) ≤ f∗ ≤ f(x) e e 

So: 

Lquad(x) − f∗ ≤ 0 e Then: 

f(x) − f∗ ≤ E(x) e e 

 

Lemma: If E(x) is a small value, then f(x) is an acceptable approx-

imative value to e e 

the global optimal value f∗ = f(x∗) over the rectangle SK. Similirly, 

we can find that the point x is the global approximate solution of 

the global optimal solution x∗ of the original e 

problem (NQP) over SK. 

 

Preuve: We have: 

f(x) − f∗ ≤ E(x) e e 

So, let take that E(x) is a small value we get: e 

 with ε −→ 0 

Then: 

kf(x) − f∗k << ε e And: 

 
Immediately, we get that f(x) is an acceptable approximative value 

to the global optimal e 

value f∗ = f(x∗).Similirly, the point x is a global approximate solu-

tion of the global optimal e 

solution x∗ of the original problem (NQP) over SK. 

In the other hand, the rank of the non convex function f over the 

new rectangle (subrectangle) SK is small then here rank over the 

initial rectangle S◦, by this, the value E(x) e will be verry small. 

4. The technical reduction (technical eliminate) 

We get to describe the rectangle partion by the following steps: 

 

Step(0): 

Let  

with xk ∈ SK, 
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Step(1): We find a partition information point: 

 

 (23) 

 

Step(2): If hs 6= 0 then we partition the rectangle SK into two sub-

rectangle on edge  by the point hs, else, we partition 

the rectangle SK into two subrectangle on the longest edge 

 by the middle point  which is yet noted as 

hs. 

 

Step(3): The rest rectangle is yet noted as SK. 

Now, we describe the rectangle reducing tactics to accelerate the 

convergence of the proposed global optimization algorithm 

(ARSR). 

 

Remarks: 

1- All linear constraints of the problem (NQP) are ex-

pressed as: 

 

2- The rectangle SK be also recorded as constraint to be 

added to the problem (NQP). 

3- The minimum and the maximum of each function: 

 
Are obtaind at the extremes points of the same interval. 

 

Linearity Based Range Reduction Algorithm: 

This algorithm is given to reduce and delete the rectangle SK.  

 

program (LBRRA) 

Let  the set of the index, Pk := P for 1 ≤ i 

≤ n do 

n 

compute com-

pute  

if rLi > bi then 

stop. the problem (NQP) is infeasible over SK (there are no solu-

tion of (NQP) over SK ,because, SK is deleted From the subrectan-

gle set produced through partitioning of the rectangleS◦) else 

if rUi < bi then the constraint is redundant. 

 
else 

for 1 ≤ j ≤ n do if aij > 0 then 

 
else 

 
end if 

anddo end if 

end if 

enddo end program 

5. Algorithm (ARSR): Branch and Bound 

5.1 Algorithm (ARSR): Branch and Bound program 

(ARSR) 

Initialization: Determine the initial rectangle S0 where (χf) ⊂ S0 

and suppose that: 

QLBPS0 := S0 ∩ (χf) 

iteration k : 

if QLBPS0 6= φ then 

solve the quadratic problem (LBP) when k = 0 

Let x0 be an optimal solution of (LBP) and α(S0) be the optimal 

value acompaned to x0 H := {S0} (the set of the subrectangle of the 

initial rectangle S0) α0 := min{α(S0)},β0 := f(x0) (the upper bound 

of f(x∗)) k := 0 while Stop=false do if αk = βk then 

Stop=true (xk is a global optimal solution of the problem (NQP)) 

else we subdivise the rectangle Skinto two sub-rectangle {Sj
k : j = 

1,2} by the proposed algorithm. for j = 1,2 do 

applied the Linearity Based Range Reduction Algorithm over the 

two sub-rectangle 

{Sjk} the obtained set is yet noted as the rectangle Sj
k if Sj

k 6= φ 

then 

(QLBP)Sjk := {x ∈ Rn : x ∈ Sj
k ∩ (χf)}, solve the quadratic problem 

(QLBP) when Sk := Sj
k let xkj be the optimal solution and α(Sj

k) be 

the optimal value H := H ∪ {Sj
k} 

βk+1 := min{f(xk),f(xkj)} xk := arg minβk+1 end if 

end for 

H := H − {Sk} 

αk+1 := minS∈H{α(S)};choose an rectangle Sk+1 ∈ H such that αk+1 = 

α(Sk+1) 

k ← k + 1; 

end if 

end do end if end program 

6. The convergence of the Algorithm (ARSR) 

In this area, we examine the union of the proposed calculation 

(ARSR) and we give a straightforward examination between the 

direct surmised and the quadratic one. In the other hand, we give 

some guide to expline the proposed calculation. 

