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Abstract

In this article, accredit the innovative concept of complex valued the fuzzy set due to Ramot et al.[17], Singh et al.[20] and Choi et
al.[7], we introduce the conceptualisation of tricomplex valued fuzzy metric spaces and this paper is inspired by Ismat Beg et al.[10]. Vari-
ous related topological features have been established for tricomplex-valued fuzzy metric spaces, thereby reinforcing the foundational concept.
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1. Introduction

Segre, in his seminal work [18], laid the groundwork for the exploration of special algebras, introducing a groundbreaking perspective in
the form of commutative generalizations beyond complex numbers, such as bicomplex and tricomplex numbers. Building upon Segre’s
foundation, Price [16] further advanced the field by developing bicomplex algebra and function theory.
This line of inquiry, which was recently revitalized, has garnered renewed interest due to its far-reaching applications across various domains
within mathematical sciences and diverse branches of science and technology. A substantial body of research has emerged from the efforts
of numerous scholars in this field, contributing to an increasingly robust understanding of these specialized algebras and their practical
implications.
Azam et al. [1] extended it to complex valued metric space and established a common fixed point theorem for a pair of self-contracting
mappings. Choi et al. [7] proved some common fixed point theorems with two weakly compatible mappings in bicomplex valued metric
spaces.
In the year 1922, S. Banach made a significant contribution to the field of fixed point theory with his seminal work [2], presenting a crucial
result known as the ’Banach contraction principle.’ This principle has since become a pervasive and powerful tool in addressing existence
problems across various branches of mathematical analysis. Over the years, it has remained an active and fruitful area of research, continually
providing valuable insights and solutions to mathematical problems.
On the other hand, important theoretical development in the fuzzy sets theory introduced by Zadeh [22]. Fuzzy sets theory is the way of
defining the concept of fuzzy metric spaces by Kramosil and Michalek [11], which can be regarded as a generalization of the statistical metric
spaces. Subsequently, M. Grabiec [9] defined G-complete fuzzy metric spaces and extended the complete fuzzy metric spaces. Following
Grabiec’s work, George and Veeramani [8] modified the notion of M-complete fuzzy metric spaces with the help of continuous t-norms.
Many authors introduced and generalized the numerous types of fuzzy contractive mappings ( [12], [13], [19], [21]) and investigated some
fixed point theorems in fuzzy metric spaces.
Fuzzy complex numbers and fuzzy complex analysis were first introduced by Buckley [3] -[6]. Building on Buckley’s contributions [3] -[6],
several authors have pursued further research in the realm of fuzzy complex numbers. Notably, Ramot et al. [17] made significant strides by
extending fuzzy sets to what they termed ”complex fuzzy sets.” In their work, a complex fuzzy set is defined by a membership function
whose range extends beyond the conventional [0,1] interval to encompass the entire unit circle within the complex plane.
As articulated by Ramot et al. [17], membership in a complex fuzzy set retains its inherent fuzziness, analogous to membership in a
traditional fuzzy set. This extension into the complex domain introduces a nuanced and enriched perspective to the concept of fuzzy sets,
opening avenues for a deeper understanding and application of fuzzy logic within the context of complex numbers.
Expanding upon the groundwork laid by Ramot et al. [17], Singh et al. [20] further developed the concept of complex fuzzy sets. They
introduced and defined the novel notion of complex-valued fuzzy metric spaces by leveraging continuous t-norms. Additionally, Singh et al.
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established a Hausdorff topology on these complex-valued fuzzy metric spaces.
In their work, they introduced the concept of Cauchy sequences within the context of complex-valued fuzzy metric spaces. Moreover,
Singh et al. made significant contributions by formulating and proving the complex-valued fuzzy version of the vital Banach contraction
principle, offering fixed point theorems through rational expressions, and demonstrating Jungck-type fixed point results. This comprehensive
exploration of complex-valued fuzzy metric spaces and associated principles contributes to the ongoing advancements in the field of fuzzy
mathematics.

2. Preliminaries

Let’s initiate our exploration by establishing fundamental concepts and notations. Let the symbol R denote the set of real numbers, R+

signify the set encompassing all non-negative real numbers, and N represent the set of natural numbers. With these foundational elements in
place, we introduce the following definitions pertinent to the characterization of a fuzzy metric space.

Definition 2.1. [8]. An ordered triple (X ,M,∗) is called fuzzy metric space such that X is a nonempty set, ∗ defined a continuous t-norm
and M is a fuzzy set on X ×X × (0,∞), satisfying the following conditions, for all x,y,z ∈ X ,s, t > 0.
(FM-1) M(x,y, t)> 0.
(FM-2) M(x,y, t) = 1 iff x = y.
(FM-3) M(x,y, t) = M(y,x, t).
(FM-4) (M(x,y, t)∗M(y,z,s))≤ M(x,z, t + s).
(FM-5) M(x,y, ·) : (0,∞)→ (0,1] is left continuous.

