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Abstract 
 

In this paper, an extended state observer (ESO) based control is derived for the position control of permanent magnet direct current 

(PMDC) motor. The implementation of the proposed control law requires only position sensor. The estimation of states and disturbance 

is achieved by ESO. The closed loop stability of the proposed scheme is derived. The performance of observer-controller is verified in 

the presence of uncertainties and load disturbance. 
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1. Introduction 

The electrical motors based motion systems has attracted a lot of 

attention of scientist in various field of applications [1] - [3]. It is 

possible to achieve precision motion control of such systems by 

designing a robust controller. However, the design of precision 

motion control for electrical motor based system is not an easy 

task. The design of controller has to consider modeling uncertain-

ties i.e. parametric uncertainties, unknown external disturbance, 

load disturbance [4] and unstructured uncertainties i.e. dead zone, 

saturation, backlash, friction [5], [6]. In the presence of such un-

certainties control performance may deteriorate and lead to unde-

sirable tracking accuracy and in worst case it may lead to instabil-

ity [7]. In such situation, it is desirable of control engineer to de-

sign a controller which performs as per desire in the presence of 

such uncertainties. If nonlinearities are known, a feedback lineari-

zation control law can be implemented. However, there are two 

major challenges, have to address for the design of feedback line-

arization control law i.e. (1) the control law required a full state 

vector to be available for all time, (2) capturing the exact nonline-

arities and parametric uncertainties for implementation [8]. It is 

almost impossible task to capture all nonlinearities and parametric 

uncertainties accurately for exact compensation in the control law. 

In the literature, many researchers have developed controllers to 

cater the effect of such uncertainties [9]. The adaptive control law 

has been designed to compensate uncertainties, but over adapta-

tion may lead to very high gain of controller or in worst case it 

leads to instability of the system. The robust controller has been 

reported [10] in the literature to compensate the effect of disturb-

ances. In another approach, an active disturbance rejection control 

(ADRC) has been developed [11] to deal with such type of uncer-

tainties and disturbances. It has two components (1) an extended 

state observer and (2) a tracking differentiator. The extended state 

observer not only estimates uncertainties but also the internal 

states of the system for control law implementation. The tracking 

differentiator utilizes the estimated states and disturbance for the 

control law design. It is worth noting that the ESO estimates gen-

eralized disturbances, which includes structured uncertainties as 

well as unstructured nonlinearities, thus it does not requires accu-

rate model information [12]. 

In this paper, the feedback linearization control law based on the 

linear ESO and nonlinear ESO is developed for the position con-

trol of DC motor. The dynamics of current loop is also considered 

in the design of control law. The unmeasurable states and general-

ized disturbance are estimated using the ESO. To verify the per-

formance of the proposed scheme, various uncertainties and load 

disturbance conditions have been introduced for the control of a 

DC motor. 

The rest of the paper is organized as: Section 2 deals with the 

modeling of DC motor, Section 3 discusses the extended state 

observer and Section 4 derives the control based on the extended 

state observer followed by the derivation of stability of the closed 

loop system in Section 5. Section 6 gives the simulation results 

with various scenarios and Section 7 concludes the paper. 

2. Modeling of DC motor 

In this paper, the problem of position control of a permanent mag-

net DC motor is considered. 

2.1. A PMDC motor dynamics 

The dynamics of a PMDC motor is represented by [13], 

 

θ̇ = ω                                                                                             (1) 

 

Jmθ̈ = Ktψ − Bmθ̇ − Tl                                                                 (2) 

 

Lmψ̇ = −Kbθ̇ − Rmψ + Vm                                                          (3) 

 

Where θ is a motor shaft position, ω is the motor angular velocity, 

ψ is the armature current, Vm is the voltage across armature, Tl is a 

load torque applied mechanically on the motor shaft, Jm  is the 

equivalent moment of inertia, Bm is the equivalent viscous friction, 

Rm  is the equivalent armature resistance, Lm  is the equivalent 
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armature inductance, Kb  is the back emf constant and Kt  is the 

torque constant. 

2.2. State space representation 

In this paper, it is assumed that the motor shaft position (y = θ) is 

the only measurable signal of the system and considered as an 

output of the system. Selecting the motor shaft position (x1 = θ), 

the shaft velocity (x2 = ω) and the shaft acceleration (x3 = ω̇) as 

state variables and the armature voltage (u = Vm ) as a control 

input of the system. The system (1) − (3) can be written into state 

space form as 

 

ẋ = Ax + Bu + Bd  

 

y = Cx                                                                                            (4) 

 

Where, x = [θ ω ω̇]T  is the state vector, A =

[

0 1 0
0 0 1

0 −
KtKb

JmLm
−

Bm

Jm

]  is the system parameter matrix, B =

[0 0
Kt

JmLm
]
T

 is the input matrix, C = [1 0 0] is the output 

matrix and d = −
JmLm

Kt
(
KtRm

JmLm
ψ +

Ṫl

Jm
+ ξ(x, t)) is the disturbance 

acting on the system (4), which includes parametric uncertainties 

and external disturbances acting on the system. 

