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Abstract

The main objective of an unmanned aerial vehicle (UAV) path planning is to generate a flight path that links a start point to
an endpoint in an indoor space avoiding obstacles. Path planning is essential for many real-life applications such as an
autonomous car, surveillance mission, farming robots, unmanned aerial vehicles package delivery, space exploration, and
many others. To create an optimal path, we need to adopt a specific criterion to minimize the distance the UAV must travel
such as the Euclidean distance. In this paper, we provide our initial idea of creating an optimal path for indoor UAV using
both A∗ and the Late Acceptance Hill Climbing (LAHC) algorithms. We are adopting an indoor search environment with
various complexity and utilize the Probabilistic Roadmap algorithm (PRM) as a search space for both algorithms. The basic
idea following PRM is to generate random sample points in the space and search these points for an optimal path. The
developed results show that the LAHC algorithm outperforms the A∗ algorithm.
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1. Introduction

Recently, UAVs became one of the most challenging and
elevated technologies in aeronautics [1]. UAV shows many
advantages in various military, and civilian applications such
as low power-driven, unmanned, excellent concealment, low
cost, and exceptional maneuverability. UAV has been utilized
for commercial, scientific, precision agriculture [2, 3], surveil-
lance, product deliveries, aerial photography, earth resources
monitoring [4], and border security [5].
Some statistics show that UAV sales in Germany touched
400,000 units in 2017 and are expected to reach one million in
2020 [6]. Likewise, the National Purchase Diary Panel (NPD)
located in the USA estimated that UAV sales are doubled
in 2017. The unmanned aircraft system (UAS) was coined
by the United States Department of Defense (DoD) and
the United States Federal Aviation Administration in 2005
corresponding to the Unmanned Aircraft System Roadmap
2005–2030. Although the use of UAV has been massively
used in outdoor applications, the latest technology facilitated
the use of UAV for indoor navigation applications. In Figure
1, we show several types of drones that are used for many
indoor applications. Flying an indoor drone can come for
several reasons such as practice, racing, and professional
applications. Professional indoor drones are being used for

inspections, security, and 3D modeling of an environment.
Solving a UAV path planning problem depends on searching
for an optimal collision-free path from a given launch node
to a target in an obstacle environment adopting a certain
evaluation criterion. Many research articles explored the
use of UAV for mission planning in an indoor environment
with a set of assumptions based on the characteristics of the
indoor environment. For example, MIT’s Robust Robotics
Group developed a path planning with obstacles in an indoor
environment using the Belief Roadmap (BRM) algorithm
that integrate a predictive model to sense the environment [7].
Many techniques were proposed to develop an optimal UAV
path for various missions. In [8], the author provided a new
algorithm for collision-free path planning using an ant colony
optimization (ACO) algorithm taking into consideration both
dynamic threats and static obstacles.
Probabilistic Road Mapping is known as a motion planning
algorithm that is commonly used in robotics control for path
planning and obstacle avoidance. The PRM algorithm has
many advantages since it can work in various environment
and the algorithm is pretty fast with satisfactory complexity.
In the past, several hybrid algorithms were introduced such as
PRM-GA [9], ACO-PRM [10], and Potential Field-ACO [11].
An example of a PRM is shown in Figure 2.
In this research, we provide our initial idea of using A∗ and
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Figure 1: Several types of drone for indoor applications.

Figure 2: Example of an obstacle-based probabilistic roadmap.
s and g are the starts and goal configurations. A path is found by
searching over the roadmap. The image was taken from [12].

Late Acceptance Hill Climbing to develop a collision path
planning algorithm based on the Probabilistic Roadmap. This
research provides a framework that can be extended to various
search algorithms. This paper is organized as follows. In
Section 3, we provide an overview of the research developed in
the area of path planning using both classical and heuristics
methods. The basic principles of the PRM are presented
in Section 2. Section 3 explores the importance of the path
planning problem and how it can be solved using heuristic
and meta-heuristic algorithms. The obtained results for A∗

and LAHC algorithms are presented in Section 4. Finally,
the conclusion and future works are presented in Section 5.

2. Probabilistic Roadmap

In the last few decades, path planning algorithms based Prob-
abilistic Roadmap algorithm (PRM) became very popular for
real-time path planning because of its advantages in solving
complex robot motion planning problems [13]. This algo-
rithm is decomposed of two stages, the learning stage, and
the query stage.

• In the learning stage, the algorithm builds an undirected
graph of nodes and edges between a set of randomly
generated nodes of the environment with collision-free.

• The second stage, the query phase, the algorithm ex-
plores all possible connections from a given start node S
to a goal node G based on the developed graph of stage

one.

Several attributes affect the performance of PRM. For ex-
ample, the number of possible nodes in the environment,
the allowable distance between each node, and many others.
The classic PRM algorithm is used to calculate the shortest
path. Nevertheless, it cannot change the node locations to
achieve other goals such as path safety or smoothness. An
example of a PRM that has thirty random points is shown in
Figure 3. One of the main disadvantageous of PRM is that
if the created random points are not fairly distributed on the
environment as shown in Figure 3 there is no guarantee that
the path to be found shall be an optimal one. The creation
of a dense road map might be a solution but it is going to
be computationally expensive. Another way to enhance the
generated road map is to control the connection distance.

