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Abstract 
 

This article seeks to employ hidden Markov chains in quality control area in general and on binary-data process in particular. A hidden 

Markov model (HMM) has been applied on a Bernoulli-type data process to monitor its stability over time. In quality control respect, 

binary variables are widely used when an inspected item is classified into either conforming or nonconforming as per some specific spec-

ifications. In this article, we present a new scheme to monitor a quality process yielding binary outcomes or variables such that a new 

variable is proposed to regulate/evaluate process stability as time passes by. This variable determines the process probability of being 

statistically in control at each point in time and can be calculated using the developed hidden Markov model. As a result, it was found that 

it is straightforward to obtain inferences about process stability whether or not it is statistically in-control which, in turn, helps making 

decisions associated with actions needed when the process goes in an out-of-control way. Furthermore, unlike control charts, the judgment 

on the process state depends on the entire observation sequence not the current sample only. 
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1. Introduction 

Researchers always searching variant methodologies to improve 

productivity of operations and production systems quality and 

quantity wise. Evaluation and analysis of productivity of a Just-In-

Time (JIT)–Kanban production system is investigated by AL-Tahat 

M. D. et al. [1], where the processing do not always meet the re-

quirement of the quality. AL-Tahat M. D. [2] applied another meth-

odology for Kanban based production systems, where a queuing 

network model is formulated. Al-Momani K. R. et al. [3] investi-

gated the impact of maintenance management on productivity for 

in King Abdullah University Hospital (KAUH).; Usefulness of the 

mean time between failures (MTBF), the mean time to repair 

(MTTR) and availability (A) of the equipment were considered. 

Some factors that affect productivity have been modeled by Al-Re-

faie A. et al. [4] using structural equation mathematics; several fac-

tors were considered including; knowledge management, organiza-

tion learning, customer relationship management, employee perfor-

mance, innovation and business performance. The Activity-Based 

Cost Estimation methodology is applied productivity cost by AL-

Tahat M. D. et al. [5] for better estimation of productivity of a 

foundry system in terms of production cost of the produced steel 

castings. Aljanaideh O. et al. [6] investigated productivity of mag-

netostrictive actuator in mechatronic systems, where hysteresis 

model that can describe rate and bias effects of the harmonic mag-

netic fields on hysteresis nonlinearities is proposed. Dalalah D. et 

al. [7] used fuzzy theory to solve a multiple objectives decision-

making problem, the weights of mutually dependent criteria, of a 

group of professionals is estimated based on cause- effect. AL-Ta-

hat M. D. et al. [8] presented a statistical structural equation model 

that analyses  the impact of Concurrent Engineering (CE) in the 

productivity of some Jordanian industrial sectors, results are vali-

dated by a system dynamics model, then the true CE trade-offs are 

investigated. AL-Tahat M. D. et al. [9] predicted the relationships 

between types of failures encountered in tablet production of med-

icine, Ordinal Logistic Regression Modeling (OLRM) is followed 

and the impact on productivity of medicine is analyzed.  Moham-

mad D. Al‐Tahat et al. [10] presented a continuous-time Markov 

chain of a multi-stage multi-product serial production line; based 

on CONstant work-in-process (CONWIP) control mechanism of 

production the steady state behavior of the system is analyzed. 

Unlike the aforementioned methodologies, authors in this paper 

presented another methodology for productivity improvements; a 

hidden Markov model (HMM) is applied on a Bernoulli-type data 

process to monitor the stability of productivity in terms of quality 

over time.  

Quality control charting is becoming a necessity to ensure high 

quality of products and services. Control chart is the typical tool 

amongst the collection of the statistical process control (SPC) tools 

to monitor quality characteristics over time. In control charting the-

ory, one of the fundamental assumptions of quality controlling is 

the independence, which assumes that samples or items, drawn 

from an online process. However, many researchers have showed 

that that assumption is no longer appropriate for all production pro-

cesses. For example, Bhat and La [11] provide new attribute control 

limits fitting a Markovian process and Lai et al. [12] show the effect 

of serial correlation on high-quality processes using Markov mod-

els. 