3. Extended state observer 

Consider an n − th order, single input-single output nonlinear 

dynamical system described by [11]  

 

xn = a(x, ẋ, . . . . , xn−1, w) + bu                                                     (5) 

 

Where a(. )  represents the dynamics of the plant and the 

disturbance, w(t)  is an unknown disturbance, u  is the control 

signal, and x is the measured output. Let a(. ) = ao(. ) +△ a and 

b = bo +△ b where ao(. ) and bo are the best available estimates 

of a  and b  respectively and △ a  and △ b  are their associated 

uncertainties. Defining the uncertainty to be determined as d =△
a +△ bu  and designating it as an extended state, xn+1 , the 

dynamics (5) can be re-written in a state-space form as,  

 

ẋ1 = x2  

 

ẋ2 = x3  

 

 ⋮  
 

ẋn = xn+1 + ao + bou  

 

ẋn+1 = h  

 

y = x1                                                                                            (6) 

 

Where h is the rate of change of the uncertainty and an unknown 

external disturbance, i.e., h = ḋ and is assumed to be an unknown 

but bounded function. By making d as a state, however, it is now 

possible to estimate it by using a state estimator.  

Writing the dynamics of (6) into compact form as,  

 

ẋ = A0x + B0u + Eh  

 

y = C0x                                                                                          (7) 

Where, 

A0 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
a01

a02
a03

⋯ 1

0 0 0 ⋯ 0]
 
 
 
 

, B0 =

[
 
 
 
 
0
0
⋮
b0

0 ]
 
 
 
 

, E =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

, C0 =

[1 0 0 ⋯ 0] 

3.1. Linear ESO [8] 

Consider a linear extended state observer of the form,  

 

ẋ̂1 = x̂2 + β1e  

 

ẋ̂2 = x̂3 + β2e  

 

 ⋮  
 

ẋ̂n = x̂n+1 + βne + ao + bou  

 

ẋ̂n+1 = βn+1e                                                                                (8) 

 

Where e = y − x̂1 = x1 − x̂1  and x̂n+1  is an estimate of the 

uncertainty. Writing the observer dynamics (8) into compact form 

as  

 

 

ẋ̂ = A0x̂ + B0u + βe  

 

ŷ = C0x̂                                                                                          (9) 

 

Where, x̂ = [x1 x2 ⋯ xn xn+1]T  is the state and 

disturbance estimation vector, β =
[β1 β2 β3 ⋯ βn βn+1]

T  is the observer gain matrix and 

e = y − ŷ is the output estimation error of the linear ESO. The 

error dynamics of linear ESO and criteria for selection of the gain 

matrix β are discussed in the Section 5.  

3.2. Non-linear ESO [11] 

The non-linear extended state observer is represented as 

 

ẋ̂1 = x̂2 + β1g1(e01
)  

 

ẋ̂2 = x̂3 + β2g2(e01
)  

 

 ⋮  
 

�̇̂�𝑛 = �̂�𝑛+1 + 𝛽𝑛𝑔𝑛(𝑒01
) + 𝑎𝑜 + 𝑏𝑜𝑢  

 

�̇̂�𝑛+1 = 𝛽𝑛+1𝑔𝑛+1(𝑒01
)                                                               (10) 

 

The quantities 𝛽𝑖  are the observer gains while 𝑔𝑖(. ) are the set of 

suitably constructed nonlinear gain functions satisfying 

𝑒01
𝑔𝑖(𝑒01

) > 0, ∀𝑒01
≠ 0  and 𝑔𝑖(0) = 0 . If one choses the 

nonlinear functions, 𝑔𝑖(. ), and their related parameters properly, 

the estimated state variables �̂�𝑖  are expected to converge to the 

respective states of the system �̂�𝑖, i.e., �̂�𝑖 ⟶ 𝑥𝑖, 𝑖 = 1,2, . . . , 𝑛 + 1. 
One nonlinear function became popular in the design of nonlinear 

ESO is expressed as [11], 

 

𝑔𝑖(𝑒01
, 𝛼𝑖 , 𝛿) = ( 

|𝑒01
|𝛼𝑖𝑠𝑖𝑔𝑛(𝑒01

), |𝑒01
| > 𝛿

𝑒01

𝛿1−𝛼𝑖
, |𝑒01

| ≤ 𝛿
                         (11) 

 

Where 𝛿 > 0 and 0 < 𝛼𝑖 < 1. This function has high gain when 

the error is small and has low gain when the error is large. Writing 

the observer dynamics (10) into compact form as 

 

�̇̂� = 𝐴0�̂� + 𝐵0𝑢 + 𝛽𝑔𝑖(. ) 
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�̂� = 𝐶0�̂�                                                                                       (12) 

 

Where the vector of nonlinear function 𝑔𝑖(. ) is defined in (11). 