Probabilistic Roadmap
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Figure 3: An example of a PRM.

3. Path Planning

The path planning problem is a common problem that can
be found in logistics transportations, car navigation systems,
computer communication networks, and personal or public
evacuating decision systems through disasters [14]. Finding
an optimal or near-optimal path is very important either for
graph theory applications or network design [15]. In simple,
optimal path algorithms are divided into two main categories:
the optimum algorithm and the heuristic algorithm [16]. The
optimum algorithm can find an optimal path. However, the
time complexity will increase when having a complex PRM
and not efficient for real-time navigation systems [17]. While
heuristic and metaheuristic, algorithms can find an optimal or
near-optimal path and can explore the search space efficiently
compared to the optimum algorithm [18]. There are many
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heuristic algorithms such as A∗ [19], the local multiresolution
search algorithm [20], and the best-first search algorithm [21].
Heuristic algorithms can reduce the difficulties of searching
for an optimal path. Meta-heuristic algorithms such as simu-
lating annealing [22], Tabu Search [23] , and great deluge [24]
show an excellent performance while searching for an optimal
path. Few researchers have investigated their algorithms on
complex maps [25]. In this paper, we investigated the perfor-
mance of the LAHC algorithm over simple and complex PRM,
and compare its performance with a well-known heuristic
search algorithm, which is A∗.

3.1. The A∗ Algorithm

A∗ is a well-known informed search algorithm (ISA), or some-
times we call it best-first search (BFS). A∗ finds the optimal
path between a source point to a destination point using a
weighted graph (i.e., Tree). Thus, starting from a certain
node S of a graph to a node G, A∗ explores the graph to find
a path having the shortest distance traveled. The A∗ search
algorithm was developed as part of the Shakey project, which
aims at the construction of a mobile robot system that is
autonomous. A∗ uses the Graph Traverser algorithm [26] for
Shakey’s path planning [27]. Although the Graph Traverser
is only directed by a heuristic function h(n). This technique
ignores the estimated distance from node n, the distance from
the start node to the intermediate node n. In [28], author
suggested that both the distance between S to n and the
distance between n and G need to be included, g(n) + h(n).
A∗ maintains a tree of all possible paths created from S and
spreading these paths one edge at a time until its performance
criterion is fulfilled. A∗ determines which path to extend
based on some criteria (i.e., shortest distance). Thus, it
checks all possible paths from a neighborhood node n to
the goal node G. This process happens iteratively until the
shortest path is found. Specifically, A* selects the paths that
minimize Equation 1.

f(n) = g(n) + h(n) (1)

where n is the next node on the path, g(n) is the cost of
the path from node S to n, and h(n) is a heuristic function
that estimates the cost of the cheapest path from n to G.
Some of the well-known heuristic functions are the Manhattan
distance, Euclidean distance, and Chebyshev distance.
The A∗ search algorithm was successfully implemented and
tested for many path planning applications [29–33]. It was
reported in [34], that A∗ is not acceptable concerning compu-
tation time especially for large maps. The author shows that
the results are unpromising for the application of a robot
path planning with about 60,000 cells. Therefore, further
research was implemented to either enhance the A∗ perfor-
mance or adopt metaheuristics search algorithms [35] such
as GAs [36–40], ant colony optimization [41], artificial bee
colony [42] and PSO [43–45] algorithms.

3.2. The Late Acceptance Hill Climbing

In 2016, Burke and Bykov [47] proposed a simple, easy to
implement, and effective local search algorithm called Late
Acceptance Hill-Climbing (LAHC). It can be considered as an
enhanced version of the Hill Climbing (HC) algorithm where
the difference between HC and LAHC is the acceptance crite-
rion that compares the new solutions to a solution obtained
from the previous iterations. The basic idea of LAHC is to
accept a new candidate solution if there is no improvement
for a set of iterations. The main idea of LAHC comes from

Input: start, goal(n), h(n), expand(n)
Output: path
if goal(start) = true then

return makePath(start)
end
open ← start
closed ← ∅
while open 6= ∅ do

sort(open)
n ← open.pop()
kids ← expand(n)
forall kid ∈ kids do

kid.f ← (n.g + 1) + h(kid)
if goal(kid) = true then return makePath(kid)
if kid ∩ closed = ∅ then open ← kid

end
closed ← n

end
return path

Algorithm 1: The A* Algorithm [46]

a late acceptance heuristic concept, which depends on the
previously visited points in the search space. The algorithms
work in the same manner as other local search algorithms
such as Simulating Annealing (SA), Tabu Search (TS), and
Great Deluge (GD). In simple, the LAHC starts with a ran-
dom initial solution and either accepts or rejects the new
solutions until the stop condition is met.
LAHC has an internal list of a fixed length called history
length (Lh), which has the previous fitness values. While
executing the LAHC algorithm, the variable Iteridle repre-
sents the status of the LAHC algorithm, which is increased
by one if there is no improvement and back to zero if there is
an improvement. The current solution is compared with the
last fitness value in the Lh. LAHC will determine a virtual
beginning v to determine the starting position to compare
solutions inside Lh list. If the current solution is better than
the v position in Lh, then the new solution is accepted and
added to the first position in the list and remove the last
solution in the list from the end of the list. The listed size
is a single algorithmic value determined by the user. The
size of Lh will enhance the overall performance of LAHC [47].
The pseudo-code of LAHC is shown in Algorithm 2.