Segre [18] defined the bicomplex number as ξ = a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2, where a1,a2,a3,a4 ∈ C0 ( the set of reals) and
z1 = a1 +a2i1,z2 = a3 +a4i1 ∈ C1 (the set of complex numbers), the independent units i1, i2 are such that i21 = i22 =−1 and i1i2 = i2i1. We
denote the set of bicomplex numbers as C2.
Segre [18] defined the tricomplex number as ξ = a1 + a2i1 + a3 − a4i2 = z1 − z′2, where a1,a2,a3,a4 ∈ C0 ( the set of reals) and z1 =
a1 + a2i1,z2 = a3 + a4i1 ∈ C1 (the set of complex numbers), the independent units i1, i2 are such that i21 = i22 = −1 and i1i2 = i2i1. We
denote the set of bicomplex numbers as C2.
Pal et al. [15] defined the partial order relation i2 ⪯i2 on C2 defined as:
For any ξ = z1 + i2z2,η = w1 + i2w2 ∈C2, ξ ⪯i2 η if and only if z1 ⪯ w1 and z2 ⪯ w2 and ξ ⪯i2 η if one of the following conditions is
satisfied:
(i) z1 = w1,z2 = w2.
(ii) z1 ≺ w1,z2 = w2.
(iii) z1 = w1,z2 ≺ w2
(iv) z1 ≺ w1,z2 ≺ w2,
also defined two conditions
(1). write ξ ⪯̸i2 η if ξ ⪯i2 η and ξ ̸= η then one of (ii),(iii) and (iv) is satisfied.
(2). write ξ ≺i2 η if only (iv) is satisfied.

Choi et al. [7] defined the bicomplex valued metric space as

Definition 2.2. [7] Let X be a nonempty set. Suppose the mapping d : X ×X → C2 satisfies the following conditions:
(1) 0 ≺i2 d(x,y) for all x,y ∈ X ,
(2) d(x,y) = 0 if and only if x = y,
(3) d(x,y) = d(y,x)for all x,y ∈ X ,
(4) d(x,y)⪯i2 d(x,z)+d(z,y) for all x,y,z ∈ X ,
Then (X ,d) is called a bicomplex valued metric spaces.

Singh et al. [20] defined the complex valued continuous t-norm and complex valued fuzzy metric space as

Definition 2.3. [20] A binary operation ∗ : rseiθ ×rseiθ → rseiθ , where in rs ∈ [0,1] and a fix θ ∈ [0, π

2 ], is called complex valued continuous
t-norm if it satisfies the following conditions:
(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a∗ eiθ = a, for all a ∈ eiθ , where rs ∈ [0,1],
(4) a∗b ⪯ c∗d whenever a ⪯ c and b ⪯ d, for all a,b,c,d ∈ rseiθ , where rs ∈ [0,1].

Example 2.4. [20] a∗b = min(a,b).

Example 2.5. [20] a∗b = max(a+b− eiθ ,0), for a fix θ ∈ [0, π

2 ].

Example 2.6. [20]

a∗b =

{
min{a,b}, if max{a,b}= eiθ ,

0 otherwise

for a fix θ ∈ [0, π

2 ]. Where min and max are defined in definition [17].

Definition 2.7. [20] The triplet (X ,M,∗) is said to be complex valued fuzzy metric space if X is an arbitrary non empty set, ∗ is a complex
valued continuous t norm and M : X ×X × (0,∞) → rseiθ is a complex valued fuzzy set, where rs ∈ [0,1] and θ ∈ [0, π

2 ] satisfying the
following conditions:
(BCF-1) M(x,y, t)≻ 0.
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(BCF-2) M(x,y, t) = eiθ for all t > 0 iff x = y.
(BCF-3) M(x,y, t) = M(y,x, t).
(BCF-4) M(x,y, t)∗M(y,z,s)⪰ M(x,z, t + s).
(BCF-5) M(x,y, ·) : (0,∞)→ rseiθ is continuous.
for all x,y,z ∈ X ,s, t > 0,rs ∈ [0,1] and θ ∈ [0, π

2 ]. (M,∗) is called a complex valued fuzzy metric spaces.

This study aims to introduce and define the concept of tricomplex valued fuzzy metric spaces, utilizing continuous t-norms and establishing a
Hausdorff topology specific to tricomplex valued fuzzy metric spaces. Our objective further involves proving a Banach-type fixed-point
theorem and deriving additional fixed-point results within this framework.
In the course of our investigation, we extend and enhance several existing fixed-point theorems documented in recent literature, including
contributions by Choi [7], George [8], Segre [18], and Singh [20]. To validate the efficacy of our results, we provide a concrete example,
demonstrating their applicability in practice.
Additionally, we present an application that underscores the practical utility of our findings. Through these endeavors, our work contributes
to the ongoing development of the theory of tricomplex valued fuzzy metric spaces and offers valuable insights for further exploration in this
mathematical domain.

3. Tricomplex valued fuzzy metric spaces

Within this section, we embark on the introduction of novel definitions crucial to our study. We commence by establishing the concept of a
tricomplex valued continuous t-norm, laying the foundation for subsequent developments in our exploration. Building upon this, we delve
into the definition of tricomplex valued fuzzy metric spaces, providing a framework for understanding distance and relationships within this
context.
To elucidate and validate our definitions, we present illustrative examples that serve as concrete instances, attesting to the coherence and
applicability of our introduced concepts. Through these definitions and accompanying examples, we aim to provide a clear and robust
framework for the subsequent analyses and theorems in our study.

Definition 3.1. A binary operation ∗ : rs(1+ i2)(1+ i3)ei1θ × rs(1+ i2)(1+ i3)ei1θ → rs(1+ i2)(1+ i3)ei1θ , where in rs ∈ [0,1] and a fix
θ ∈ [θ , π

2 ], is called tricomplex valued continuous t-norm if it satisfies the following conditions:
(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a∗ (1+ i2)(1+ i3)ei1θ = a, for all a ∈ (1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1],
(4) a∗b ⪯i2 c∗d whenever a ⪯ c and b ⪯ d, for all a,b,c,d ∈ rs(1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1].