The selection of observer gain vector 𝛽𝑔𝑖(. ) is discussed in the 

Section 5. 

4. The controller 

In this section, the control law is derived for the system (4). If the 

states and uncertainties are available, the control law can be 

implemented as [8]  

 

𝑢 = −𝐵−1[𝐾(𝑥 − 𝑅) − 𝑟] − 𝑑                                                   (13) 

 

Where, the inverse of input matrix 𝐵 has not null i.e. 𝐵−1 ≠ 0 and 

reference vector 𝑅 is given by 𝑅 = [𝑟 �̇� �̈�]𝑇. To implement the 

control law, the states and uncertainty are estimated using an ESO. 

The ESO based control law can be implemented as  

 

𝑢 = −𝐵−1[𝐾(�̂� − 𝑅) − 𝑟] − �̂�                                                   (14) 

 

The control law (14) is implementable using ESO designed in (10). 

The block diagram of the closed loop scheme is shown in Fig.1. 

The closed loop stability of the system (4) in the next section. 

 

 
Fig. 1: The Block Diagram of the Overall Scheme. 

5. Stability analysis 

In this section, the closed loop stability of the system (4) with the 

nonlinear ESO based controller derived in (10) and (14). The 

ultimate boundedness of the closed-loop system is proved [14]. 

5.1. Observer error dynamics 

Defining the state observer error dynamics as,  

 

�̃� = 𝑥 − �̂�  

 

�̃� = 𝐶�̃�                                                                                         (15) 

 

The observer error dynamics is obtained by subtracting (9) from (7) 

as, 

 

�̃� = (𝐴0 − 𝛽𝐶)�̃� + 𝐸ℎ                                                                 (16) 

 

Assuming that the pair (𝐴0, 𝐶0)  is observable and the rate of 

change of disturbance ℎ is bounded. By selecting the eigenvalue 

of vector (𝐴0 − 𝛽𝐶) in the left hand plane at appropriate location, 

the observer error dynamics can be stabilized. 

On the similar lines for nonlinear observer dynamics can be 

obtained as  

 

�̃� = 𝐴0�̃� − 𝛽 𝑔(𝐶�̃�) + 𝐸ℎ                                                           (17) 

 

Next the closed-loop stability of the system is derived. 

5.2. Observer error dynamics 

Defining the tracking error as 𝑒𝑡 = 𝑥 − 𝑅 , the closed loop 

dynamics is given by,  

 

�̇�𝑡 = (𝐴 − 𝐵𝐾)𝑒𝑡 − 𝐵𝐾�̃� − 𝐵�̃�                                                   (18) 

 

Where, �̃� = 𝑑 − �̂�  is the disturbance estimation error. By 

assuming the pair (𝐴, 𝐵) is controllable, the closed loop stability 

can be assured by placing the eigenvalue of (𝐴 − 𝐵𝐾) in the left 

half plane at appropriate location. Combining (18) and (17) gives  

 

[
ėt

ẋ̃
] = [

A − BK −[BK B]
0 A0 − βC

] [
et

x̃
] + [

0
E
] h                                     (19) 

 

By placing the observer and controller poles appropriately in the 

left half plane. Thus, the closed-loop stability of the system is 

proved. 

5.3. How to select the parameters of nonlinear ESO 

One can implement first the linear ESO with eigenvalues in the 

left half plane. Once the performance of the linear ESO is 

satisfactorily, the nonlinear function can be introduced by keeping 

gain vector same. The parameter δ decides a region inside which 

the observer act as a high gain observer and outside this region it 

acts as a nonlinear observer. Thus the parameter δ should be small 

enough to grantee the robust performance. The parameters αi can 

be selected as 1 > α1 > α2 > ⋯ > αn+1 > 0. 

6. Simulation results 

In this section, the simulations were carried out on the position 

control of PMDC motor to verify the performance of proposed 

observer-controller scheme. The nominal parameters of PMDC 

motor considered for simulations are given in Table 1. The 

efficacy of the proposed scheme is shown by considering different 

cases i.e.  

• Case-I: Parametric uncertainty  

• Case-II: Constant load disturbance  

• Case-III: Sinusoidal load disturbance  

• Case-IV: Performance comparison of linear ESO and 

nonlinear ESO  

For all cases, the poles of controller are set at 

[−10 −10 −10]T  and the observer poles are set at 

[−140 −140 −140 −140]T. For all cases the plant initial 

conditions set to x(0) = [0.1 0 0]T. In the first case, the initial 

condition of observer is set to x̂(0) = [0 0 0 0]T and for rest 

of the cases it is set to x̂(0) = [0.1 0 0 0]T. For all cases, the 

reference vector is set to R = [0 0 0]T. 