4. Experimental Results

This section explores and validates the obtained results of
LAHC and A-star algorithms over two different PRM. Both
algorithms have been implemented using MATLAB 2020.
The fitness function for both algorithms is the accumulative
distance between all nodes in a path. For our comparison, we
used the same hardware infrastructure for all experiments.
Table 1 explores the parameters setting used in this paper.
In both maps, we used 200 nodes that are located in feasible
locations. The robot radius size is 0.2 meters. In this paper,
we employed three different history lengths (i.e., 1, 100, and
500) for the LAHC algorithm.
The obtained results for simple PRM is shown in Table 2.
The LAHC algorithm outperforms the A∗ algorithm. LAHC
reduces the distance obtained by A* by 5.23%. Moreover, we
noticed that the size of the history length gives LAHC the
ability to explore more search space. However, the execution
time for A* is less than LAHC. Figures 4 and 5 show the
obtained path for A* and LAHC algorithms, respectively.
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Input: start point, goal point
Output: path
Generate initial path p
Determine History Length Lh

for k=0 to Lh−1 do
Calculate fk = fitness(p)

end
while (Iter < MaxIter) and (Iidle > Iter×0.2) do

Generate a new candidate path P ∗

Calculate the fitness for P ∗

if fitness(p∗) ≥ fitness (p) then
Iteridle=Iteridle+1

end
else

Iteridle= 0
end
calculate the virtual beginning v := Iter mod Lh

if fitness(p∗) < fv or fitness (p∗) ≤ fitness (P ) then
Accept the candidate solution, p=p∗

end
else

Reject the candidate solution, p=p
end
if fitness(p)<fv then

Then update the fitness array fv := fitness(p)
end
Iter=Iter+1;

end
return path

Algorithm 2: The Late Acceptance Hill Climbing [48]

Table 1: Parameters setting.

Attribute Value(s)

General setting Number of nodes 200
Robot Radius 0.2

LAHC Max iteration 1000
History length (Lh) 1, 100, 500

Figure 6 explores the performance of LAHC using different
sizes of history length. It is obvious increasing the size of
history length enhanced the overall performance of LAHC.
However, based on the results reported in Table 2, the execu-
tion time depends on history length size. Table 3 shows the
obtained results for complex PRM. The performance of A∗

is better than LAHC with history length equals 1, while the
performance LAHC outperforms A∗ with the larger history
length size. Figures 7 and 8 simulate the best-obtained paths
for A∗ and LAHC algorithms, respectively.
Figure 9 explores the performance of LAHC with different
history length sizes. The larger history length needs more
execution time. Moreover, the performance of LAHC with
history length equals 500 can efficiently explore the search
space. Table 4 shows a statistical analysis based on Wilcoxon
statistical test. A threshold value equals to 0.05. In this
table, if P-value is less than 0.05 means there is a statistical

Table 2: Results for simple PRM.

History length Fitness value Time (sec)
A* — 38.78 0.14

LAHA
1 38.65 1.10
100 37.81 3.62
500 36.75 6.79
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Figure 4: Best path obtained by A* for simple PRM.

Simple PRM
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Figure 5: Best path obtained by LAHC for simple PRM.

difference between the obtained results. The performance of
LAHC depends on the Lh size, where all obtained p-values
are less than 0.05.

5. Conclusions and Future Work

In this paper, we investigated the performance of LAHC and
A∗ for indoor unmanned aerial vehicle (UAV) path planning
problems. The complexity of this problem increases if the
search space (i.e., PRM) is complex with many obstacles.
We compared the performance of LAHC and A∗ over simple
and complex PRMs. The performance of LAHC outperforms
A∗ in both cases. Moreover, we examine the performance of
LAHC with different sizes of history length (Lh) array (i.e., 1,
100, and 500). The obtained results show that the higher Lh

Table 3: Results for complex PRM.

History length Fitness value Time (sec)
A* — 91.432 0.5726

LAHA
1 102.350 2.0341
100 90.591 4.1526
500 89.671 7.2283
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Figure 6: LAHC convergence with different history length for
simple map.

Complex PRM
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Figure 7: Best path obtained by A* for complex PRM.

Complex PRM
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Figure 8: Best path obtained by LAHC for complex PRM.

size the better performance of LAHC. In the future, we plan
to investigate a more complex environment and enhance the
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Figure 9: LAHC convergence with different history length for
complex map.

Table 4: Statistical analysis between different Lh sizes.

P-value
Lh=1 vs. Lh=100 0.027
Lh=1 vs. Lh=500 0.004
Lh=100 vs. Lh=500 0.013

performance of LAHC by tuning the Lh size in an automated
way based on the status of the current performance of LAHC.
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