Definition 3.2. The triplet (X ,M,∗) is said to be tricomplex valued fuzzy metric space if X is an arbitrary non empty set, ∗ is a tricomplex
valued continuous t norm and M : X ×X × (0,∞)→ rs(1+ i2)(1+ i3)ei1θ is a tricomplex valued fuzzy set, where rs ∈ [0,1] and θ ∈ [0, π

2 ]
satisfying the following conditions:
(BCF-1) M(x,y, t)≻i2 0.
(BCF-2) M(x,y, t) = (1+ i2)(1+ i3)ei1θ for all t > 0 iff x = y.
(BCF-3) M(x,y, t) = M(y,x, t).
(BCF-4) M(x,y, t)∗M(y,z,s)⪰i2 M(x,z, t + s).
(BCF-5) M(x,y, ·) : (0,∞)→ rs(1+ i2)(1+ i3)ei1θ is continuous.
for all x,y,z ∈ X ,s, t > 0,rs ∈ [0,1] and θ ∈ [0, π

2 ].
(X ,M,∗) is called a tricomplex valued fuzzy metric spaces.

Example 3.3. Let X =R. We define a∗b=min{a,b}, for all a,b∈ rs(1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1] and θ ∈ [0, π

2 ] and g :R+ → (0,∞)
be an increasing continuous function.

M(x,y, t) = (1+ i2)(1+ i3)ei1θ − d(x,y)
g(t)

for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space.

Remark 3.4. If we take g(t) = t as a identity function in Example 3.3, then we get

M(x,y, t) = (1+ i2)(1+ i3)ei1θ − d(x,y)
t

for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space.

Remark 3.5. If we take g(t) = k > 0 as a constant function in Example 3.3, then we get

M(x,y, t) = (1+ i2)(1+ i3)ei1θ − d(x,y)
k

for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space.

Example 3.6. Let X = R+. We define a∗b = min{a,b}, for all a,b ∈ rs(1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1] and θ ∈ [0, π

2 ] and

M(x,y, t) = (1+ i2)(1+ i3)ei1θ t
t +d(x,y)

for all x,y ∈ X , t ∈ (0,∞) and d(x,y) = |x− y|. Then (X ,M,∗) is a tricomplex valued fuzzy metric space.
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Example 3.7. Let X = N. We define a∗b = max(a+b− (1+ i2)(1+ i3)ei1θ ,0), for all a,b ∈ rs(1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1] and
θ ∈ [0, π

2 ] and

M(x,y, t) =


(1+ i2)(1+ i3)ei1θ if x = y
txy(1+ i2)(1+ i3)ei1θ if x ̸= y and t ≤ 1
xy(1+ i2)(1+ i3)ei1θ if x ̸= y and t > 1

for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space.

4. Topology Induced by a tricomplex valued fuzzy metric spaces

We introduce some new definitions Open ball, Interior point, Hausdorff space, Boundedness, Cauchy sequence, Limit point, Closure of the
Set, Closed ball and Convergent as follows.

Definition 4.1. Let (X ,M,∗) be a tricomplex valued fuzzy metric spaces. We define an open ball B(x,r, t) with centre x ∈ X and radius
r ∈ C2,0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ , t > 0 as

B(x,r, t) = {y ∈ X : M(x,y, t)≻ (1+ i2)(1+ i3)ei1θ ,

where θ ∈ [0, π

2 ].

A point x ∈ X is called an interior point of set A ⊂ X , whenever there exists r ∈ C2,0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ such that

B(x,r, t) = {y ∈ X : M(x,y, t)≻ (1+ i2)(1+ i3)ei1θ − r} ⊂ A,

where θ ∈ [0, π

2 ].
The subset A of X is called open whenever each element of A is an interior point of A.

Definition 4.2. Let (X ,M,∗) be a tricomplex valued fuzzy metric spaces. Then, (X ,M,∗) is called a Hausdorff space if for any two distinct
points p,q ∈ X , there exist two open balls B(p,r1, t1) = B(p,(1+ i2)(1+ i3)ei1θ − r1,

t
2 ) and B(q,r2, t2) = B(q,(1+ i2)(1+ i3)ei1θ − r2,

t
2 )

such that B(p,r1, t1)∩B(q,r2, t2) = φ .

Definition 4.3. Let (X ,M,∗) be a tricomplex valued fuzzy metric spaces. A subset A of X is said to be bounded if and only if there exist
t > 0 and r ∈ C2,0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ such that

M(x,y, t)≻ (1+ i2)(1+ i3)ei1θ − r, f or all x,y ∈ A.

Definition 4.4. A sequence xn in a tricomplex valued fuzzy metric space (X ,M,∗) is a Cauchy sequence if and only if

lim
n→∞

M(xn+p,xn, t) = (1+ i2)(1+ i3)ei1θ , p > 0, t > 0

or

lim
n→∞

|M(xn+p,xn, t)|= 1, p > 0, t > 0.

Definition 4.5. A tricomplex valued fuzzy metric space in which every Cauchy sequence is convergent, is called tricomplex valued complete
fuzzy metric spaces.

Definition 4.6. A point x ∈ X is called limit point of a subset A of X whenever there exists r ∈ C2,0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ , such that
B(x,r, t)∩ (A/X) ̸= φ . A subset B of X is closed whenever each limit point of B belongs to B.