 
Table 1: Nominal Parameters of the PMDC Motor 

Parameters Nominal value Unit 

Rm 6.898 Ω 

Lm 27 mH 

Jm 0.032 kg/m2 

Bm 0.0022 Nm/rad 

Kb 1.073  

Kt 1.073  

6.1. Case-I 

In this case, +10% of parametric uncertainty is introduced in the 

nominal parameters of the plant. The tracking performance of the 

system with the proposed scheme is shown in Fig. 1. The plots of 

internal states and disturbance with their estimation are shown in 

Fig. 1 − Fig. 1. The estimation performance of the observer is 

shown in Fig. 3. The estimation errors go to zero from their initial 

mismatch. The performance of the proposed scheme is verified 

with different level of uncertainties and received similar 

performances, the results are omitted here. 
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6.2. Case-II 

In this case, a constant load disturbance Tl = 1 is introduced in the 

system. The tracking performance of the proposed scheme and the 

control input are shown in Fig. 4. In-spite of load disturbance, the 

output is tracked accurately by the observer and the output goes to 

zero from its initial condition. The control input is adjusted 

according to load disturbance value. The plots of other states and 

their estimations are omitted here to save space. 

6.3. Case-III 

In this case, a sinusoidal load disturbance Tl = 0.1sin(t)  is 

introduced in the system. The tracking of output is shown in Fig. 4 

and the control input is shown in Fig. 4. The rate of change of 

disturbance in this case is non-zero, thus system is driven by h. 

The performance is still satisfactory in the presence of sinusoidal 

disturbance. The reason for satisfactory performance is accurate 

estimation of states and disturbance by the ESO. The performance 

can be improved by implementing the higher order ESO or 

nonlinear ESO. The control input is adjusted as load disturbance is 

varied. 

6.4. Case-IV 

In this case, the state and disturbance estimation performance of 

linear ESO is compared with nonlinear ESO. The controller and 

observer gain vectors are kept same as previous cases set for linear 

ESO. The additional parameters of nonlinear ESO are set to δ =
0.01, α1 = 0.25, α2 = 0.15, α3 = 0.1, α4 = 0.0001.  The 

comparative performance of the nonlinear ESO and linear ESO is 

shown in Fig. 6. The state and disturbance estimation is improved 

with nonlinear ESO as compare to linear ESO. The reason for 

improvement in nonlinear ESO’s performance is the nonlinear 

function present in the structure. Similar results of improvement 

are obtained with nonlinear ESO in the presence of parametric 

uncertainties and load disturbances. The results are not shown here 

to save space.  

 

 
 

 
 

 
 

 
 

 
Fig. 2: Case-I: Plant States and Disturbance, Estimation and Control Input: 

(A) x1 (Solid Line), x̂1  (Dashed Line) and r (Dotted Line), (B) x2  (Solid 

Line) and x̂2 (Dashed Line), (C) x3 (Solid Line) and x̂3 (Dashed Line), (D) 

d (Solid Line) and d̂ (Dashed Line), (E) u. 
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Fig. 3: Case-I: State and Disturbance Estimation Errors: (A) x1 − x̂1, (B) 

x2 − x̂2, (C) x3 − x̂3, (D) d − d̂. 

 

 
 

 
Fig. 4: Case-II: Motor Position and Its’ Estimation and Control Input with 

Constant Load Disturbance: (A) x1 (Solid Line), x̂1 (Dashed Line) and 𝑟 

(Dotted Line), (B) r. 

 

 
 

 
Fig. 5: Case-III: Motor Position and Its’ Estimation and Control Input with 

Sinusoidal Load Disturbance: (A) x1 (Solid Line), x̂1 (Dashed Line) and 𝑟 

(Dotted Line), (B) u. 

 

 
 

 
 

 
 

 
Fig. 6: Case-IV: Comparative Performance of Linear ESO (Solid Line) 
and Nonlinear ESO (Dashed Line) in the State and Disturbance Estimation 

Errors: (A) x1 − x̂1, (B) x2 − x̂2, (C) x3 − x̂3, (D) d−d̂. 

7. Conclusion 

In this paper, the position control of permanent magnet DC motor 

is derived. The feedback linearization control law has been made 

implementable based on the extended state observer. The 

performance of proposed observer−controller scheme is verified 

with different types of load disturbances and uncertainties. The 

results show effectiveness of the proposed scheme. The 

performance of nonlinear ESO is compared with the linear ESO. 

The noticeable performance improvement has been observed in 

the states and the disturbance estimation with the nonlinear ESO 

as compare to the linear ESO. 
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