The idea behind this article is that it assumes a dependency relation 

between possible states of a quality process. In other words, it em-

ploys the Markovian property, which assumes that the current state 

of a system depends only on the previous one, between the system 

states not the samples themselves as a system state itself produces 

samples. Namely, the system states are statistically in-control and 

out-of- control from the quality perspective. 

http://creativecommons.org/licenses/by/3.0/
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Usage of Markov chains and even hidden Markov models are not 

contemporary in quality field. Demiralp and Moghimihadji [13] 

study the application of hidden Markov Model HMM on variable 

quality characteristics, which eventually results in dropping or ig-

noring normality assumption when monitoring such quality charac-

teristics. In the same fashion several authors attempt to tackle the 

problem of autocorrelation emerging among samples under inspec-

tion using such models, see for example, Gadre et al. [14], Shepherd 

et al. [15], Mousavi, and Reynolds [16].  

In addition, the literature has showed low efforts regarding control 

chart development in the direction of binary data in general. There-

fore, it is expected through the article that the developed scheme 

will largely contribute to monitor binary variables and provide 

some distinct analysis and information about process under inspec-

tion.  

2. Hidden markov models 

HMM can be considered as an extension of Markov chains, which 

have been highlighted as the most discussed stochastic processes 

over the recent years. As HMM theory relates to Markov chains, it 

is plausible to discuss Markov chains first. Informally, a Markov 

chain is a stochastic process that has the Markovian property which 

states that the current state of a system is only dependent of the pre-

vious one regardless all other past states. Formally, we say, 

 

z,t)zi(ZPr)z,....,Zi(ZPr 1tt1t0t === −−             (1) 

 

Normally, a Markov chain is parameterized in the form of a sto-

chastic matrix called transition probability matrix and represented 

graphically in the form of the so-called state diagram. Figure 1 

shows an example of three-state Markov chain with transition pa-

rameters. 

 

 
Fig. 1: Three-State Markov Chain. 

 

From Figure 1, it is easy to gather transition probabilities in a matrix 

form T  as follows 

 

                                                                 (2) 

 

Broadly speaking, Markov chains are very strong statistical tools 

and have many real life applications such as weather forecasting, 

Rank Page and web search and information theory. However, some-

one can argue how we can reason about any Markovian process’s 

states if we don’t actually observe the states themselves. In fact, 

Markov chains fail to deal with such above-mentioned scenario; the 

most fitting solution that handles this scenario is an HMM. Rabiner 

[17] defines an HMM as “An HMM is a doubly stochastic process 

with an underlying stochastic process that is not observable, but can 

only be observed through another set of stochastic processes that 

produce the sequence of observed symbols”. An HMM allows us to 

talk about both observed events and hidden events that we think of 

as causal factors in our probabilistic model as well. In Figure 2, the 

structure of an HMM and its assumptions are shown. 

 

 
Fig. 2: Trellis Diagram of HMM. 

 

From Figure 2, it is straightforward to extract the assumptions of an 

HMM. It can be seen that the observations are independent and this 

assumption is usually called as the independence output assump-

tion. Besides, the hidden states are connected to each other in such 

a way each state depends only on the earlier state. Finally, given a 

latent state at a specific point in time, the produced observation at 

that time is conditional on that state. Now, after detailing the as-

sumptions, a question that comes to mind is how to parameterize or 

characterize an HMM? Generally, there are five elements that de-

fine an HMM regularly, Degirmenci [18]: 