Definition 4.7. A tricomplex valued fuzzy metric space in which a subset B(x,r, t) of X whenever there exists r ∈ C2,0 ≺ r ≺ (1+ i2)(1+
i3)ei1θ , such that B[x,r, t] the closure of B(x,r, t), to be the set consisting of all the points of B(x,r, t) together with all the limit points of
B(x,r, t).

Definition 4.8. Let (X ,M,∗) be a tricomplex valued fuzzy metric space. We define a closed ball B[x,r, t] with centre x ∈ X and radius
r ∈ C2(0 ∈ r ∈ (1+ i2)(1+ i3)ei1θ and for all t > 0 by

B[x,r, t] = {y ∈ X : M(x,y, t) ∈ (1+ i2)(1+ i3)ei1θ − r}.

Definition 4.9. A tricomplex valued fuzzy metric space in which, a sequence {xn} ∈ X is convergent to xn → x if and only if M(xn,x, t)→
(1+ i2)(1+ i3)ei1θ as n → ∞ or |M(xn,x, t)| → 1.

Proposition 4.10. Every open ball is an open set in tricomplex valued fuzzy metric spaces.

Proof. Consider an open ball B(x,r, t). To show B(x,r, t) to be open we show that at every point of B(x,r, t), there exists an open ball
contained in B(x,r, t).
Let

y ∈ B(x,r, t)⇒ M(x,y, t)≻ (1+ i2)(1+ i3)ei1θ − r,

where r ∈ C2 and 0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ , thus we can find a t0,0 < t0 < t such that M(x,y, t0)≻ (1+ i2)(1+ i3)ei1θ − r.
Let r0 = M(x,y, t0)≻ (1+ i2)(1+ i3)ei1θ − r. Then we can find s, where 0 ≺ s ≺ (1+ i2)(1+ i3)ei1θ , such that

r0 ≻ (1+ i2)(1+ i3)ei1θ − s ≻(1 + i2)(1+ i3)ei1θ − r.
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For given r0 and s, where r0 ≻ (1+ i2)(1+ i3)ei1θ −s, we can find r1,0 ≺ r1 ≺ (1+ i2)(1+ i3)ei1θ such that r0 ∗r1 ⪰ (1+ i2)(1+ i3)ei1θ −s.
Consider the ball B(y,(1+ i2)(1+ i3)ei1θ − r1, t − t0). We assert that B(y,(1+ i2)(1+ i3)ei1θ − r1, t − t0)⊂ B(x,r, t). Let

z ∈ B(y,(1+ i2)(1+ i3)ei1θ − r1, t − t0)⇒ M(y,z, t − t0)

≻ (1+ i2)(1+ i3)ei1θ − ((1+ i2)(1+ i3)ei1θ − r1)

= r1.

since M(y,z, t − t0)≻ r1.
Consider

M(x,z, t)⪰ M(x,y, t0)∗M(y,z, t − t0)

⪰ r0 ∗ r1

⪰ (1+ i2)(1+ i3)ei1θ − s

⪰ (1+ i2)(1+ i3)ei1θ − r.

which gives M(x,z, t)≻ (1+ i2)(1+ i3)ei1θ −r. Which amounts to say that z∈B(x,r, t). Hence B(y,(1+ i2)(1+ i3)ei1θ −r1, t−t0)∈B(x,r, t).
This shows that B(x,r, t) is an open set.

Proposition 4.11. Every tricomplex valued fuzzy metric space is Hausdorff .

Proof. Let (X ,M,∗) be a tricomplex valued fuzzy metric space. Let p,q be two distinct points of X . Then

0 ≺ M(x,y, t)(1+ i2)(1+ i3)ei1θ .

Let M(x,y, t) = r, for some r ∈ C2 then 0 ≺ r ≺ (1+ i2)(1+ i3)ei1θ . For each r0(r ≺ r0 ≺ (1+ i2)(1+ i3)ei1θ ), we can find a r1(r1 ≺
(1+ i2)(1+ i3)ei1θ ) such that r1 ∗ r1 ⪰ r0.
Now consider two open balls B(p,(1+ i2)(1+ i3)ei1θ − r1,

t
2 ) and B(q,(1+ i2)(1+ i3)ei1θ − r2,

t
2 ). Certainly

B(p,(1+ i2)(1+ i3)ei1θ − r1,
t
2
)∩B(q,(1+ i2)(1+ i3)ei1θ − r2,

t
2
) = φ .

If not then there exists

s ∈ B(p,(1+ i2)(1+ i3)ei1θ − r1,
t
2
)∩B(q,(1+ i2)(1+ i3)ei1θ − r2,

t
2
).

Now consider

r = M(x,y, t)

⪰ M(p,s,
t
2
)∗M(s,q,

t
2
)

≻ r1 ∗ r2 ⪰ r0.

Which is a contradiction. Therefore (X ,M,∗) is Hausdorff.

Lemma 4.12. Every closed ball is closed set in tricomplex valued fuzzy metric spaces.

Proof. Let (X ,M,∗) be a tricomplex valued fuzzy metric space and let B[x,r, t] be closed ball in X . Let z ∈ B[x,r, t]. Since X is first countable
then there exists a sequence {zn} in B[x,r, t] such that zn → z. Therefore M(zn,z, t)→ (1+ i2)(1+ i3)ei1θ as n → ∞ for all t > 0.
For a given ε > 0,

M(x,z, t + ε)⪰ M(x,zn, t)∗M(zn,z,ε).