6.1. The convergence of the proposed algorithm 

The proposed calculation in area 5 is not the same as the one in ref 

[3] in lower-jumping (quadratic estimate), and added to the square 

shape decreasing methodology. We will demonstrate that the pro-

posed calculation be united.  

 

Hypothesis 6.1 : On the off chance that the proposed calculation 

ends in limited advances, at that point a worldwide ideal arrange-

ment of the issue (NQP) is gotten when the calculation ends.  

 

Confirmation: Let the outcome out coming when the calculation 

end be xk, at that point, quickly we have ax=Bk while ending at 

the- k-step, so xk is a global optimal solution of the problem(NQP). 

 

Theorem 6.2 If the algorithm generates an infinite sequence 

, then every accumulation piont x∗ of this sequence is a 

global optimal solution of the problem (NQP)(i.e: the global op-

timal solution is not unique). 
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Proof: Let x∗ be an accumulation point of the sequence 

and let  be a subsequence of the 

sequence converging to x∗. obviously in the proposed 

algorithm, the lower sequence {ak
}
k∈N∗ is mono- increase and the 

upper sequence {Bk
}
k∈N∗ is mono- 

decrease, and we have:  

αk = lquad(xk),Bk = f(xk) 

We can right: 

(24) 

           (25) 

So both {xk}k∈N∗ and {Bk
}
k∈N∗ are convergent and:  

lim Bk = lim Bkq = lim f(xk) = lim f(xkq) = f(x∗) (26) 

k→∞ q→∞ k→∞ q→∞ 

Without loss of generality, we assume that xkq is the solution of the 

problem (QLBP) on 

Skq which satisfies Skq+1 ⊂ Skq,q ≥ 1 , by the proprieties of the pro-

posed rectangle partition which is exhaust, i.e: 

lim Skq = x∗ q→∞ 

We have: 

 

(27) 

 

Then: 

) = 0 (28) 

Thus, we have: 

 

)) = 0 (29) 

 

So: 

 

 (30) 

And, from (I) we have: 

) (31) 

Therefore, the point x∗ is an global optimal soluion of the problem 

(NQP). 

6.2 The type and rank of convergence 

The proposed calculation unite to the rough arrangement of the 

ideal worldwide arrangement of the first issue (NQP) with a quad-

ratic vitesse over SK.  

In this strategy, the position of the non curved capacity f over the 

square shape SK will be lower then his position over the underly-

ing one S◦, along these lines immetiately give that the esteem E(x) 

is e verry little. By this outcome, the arrangement point x is a 

globale inexact answer for the worldwide e  

ideal arrangement x∗over SK.  

To quicken the assembly of the proposed calculation we utilized 

the specialized of dividing and decreasing where in each progres-

sion we take out a square shape and a direct limitation, and this 

give us a square shape littler then the intial one and we signified it 

by SK. 

7. comparison between “Branch and Bound” 

and “ Method (DCT)” 

7.1 Method (DCT) 

We should include the ordinariness condition characterize by the 

decision of the parametre µ > 0 so as to garante the presence of the 

worldwide ideal arrangement, this condition is given by: 

7.1.1 Introduction 

Let take the non convex quadratic optimization problem given by: 

Q ∈ Rn×n indefinite matrix 

where A ∈ Rn×m arbitrary matrix b,x vertex of Rn 

The fondamental idea of this method is in the chose of the opera-

tor: 

Λ(x) : Rn → Rm 

By this the objective function f be write as the following canonical 

form: 

f(x) = Φ(x,Λ(x)) 

Define over the set Rn × Rm to R in the condition that the function 

be canonic at every unone (point) x and y. 

We need the following definitions: 

 

Remark: The canonical function Φ(x,Λ(x)) can represent by: 

 
Φ(x,Λ(x)) = W(y) − F(y) : y ∈ Rm 

This function is defind over Rm × Rn to R. 