1) Number of states in the model, M: which is the number of all 

possible discrete states that a model or a process can have and 

can switch from one to another over the passage of time 

2) Number of distinct observations, X: at each step in time, a 

hidden state will generate an observation or a random varia-

ble whose values are finite and discrete 

3) Transition probability matrix, T: which contains all probabil-

ities quantifying the chance of moving from each state to oth-

ers 

4) Emission probability matrix, E: which compiles the all con-

ditional probabilities yielding the observations given all pos-

sible hidden states 

5) Initial state probabilities, Π : these probabilities describe the 

chance of beginning at each possible hidden state or at time 

0 

Using these parameters the mathematical formulation of an HMM 

can be found in Rabiner’s [19] article. The formula is usually rep-

resented in the triplet λ = (T, E, Π) as follows  

 

 
= =

−
=

M

1K

tK

T

1t
tKKK )X(e.P)E,T,(XPr

t1t0
                (3) 

 

Where, X is the observation sequence, K 

represents the possible state space which belongs to 1, 2, 3, 4, M, 

and  is the probability of producing Xt  given the state i , 

mathematically we say and finally  is the transition probabil-

ity from one state to another.  

Now, this model remains relatively ridiculous unless the three fun-

damental problems are solved. The first problem is called the eval-

uation problem, by convention, which concerns with evaluating the 

above-mentioned discrete joint distribution in an efficient way, the 

second is the estimation problem, which focuses on updating, or 

adjusting the parameter model and decoding is the third one that 

deals with discovering the hidden state path.  

Several algorithms can tackle these problems but the most popular 

ones are forward algorithm, Baum-Welch algorithm and Viterbi al-

gorithm respectively. 

The next section employs an HMM in terms of quality aspect and 

shows a quality model to monitor processes of binary variables. The 

quality model is completely derived from the HMM theory and its 

mathematical background.  
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3. The proposed process model 

We assume that we have an online process that produces products 

or items that can be classified into either conforming or noncon-

forming in accordance to some specifications. In addition, it is 

equally important to mention that the produced units are independ-

ent on each other and the process states, by assumption, are depend-

ent and form a Markov chain. In addition to that, the process states 

belong to a two-state space, which are specifically statistically in-

control and statistically out-of-control. We similarly assume a ho-

mogenous (stationary) discrete-time discrete-space Markov chain. 

The above-mentioned considerations are summarized in Figure 3. 

 

 
Fig. 3: An HMM for Quality Control Process. 

 

Where  which are the hidden variables and 

 which represent observed outputs. The abbrevi-

ations  are in control, out of control, conforming and 

nonconforming respectively. Furthermore, the parameters in Figure 

3 can be matrix formed as next, 

 

                                                                   (4) 

 

                                                                   (5) 

 

Where, A  and B are the transition probability and emission proba-

bility matrices respectively. For explanation, a12  is the probability 

of moving from an in-control to out of control state and b12   is the 

probability of producing unit given that the process is in control. To 

finalize the model parameters it is quietly considerable to determine 

the initial probabilities of each hidden state that is: 

 

                                        (6) 

 

It is also important to note that the summation of all initial proba-

bilities is unity, that is  , these probabilities must be es-

timated arbitrarily at time zero or based on operational experience. 

In control charting theory, either way variables or attributes, an un-

der-control quality characteristic is mainly plotted as a point of the 

sample mean on the control chart and if a point exceeds the control 

limits or if there is a nonrandom pattern , then that would be a signal 

of an out-of- control condition. Here we propose a new variable to 

monitor quality, which calculates the process probability of being 

statistically in control.  

Let us denote this variable as  which represent the poste-

rior probability of state z  at time t. In addition, we are interested in 

measuring this variable when the process is expected to be statisti-

cally in control that is  at each time t. Then, the posterior prob-

ability can easily be computed using the following equation: 

 

                  (7) 

 

Where 

 

      (8) 

 

           (9) 

 

The variable , the quantity  is the condi-

tional probability of producing  given a state  at time  and  

is the probability of a particular sequence X. Given that 

 and . 

As working on monitoring the posterior probability , we 

can get a scheme that shows probabilistically the process status over 

time. Such a scheme can be described as the cardiograph of a pro-

cess or machine and will be shown in a numerical analysis in section 

5 of this paper. 