Hence

M(x,z, t + ε)⪰ lim
n→∞

M(x,zn, t)∗ lim
n→∞

M(zn,z,ε)

⪰ ((1+ i2)(1+ i3)ei1θ − r)∗ (1+ i2)(1+ i3)ei1θ

= (1+ i2)(1+ i3)ei1θ − r.

If M(x,zn, t) is bounded then sequence {zn} has a sub-sequence, which can be again denoted by {zn} for which limn→∞ M(x,zn, t)exists. In
a particular case for n ∈ N, taking ε = 1

n . Then M(x,z, t + 1
n )⪰ (1+ i2)(1+ i3)ei1θ − r. Hence

M(x,z, t) = lim
n→∞

M(x,z, t +
1
n
)

⪰ (1+ i2)(1+ i3)ei1θ − r.

Which leads to z ∈ B[x,r, t]. This implies B[x,r, t] ⊆ B[x,r, t]. But B[x,r, t] ⊆ B[x,r, t] always. Thus we have B[x,r, t] = B[x,r, t]. Therefore
B[x,r, t] is a closed set.
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5. Main Result

We prove the Banach Contraction Theorem in the tricomplex valued complete fuzzy metric spaces as follows.

Theorem 5.1. Let (X ,M,∗) be a tricomplex valued complete fuzzy metric space such that

lim
t→∞

M(x,y, t) = (1+ i2)(1+ i3)ei1θ , f or all x,y ∈ X and t > 0. (5.1)

Let T : X → X be a mapping satisfying

η(
1

M(T x,Ty, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 kη(

1
M(x,y, t)

− 1
(1+ i2)(1+ i3)ei1θ

), (5.2)

for all x,y ∈ X and 0 < k < 1. Then T has a unique fixed point.

Proof. Suppose T satisfies condition (5.2). Let a0 be an arbitrary point in X and We define a sequence {an} in X by

an+1 = Tan ,n = 0,1,2, . . .

Applying condition (5.2) with x = an and y = an+1, we have

η(
1

M(an,an+1, t)
− 1

(1+ i2)(1+ i3)ei1θ
) = η(

1
M(Tan−1,an, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

⪯i3 kη(
1

M(an−1,an, t)
− 1

(1+ i2)(1+ i3)ei1θ
)

⪯i3 k2
η(

1
M(an−2,an−1, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

...

⪯i3 kn
η(

1
M(a0,a1, t)

− 1
(1+ i2)(1+ i3)ei1θ

).

Thus for any positive integer m and using (TCF −4), we have

η(
1

M(an,an+m, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 kη((

1
M(an,an+1, t)

− 1
(1+ i2)(1+ i3)ei1θ

)∗

· · · ∗ ( 1
M(an+m−1,an+m, t)

− 1
(1+ i2)(1+ i3)ei1θ

))

⪯i3 kn
η((

1
M(a0,a1, t)

− 1
(1+ i2)(1+ i3)ei1θ

)∗

· · · ∗ ( 1
M(a0,a1, t)

− 1
(1+ i2)(1+ i3)ei1θ

)).

Which on letting n → ∞, reduces to

lim
n→∞

(η(
1

M(an,an+m, t)
− 1

(1+ i2)(1+ i3)ei1θ
))⪯i3 ⪯i3 kn

η((
1

(1+ i2)(1+ i3)ei1θ
− 1

(1+ i2)(1+ i3)ei1θ
)∗

· · · ∗ ( 1
(1+ i2)(1+ i3)ei1θ

− 1
(1+ i2)(1+ i3)ei1θ

)). (5.3)

equation (5.3) gives rise to

lim
n→∞

(η(
1

M(an,an+m, t)
− (1+ i2)(1+ i3)ei1θ ))⪯i3 0

which implies that

η( lim
n→∞

(
1

M(an,an+m, t)
− (1+ i2)(1+ i3)ei1θ ))⪯i3 0,

since η is continuous. in view of Remark 3.1, we conclude that

lim
n→∞

M(an,an+m, t) = (1+ i2)(1+ i3)ei1θ .
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We assert that {an} is Cauchy sequence in X . Since X is complete, then essentially an → u as n → ∞, where u ∈ X . Consequently

η(
1

M(Tu,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 kη((

1
M(Tu,an+1,

t
2 )

− 1
(1+ i2)(1+ i3)ei1θ

)

∗ ( 1
M(an+1,u, t

2 )
− 1

(1+ i2)(1+ i3)ei1θ
))

⪯i3 kη((
1

M(Tu,Tan,
t
2 )

− 1
(1+ i2)(1+ i3)ei1θ

)

∗ ( 1
M(an+1,u, t

2 )
− 1

(1+ i2)(1+ i3)ei1θ
))

⪯i3 kη((
1

M(u,an,
t

2k )
− 1

(1+ i2)(1+ i3)ei1θ
)

∗ ( 1
M(an+1,u, t

2 )
− 1

(1+ i2)(1+ i3)ei1θ
))

Letting n → ∞, we have

η(
1

M(Tu,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 kη((

1
M(u,u, t

2k )
− 1

(1+ i2)(1+ i3)ei1θ
)

∗ ( 1
M(u,u, t

2 )
− 1

(1+ i2)(1+ i3)ei1θ
))

Now by (TCF −2), we have

η(
1

M(Tu,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 kη((

1
(1+ i2)(1+ i3)ei1θ

− 1
(1+ i2)(1+ i3)ei1θ

)

∗ ( 1
(1+ i2)(1+ i3)ei1θ

− 1
(1+ i2)(1+ i3)ei1θ

))

Or

M(Tu,u, t) = (1+ i2)(1+ i3)ei1θ .