In the other hand, we use the dual Λ−canonical transformation to 

calculate the conjugate 

 
function of F(y) given by: 

 
with: 

 
By the use of this notions, we can construct the associate dual 

function of f by: 

 

7.1.2 Method (DCT) for the non convex quadratic problems 

At that point, we connected the strategy (DCT) over the partner 

parametric issue (PQP) in the spot of the non covex quadratic 

issue (NQP) like folow: 

|x|2 ≤ 2µ 

Then, we have: 

 (PQP) 

We can transform the problem (PQP) as: 

 
With: 

 A (n+1)×n b n+1 

 A = ( ) ∈ R and b = ( ) ∈ R 

 −1 −1 −1 .. −1 0 

At that point, we connected the strategy (DCT) over the partner 

parametric issue (PQP) in the spot of the non covex quadratic 

issue (NQP) like folow:  
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Step(1): The form of the operator Λ(x) : 

For this type of problem the canonical geometric operator: 

Λ(x) : Rn → Rm × R 

Is define by: 

 
And, it’s presented as an Vertex-Value application. 

By this, the realisable domain of (PQP) will be define by: 

DPQP = {y = (ε,ρ) ∈ Rm × R : ε ≤ b,ρ ≤ µ} 

 
 

Step(2): The structure of the function W(y) : 

 
In this case, the function W(y) 

is given by the Indicative func-

tion of the realisable domain 

DPQP like folows: 

 0 if y 

∈ DPQP 

 y y 

 +∞ else 

 
Then, it’s clear that the function W(y) is always convex from the 

propriety of the indicative 

 
function. In the other hand, the function W(y) is proper and s-

lower continuous over the set DPQP . 

By this we have: 

∗ ∗) : 
 

Step(3): The structure of the function W (y 

 
if ε∗ ≥ 0,ρ∗ ≥ 0 else 

Λ ∗) : 

 

Step(4): The structure of the function F (y 

 
The function F(y) is a linear function, and we have: 

 
f(x) = Φ(x,Λ(x)) = W(y) − F(y) : y ∈ Rm × R 

Then, we get: 

 
f(x) − W(y) = −F(y) : y ∈ Rm × R 

And for y ∈ DPQP we have: 

 
−f(x) = F(y) 

 
Immediately, the Λ−canonical conjugate of the function F(y) is 

define by: 

 
And, from the first step we have: 

 
Thus: 

 

) with x 

= (Q + ρ∗I)−1(d − AT ε∗) 

 

Step(5): The structure of the dual canonical function fd(y∗) : 

Finally, and from the forth step, we define the dual canonical 

function by: 

 
Then, the parametric dual problem is given by: 

 ( maxfd(ε∗,ρ∗) 
 ∗ ≥ 0,ρ∗ ≥ 0,det(Q + ρ∗I) 6= 0 (CPD) 

ε 

We can find an equivalence between the primal problem and the 

dual one, that’s given by the following theorem: 

 

Theorem 7.1  be a (K.K.T) point of the 

parametric dual problem (CPD) then the vertex 

x = (Q + ρ∗I)−1(d − AT ε∗) e 

is a (K.K.T) point of the parametric primal problem (PQP), and 

we have: 

fd(y∗) = f(x) e 

 

Remark: Let take id be the number of the negative distincts ei-

genvalues of the matrix Q then, the quadratic problem be non 

convex if id > 0. 

7.2 Convergence Theorem of the method (DCT) 

We can assume the inquiry "what's the connection between the 

ideal arrangements of the parametric issue (PQP), the base issue 

(NQP) and the parametric double issue (CPD)??  

 

To give the appropriate response we have this hypothesis: 

 

Theorem 7.2 [1]:Let Q a matrix with the index id > 0 and 

{λi}i=1 ,p : p ≤ n a distincts eigenvalues in the order: 

λ1 < λ2 < ... < λid < 0 ≤ λid+1 < λid+2 < ... < λp 

and let  be a K.K.T point of the parametric dual problem 

(CPD), and let: 

x = (Q + ρ∗I)−1(d − AT ε∗) e 

be a K.K.T point of the prametric primal problem (PQP), then we 

have: 

 

 then, the vertex (ε∗,ρ∗) is a maximum of 

fd(y∗) over DPQP
+ if and only 

 if the vertex xe is a minimum of f(x) over DPQP
s , and 

we write: 

 

2 If 0 ≤ ρ∗i < −λid then, the vertex  is a maximum 

of fd(y∗) over DPQP
− if and only if the vertex x is a global maximum 

of f(x) over DPQP , and we write: e 

 

3 If 0 < ρ∗i < −λid then, the vertex  is a minimum 

of fd(y∗) over DPQP
i if and only if the vertex x is a global minimum 

of f(x) over DPQP , and we write: e 
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7.3 Examples 

7.3.1 Example1 

Let the non convex quadratic function define by: 

 2 (32) 

So, we have: 

 
Figure 1: Figure 1 

 

With: 

 f(x) : broun whith black 

 Lquad(x) : red whith yellow 

 ) : darkgray whith navy 

The graphic representation of the non convex quadratic function f, 

the linear approximate function and the convex quadratic lower 

bound function over the rectangle [−1,0] ⊆ Rn 

Plainly the raised quadraic inexact capacity is between the target 

work and the straight rough one of a similar capacity over he 

square shape S0 = [−1,0] ⊆ Rn. 