4. Hidden-variable chain analysis 

One key advantage of HMMs is to predict the status of a system at 

the next step of time t+1 as long as HMM parameters are known or 

estimated. This prediction is purely dependent on the current obser-

vation sequence and that hidden state at time t. As we are interested 

in finding the probability of being in the stable (i.e., statistically in-

control) state in the next point of time, we mathematically derive 

the conditional distribution as: 

 

 (10) 

 

(11) 

 

   
(12) 

 

Using the fact , we obtain 

 

(13) 

 

We previously mentioned that the hidden-variable stochastic pro-

cess constitutes a Markov chain. In view of Markov chains and to 

get the whole perception, one can analyze this chain in terms of long 

run probabilities, mean first return time, and mean first passage 

time. 

Recalling that we have a transition probability matrix A, one can 

calculate the long run probabilities as follows: 

 

, Where 0 <  ,  < 1     (14) 

 

That means the limiting probabilities of being in an in-control state 

 and out-of-control state  are: 

 

                    (15) 

 

As long as the Markov chain is ergodic, one can easily calculate the 

so-called mean first return time, which is the average number of 

transitions needed by a system to return to state i for the first time. 

Once the steady state probabilities are evaluated, it is simple to ex-

press the expected first return time (µii) of state i as follows: 
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In the similar fashion, the mean first-passage time (µii), which is 

considered as a key quantity that must be studied in the theory of 

stochastic processes, can also be determined. This variable concerns 

with projecting the number of transitions required to reach state j 

from state i for the first time. Using the formula below and assum-

ing an -by-  matrix, 

 

                               (16) 

 

Where 

 

 = ( ) identity matrix 

 

 = transition matrix A less its row  and  column of target state 

 
 

 = ( ) column vector with all elements are unity 

 

We get the following formulas 

 

                       (17) 

 

Where (µ21) represents the average number of time units needed to 

reach an in-control state from an out-of-control state for the first 

time. While the average number of time units or moves needed to 

embrace an out-of-control state from an in-control state for the first 

time is (µ12)  Indeed, (µ12)  is the same as what is referred to as the 

Average Run Length (ARL) in terms of quality control respect. 

In case of absorbing state occurs, which can be defined as a state 

that cannot be left as soon as the system enters that state, we study 

the next. Here in our model it does make sense to assume that the 

system will be absorbed by the out-of-control state not the other 

one. With this assumption, the transition matrix A will have the be-

low form and the state diagram is depicted in Figure 4: 

 

                                                               (18) 

 

It is obvious that the probability of transitioning from the out state 

to the in state is zero that is; once the out state is entered, it cannot 

be left. 

 

 
Fig. 4: State Diagram with Absorbing State. 

 

In absorbing-state analysis, practitioners are usually interested in 

determining two unknowns: the probability of absorption and the 

expected time to absorption. To obtain these variables it is conven-

tionally agreed to put the transition matrix in the following canoni-

cal form: 

 

 = .

.

ABS

TR
.. ABSTR













I0

RQ

                                                                       (19) 

 

Where I is an (r x r) identity matrix, 0 is an (r x t)  zero matrix, R is 

a nonzero (t x r) matrix and Q is an (t x t) matrix. The first t states 

are transient and the last r are absorbing. 

Kemeny et al. [20] provide a complete derivation regarding the 

probability of absorption. They prove that as  i.e., the 

probability that the process will be absorbed is 1. Now, turning to 

the second variable representing the expected number of times to 

absorption, they also gave a proof to this and found that  

where E is the column vector whose ith entry is , N is called the 

fundamental matrix of A  and  and c is column vector 

whose all elements are 1. 

Applying these calculations in our proposed model and partitioning 

the A  matrix we get, 

 

 = .

.

ABS

TR

..