Which implies that Tu = u. Thus u is a fixed point of T . According to the uniqueness of fixed point, assume w ∈ X be another fixed point of
T such that w ̸= u. The inequality turns into

1
(1+ i2)(1+ i3)ei1θ

⪯i3 ⪯i3 η(
1

M(u,w, t)
− 1

(1+ i2)(1+ i3)ei1θ
)

= η(
1

M(Tu,Tw, t)
− 1

(1+ i2)(1+ i3)ei1θ
)

⪰i3 kη(
1

M(u,w, t)
− 1

(1+ i2)(1+ i3)ei1θ
)

⪯i3 k2
η(

1
M(u,w, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

· · ·

⪯i3 kn
η(

1
M(u,w, t)

− 1
(1+ i2)(1+ i3)ei1θ

),

which implies that

1

2e
i1−i2

2 θ
⪯i3 kn

η(
1

M(u,w, t)
− 1

(1+ i2)(1+ i3)ei1θ
).

thus we obtain

(1+ i2)(1+ i3)ei1θ ⪰i3 M(u,w, t).

Since k < 1, then on making n → ∞, we gets u = w. Thus, we conclude that T has a unique fixed point.

Now, we furnish an example which shows the superiority of our result.

Example 5.2. Let X = {0}∪N. We define a∗b = max(a+b− (1+ i2)(1+ i3)ei1θ ,0), for all a,b ∈ rs(1+ i2)(1+ i3)ei1θ , where rs ∈ [0,1]
and θ ∈ [0, π

2 ] and

M(x,y, t) =


(1+ i2)(1+ i3)ei1θ if x = y
x
y (1+ i2)(1+ i3)ei1θ if x < y
y
x (1+ i2)(1+ i3)ei1θ if y < x
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for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space. Certainly here

lim
t→∞

M(x,y, t) = (1+ i2)(1+ i3)ei1θ ,

for all x,y ∈ X and t ∈ (0,∞). Define T (x) = x
5 . By a routine calculation, one can verify that T satisfies the condition

M(T x,Ty,kt)⪰i3 M(x,y, t), f or all x,y ∈ X ,

for k = 1
4 . Thus all the conditions of Theorem 5.1 are satisfied and x = 0 is the unique fixed point of T .

6. An α −η −ψ −φ− Contraction Function

Definition 6.1. Let (X ,M,∗) be a tricomplex valued fuzzy metric space. Let T : X → X be satisfies the following

ψ(
1

M(T x,Ty, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 ψ(

1
M(x,y, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

−φ(
1

M(x,y, t)
− 1

(1+ i2)(1+ i3)ei1θ
),

for all x,y ∈ X and 0 < k < 1, such that (1+ i2)(1+ i3)ei1θ

(i) ψ is continuous and decreasing with ψ(t) = 0 if and only if t = 0.
(ii) φ is continuous with φ(t) = 0 if and only if t = 0.
f is called ψ −φ− contraction function.

Theorem 6.2. Let (X ,M,∗) be a tricomplex valued fuzzy metric space. Let T : X → X be satisfies the following

α(x,T x, t)α(y,Ty, t)≥ η(x,T x, t)η(y,Ty, t)

this implies that

ψ(
1

M(T x,Ty, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 ψ(

1
M(x,y, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

−φ(
1

M(x,y, t)
− 1

(1+ i2)(1+ i3)ei1θ
), (6.1)

such that
(i) There exists a0 ∈ X such that α(a0,T (x0), t)≥ η(a0,T (x0), t) for all t > 0.

Then T has a unique fixed point.

Proof. Suppose T satisfies condition (6.1). Let a0 be an arbitrary point in X and We define a sequence {an} in X by

an+1 = Tan ,n = 0,1,2, . . .

Since T is α− admissible with respect to η such that

α(a0,T (x0))≥ η(a0,T (x0), t)

Continuing this process we get

α(an,Tan+1, t)≥ η(an,an+1, t)

clearly

α(an−1,Tan−1, t)α(an,Tan, t)≥ η(an−1,Tan−1, t)η(an,Tan, t).

Applying condition (6.1) with x = an−1 and y = an, we have

ψ(
1

M(Tan−1,Tan, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 ψ(

1
M(an−1,an, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

−φ(
1

M(an−1,an, t)
− 1

(1+ i2)(1+ i3)ei1θ
),

which implies that

ψ(
1

M(an,an+1, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 ψ(

1
M(an−1,an, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

−φ(
1

M(an−1,an, t)
− 1

(1+ i2)(1+ i3)ei1θ
).
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If M(an−1,an, t) = (1+ i2)(1+ i3)ei1θ , then M(an,an+1, t) = (1+ i2)(1+ i3)ei1θ . Otherwise, if
M(an−1,an, t)< (1+ i2)(1+ i3)ei1θ , then

ψ(
1

M(an,an+1, t)
− 1

(1+ i2)(1+ i3)ei1θ
)≺i3 ψ(

1
M(an−1,an, t)

− 1
(1+ i2)(1+ i3)ei1θ

),

since ψ is non-decreasing. Thus for any positive integer m and using (TCF −4), we have

M(an,an+m, t)⪰i3 M(an,an+1,
t
k
)∗M(an+1,an+2,

t
k
)∗

· · · ∗M(an+p−1,an+p,
t
k
)

⪰i3 (1+ i2)(1+ i3)ei1θ ∗ · · · ∗ (1+ i2)(1+ i3)ei1θ .