7.3.2 Example2 

Let take the following quadratic programming problem: 

 
So,if a ≥ 0 then, the problem be convex and this case is simple to 

resolve, however, if a < 0. 

Let a = −6 , d = 4 and r = 1.5, then: 

( minf(x) = −3x2 − 4x 

|x| ≤ 1.5 

Figure 2: Figure 2 

This function accept one and only extrema in the point  

with the associate value 

 
And, by the use of the dual canonical transformation, we can de-

fine the associate dual forme of f by: 

 
 

In the other part, the dual canonical problem is given by: 

 (DCP) 

 
Figure 3: Figure 3 

 

f(x) : black fd(ρ∗) : broun 

Candidate(s) for extrema: 

 
 

So, we have the following results: 

 

functions extremas candidates for extremas 

primal −0,6666 1,3333 

dual 
3,3333 

8,6667 

−0,7500 

−12,7500 

 

With: 

 
Immediately, we have this table: 

 

dual 
extremas 

ρ∗i 

Primal 
solutions 

xi e 

values f(xi) e dual values 

3,3333 −1,4998 −0,7490 −0,7500 

8,6667 1,5000 −12,7500 −12,7500 

 

In the other hand, we find the following results: 

 
With: 

 
And: 

 
With: 

 
So, by the use of the ”Branch and Bound method” the convex 

approximate quadratic form of f is given by: 

 
And the convex approximate quadratic problem associate to the 

non convex one is given by: 

 
Where we appleid the reducting and eleminate techenic over the 

initial ractangle 

 
And we find that the rest rectangle is: 

 
So, we have this graph: 

f(x) : black 

fd(ρ∗) : broun 

(−12,75

) and 

(−0,75) 

: lightred 

Lquad(x) : lightblue 
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The graphic representation of the primal function f , the associate 

dual function fd and the convex quadratic approximate function 

Lquad(x) 

So, over the recangle  we find that: 

) is the minimum point of the function f and it is the maxi-

mum point of the convex quadratic function Lquad and the mini-

mum point of the associate dual function fd over 

the rectangle  . 

• (0) is the maximum point of f and the minimum point of the 

convex quadratic function 

Lquad and: f(0) = Lquad(0) < fd(0) 

8. conclusion 

In this paper we present another square shape Branch and Headed 

methodology for taking care of non curved quadratic program-

ming issues were we propose another lower rough raised quadratic 

elements of the target quadratic capacity f over a n−rectangle.  

 

This lower surmised is given to decide a lower bound of the 

worldwide ideal estimation of the first issue (NQP) over every 

square shape.  

 

To quicken the combination of the proposed calculation we uti-

lized a basic two-segment and decreasing method over the sub-

rectangles SK in the k - step [3].  

 

In the other hand, we presente an other worldwide technique to 

determine the issue (NQP), this strategy is "the double standard 

change (DCT)". This strategy change a non raised quadratic issue 

to an Algebric framework.  

 

It's dependably unite to the worldwide ideal arrangement over the 

feasible space wich is a minimal arrangement of Rn.  

 

Figure 4: Figure 4  

 

The new calculation B&B where we utilized the curved quadratic 

estimate of the non arched quadratic capacity f over a rectan-

gle  with θ ≥ |λmin| and it is not imp-

ty, convex, close, and bounded (compact) of Rn is best at that point 

the strategy (DCT) over the relative Intrior of the feasible space of 

the capacity wich we streamlined.  

 

We can utilize the Branch and Bound technique (Partition and 

assessment) where we compose the capacity f like a (DC) struc-

ture (reverence of tow arched capacities) and we estimated the 

curved part by a raised quadratic capacity by the utilization of the 

lower bound or the upper bound of the feasible square shape SK 

wich have a verry little position and it's considred as a confianced 

locale, and by this we guaranteed the existance of the ideal 

worldwide arrangement of the first issue (NQP).  

 

In the other hand, the "Branch and Bound strategy" acquire the 

rough ideal arrangement of the ideal worldwide arrangement of 

the first issue (NPQ) with a quadratic vitesse of union over the 

feasible set SK , yet the (DCT) technique locate the ideal world-

wide arrangement over the Spher of this feasible set SK. 
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