10

1211

ABSTR

aa













                                                               (20) 

 

 

First, we calculate  and c is 1. So we get 

 

 

               (21) 

 

It clear that the expected time to absorption equalizes the average 

number of transitions of directing from an in-control state to an out-

of-control state for the first time (µ12). 

 

5. Numerical analysis 

Let us assume a process that produces units, which can be classified 

into two categories; conforming, and nonconforming products. For 

the purpose of illustration, we suppose that we have the following 

100-point sequence listed in Table 1. This sequence was generated 

by MATLAB under the following parameters: 

 

 
 

 
 

 
 

Table 1: 100-Point Set Generated by MATLAB 
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As we interested in detecting statistically out-of-control signals, we 

plot the posterior probabilities versus time/items. Figure 5 shows 

the probability of being in statistically in control. 

 

 

 
Fig. 5: Posterior Probabilities over Time. 

 

 

It seems form Figure 5 that the process goes out of statistical stabil-

ity from item 25 to 36. Assuming the process has experienced an 

out-of-control condition at that period, we can remove those items 

from the observation sequence to fulfill some stability in the pro-

cess. This action is required to help us monitor future observations 

in analog to control charting theory. Figure 6 illustrates the process 

in much more stable way. 

 

 
Fig. 6: Removing Seem-Like Out of Control Items. 

 

 

Now, we generate another data set with different parameters to val-

idate the ability to detect shifts. Table 2 lists 50-point data set gen-

erated under the following parameters: 

 

 
 

 
 

 
 

 

Table 1: 50-Point Data Set Generated by MATLAB with Different Param-

eters 
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When we added the new generated data set to the stabilized/refined 

one, we get Figure 7. 

 

 
Fig. 7: Shift Detection in Process. 

 

It can be seen that the new generated sequence does not statistically 

belong to the old one that is the process exhibited to some out-of-

control conditions.  

6. Conclusions and future work 

The proposed model employs Markov chains theory as a base for 

this article. An HMM, a by-product of Markov chains was em-

ployed and applied in quality control field as discussed earlier. As 

a result, it was found that the suggested model is superior to detect 

the out-of-control signals. It has the capability of monitoring pro-

cess stability over time and detecting changes in process parame-

ters. It judges the state of a process numerically rather than the 

purely subjective human judgment emerging in control charting 

theory. Further, the proposed model takes into account all the past 

available observation sequence to make a decision regarding the 

current process’s state and distinctively offers a computing tool to 

predict the next state of a production process stochastically. Some-

how, it is expected that the suggested model will be with a great 

benefit in healthcare sectors as they involve many attribute data.  

 The model discussed in this article is dramatically built on the as-

sumption of that observed variables are independent and the system 

states form a Markov chain. One can generalize the proposed model 

to take into consideration the autocorrelation phenomenon among 

the observed variables as time passes by. So this idea is highly rec-

ommended for future work. Figure 8 shows the Bayesian network 

of the generalized idea based on observations dependency. 
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Fig. 8: A Proposed Model with Observation Dependency Relation. 

 

In figure 8, it is illustrated that there is a conditional or dependence 

relation between observed items/samples. This conditional property 

generalizes the model to take into account the effect of autocorrela-

tion among items/samples. 

In addition to that, it is highly recommended applying HMMs in the 

case of continuous variables. No doubt, this requires much more 

complicated equations and derivations, but this application will be 

dynamic in quality control field. That means usage of probability 

density functions instead of probability mass functions to describe 

the observed samples. HMMs will be usefully applicable in quality 

control to both variable and attribute data throughout this perspec-

tive. Figure 9 depicts how to model variable data with an HMM. 

 

 
Fig. 9: An HMM with Normally Distributed and Independent Variables. 

 

 

It is essential to mention that the two graphs (Figure 8 and 9) could 

be combined together to simulate the most likely case emerging in 

production situations. This combination will assume a correlation 

or dependency between continuous observed variables under con-

trol. Mathematically, the combination is exactly described by the 

so-called continuous joint distributions. 
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