We conclude that

lim
n→∞

M(an,an+m, t) = (1+ i2)(1+ i3)ei1θ .

We assert that {an} is Cauchy sequence in X . Since X is complete, then essentially an → u as n → ∞, where u ∈ X .

ψ(
1

M(Tu,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
)⪯i3 ψ(

1
M(u,u, t)

− 1
(1+ i2)(1+ i3)ei1θ

)

−φ(
1

M(u,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
).

If M(Tu,u, t) = (1+ i2)(1+ i3)ei1θ , Otherwise, if M(Tu,u, t)< (1+ i2)(1+ i3)ei1θ , then

ψ(
1

M(Tu,u, t)
− 1

(1+ i2)(1+ i3)ei1θ
)≺i3 ψ(

1
M(u,u, t)

− 1
(1+ i2)(1+ i3)ei1θ

),

Or

M(Tu,u, t) = (1+ i2)(1+ i3)ei1θ .

Which implies that Tu = u. Thus u is a fixed point of T . According to the uniqueness of fixed point, assume w ∈ X be another fixed point of
T such that w ̸= u. The inequality turns into

ψ(
1

M(Tu,w, t)
− 1

(1+ i2)(1+ i3)ei1θ
)≺i3 ψ(

1
M(u,w, t)

− 1
(1+ i2)(1+ i3)ei1θ

),

thus we obtain

(1+ i2)(1+ i3)ei1θ ⪰i3 M(u,w, t).

Since k < 1, then on making n → ∞, we gets u = w. Thus, we conclude that T has a unique fixed point.

Theorem 6.3. Let (X ,M,∗) be a tricomplex valued complete fuzzy metric spaces such that

lim
t→∞

M(x,y, t) = (1+ i2)(1+ i3)ei1θ , (6.2)

for all x,y ∈ X and t > 0. Let T : X → X be a mapping satisfying

M(T x,Ty,kt)⪰i3 min{M(x,y, t),M(x,T x, t),M(y,Ty, t),
M(x,T x, t),M(y,Ty, t)

M(x,y, t)
}, (6.3)

for all x,y ∈ X and 0 < k < 1. Then T has a unique fixed point.

Proof. Suppose T satisfies equation (6.3). Let a0 be an arbitrary point in X and we define a sequence {an} in X by

an+1 = Tan ,n = 0,1,2, . . .

we discuss two cases to get the desired fixed point.
Case-I When xn ̸= xn+1. Applying condition (6.3) with x = an and y = an+1, we have

M(an,an+1, t) = M(Tan−1,Tan, t)

⪰i3 min{M(an,an+1, t),M(an,Tan, t),M(an+1,Tan+1, t)}
⪰i3 min{M(an,an+1, t),M(an,an+1, t),M(an+1,an+2, t)}
⪰i3 min{M(an,an+1, t),M(an+1,an+2, t)} (6.4)

Now suppose

min{M(an,an+1, t),M(an+1,an+2, t)}= M(an,an+1, t)
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we deduce that M(an,an+1, t)⪰i3 M(an,an+1, t). This leads to a contradiction, therefore by (6.3), we must have

M(an,an+1, t)⪰i2 M(an−1,an,
t
k
)

⪰i3 M(an−2,an−1,
t

k2 )

⪰i3 M(an−3,an−2,
t

k3 )

...

⪰i3 M(a0,a1,
t

kn ). (6.5)

In general

M(an,an+m,kt)⪰i3 M(an,an+1,
t
k
)∗ · · · ∗M(an+m−1,an+m,

t
k
)

⪰i3 M(a0,a1,
t

kn )∗ · · · ∗M(a0,a1,
t

kn+m−1 ).

Which on letting n → ∞, reduces to

lim
n→∞

M(an,an+m, t)⪰i3 (1+ i2)(1+ i3)ei1θ ∗ (1+ i2)(1+ i3)ei1θ ∗ · · · ∗ (1+ i2)(1+ i3)ei1θ .

Since k < 1 and limn→∞ M(x,y, t) = (1+ i2)(1+ i3)ei1θ . Which implies that

lim
n→∞

M(an,an+m, t)⪰i3 (1+ i2)(1+ i3)ei1θ .

We observe that {an} is Cauchy sequence in X . Since X is complete, there exists some u ∈ X such that xn → u as n → ∞. Implying thereby
the convergence of {xn} and {xn+1} being sub-sequences of the convergent sequence {xn}. Then xn → u and xn+1 → u as n → ∞. Now we
shall show that u is a fixed point of T . Setting x = u and y = xn+1 in inequality (6.2), one yields

M(Tu,u,kt)⪰i3 M(Tu,an+2,
t
2
)∗M(an+2,u,

t
2
)

⪰i3 min{M(u,u,
t

2k
),M(u,Tu,

t
2k

),M(u,u,
t

2k
)}∗M(u,u,

t
2k

)

= min{M(u,Tu,
t

2k
),(1+ i2)(1+ i3)ei1θ}

= M(u,Tu,
t

2k
) (6.6)

Since k ∈ (0, 1
2 ), we get Tu = u. Thus u is a fixed point of mapping T. Hence u is a common fixed point of mappings T. To investigate the

uniqueness of common fixed point, let w ∈ X be another common fixed point of mappings T such that w ̸= u, then

M(u,w,kt) = M(Tu,Tw,kt)

⪰i3 min{M(w,Tw, t),M(u,Tu, t),M(u,w, t}
⪰i3 min{M(w,w, t),M(u,u, t),M(u,w, t)}

= min{(1+ i2)(1+ i3)ei1θ ,(1+ i2)(1+ i3)ei1θ ,M(u,w, t)} (6.7)

Since M(u,w, t) ∈ (1+ i2)(1+ i3)ei1θ , rs ∈ [0,1] and θ ∈ [0, π

2 ], also M(u,w, t)⪯ (1+ i2)(1+ i3)ei1θ , then we certainly have

min{(1+ i2)(1+ i3)ei1θ ,(1+ i2)(1+ i3)ei1θ ,M(u,w, t)}= M(u,w, t).

Therefore we get M(u,w,kt)⪰ M(u,w, t), which yields u = w, Thus u is the unique common fixed point of T.
Case II When xn = xn+1, observe that {xn} is a constant sequence and so convergent. This concludes the proof.

We present example validates the aforesaid theorem.

Example 6.4. Let X = {0}∪N. We define a∗b = min{a,b}, for all a,b ∈ rs(1+ i2)ei1θ , where rs ∈ [0,1] and θ ∈ [0, π

2 ], d(x,y) = |x− y|
and

M(x,y, t) = (1+ i2)(1+ i3)ei1θ e
−d(x,y)

t

for all x,y ∈ X and t ∈ (0,∞). Then (X ,M,∗) is a tricomplex valued fuzzy metric space. Certainly here

lim
t→∞

M(x,y, t) = (1+ i2)(1+ i3)ei1θ ,

for all x,y ∈ X and t ∈ (0,∞). Define T (x) = x
5 . By a routine calculation, one can verify that T satisfies the condition

M(T x,Ty,kt)⪰i3 min{M(x,y, t),M(x,T x, t),M(y,Ty, t),},

for all x,y ∈ X and k = 1
3 . Thus all the conditions of Theorem 6.3 are satisfied and x = 0 is the unique fixed point of T .
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7. Application

We also provide an application to substantiate the utility of our established result to find the unique solution of the higher degree polynomial
equations. Since polynomials are used to describe curves of varied types, people exploitage them in the real world to graph curves. For the
example, an engineer is designing a roller coaster would have used polynomials to model the curves, for instance, the roller coaster designers
may use polynomials to explain the curves in their rides, while a civil engineer would use polynomials to texture and style of roads, buildings
and other structures.
An application on higher degree polynomial equations is as follows having a degree greater or equal to 3 given by [14] and We have elucidate
this higher degree polynomial equations in tricomplex valued fuzzy metric spaces. For any natural number α ≥ 3 and real |β | ≤ 1, the
following equation

β
α +1 = (α4 −1)β α+1 +α

4
β (7.1)

has a unique real solution.

Proof. It is not difficult to see that if |α|> 1, equation (7.1) does not have a solution. So, let X = C3([0,1],R). and for all α,r ∈ X , let

M(β ,r, t) = (1+ i2)(1+ i3)ei1θ t
t + |β − r|

.

Hence (X ,M,∗) is a complete tricomplex valued fuzzy metric spaces. Now, let

T β =
β α +1

(α6 −1)β α +α6 (7.2)

Notice that, since α ≥ 2, we can deduce that α4 ≥ 6, for all t > 0 and k ∈ (0,1). Thus,

M(T β ,Tr,kt) = (1+ i2)(1+ i3)ei1θ kt

kt + | β α+1
(α4−1)β α+α4 − rα+1

(α4−1)rα+α4 |

= (1+ i2)(1+ i3)ei1θ kt

kt + | β α−rα

((α4−1)β α+α4)((α4−1)rα+α4)
|

⪰i3 (1+ i2)(1+ i3)ei1θ kt

kt + | β−r
α4 |

⪰i3 (1+ i2)(1+ i3)ei1θ t

t + | β−r
α4 |

⪰i3 (1+ i2)(1+ i3)ei1θ t

t + | β−r
α

|

⪰i3 (1+ i2)(1+ i3)ei1θ t
t + |β − r|

⪰i3 M(β ,r, t).

Therefore all the conditions of Theorem 5.1 are satisfied. Thus, T possesses a unique fixed point in X , and equation (7.1) has a unique real
solution.

Conclusions. In this article, motivated and inspired by the work of Ramot et al.[17], Ismat Beg et al.[10] and Choi et al. [7]. We extend and improve some
existing generalize the complex valued fuzzy metric spaces by Singh et al.[20]. In this research endeavor, we extend the topological aspects pertinent to
tricomplex valued fuzzy metric spaces. Our thorough investigations yield compelling results, bolstered by the inclusion of pertinent examples that substantiate
and reinforce our findings. Furthermore, we demonstrate the practical relevance of our established results by applying them to ascertain the unique solutions of
polynomial equations of higher degrees.
This work not only broadens the understanding of topological aspects within the realm of tricomplex valued fuzzy metric spaces but also offers a valuable
avenue for practical applications. By paving the way for new insights and methodologies, our research contributes to the ongoing discourse in this specialized
field, providing a solid foundation for future exploration and advancement.
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