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Abstract

Production managers commonly need to assess the reliability of production equipment throughout its life cycle. Since equipment is typically
composed of multiple components, failures may stem from dependencies due to interactions. We have found that the literature does not
adequately address these dependencies in the dynamic reliability models of the studied systems. The purpose of this study is to utilize
decision trees (DT) and Dynamic Bayesian Networks (DBN) to approximate the failure probability of multi-component systems. We present
a failure prediction method and utilize a parametric estimation approach grounded in a priori laws. The DBN learning process is assessed via
a Monte-Carlo simulation method and a parametric compliance examination. Finally, this study illustrates the significant impact of using
Dynamic Bayesian Networks (DBNs) in conjunction with Decision Trees (DTs) to evaluate the state of a water production system.
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1. Introduction

The rising intricacy of production systems is becoming increasingly evident. Aside from the limitations tied to competitiveness, extant

environmental protection laws are compelling manufacturers and the scientific community to devise answers that can enhance the efficiency,

competitiveness, and safety of systems. One area of research happening in this regard is predictive maintenance, where research is being

conducted on failure prognosis. Failure prognosis requires the assessment of a system’s reliability over time, which has been undertaken by

various authors using different prognostic methods such as physical models, experience-based methods, and data-based techniques[4]. For

data-based methods, tools such as decision trees[9], expert systems, hybrid systems[6], neural networks[12], Decision Trees (DT)[11], and

Bayesian Networks [13] are available. Bayesian networks can be categorized into three types, each with a specified use. These include

static Bayesian networks, commonly used for diagnosis, naive Bayesian networks, used for classification, and dynamic Bayesian networks,

utilized for prognosis and recognition purposes [2, 5]. While BNs are an effective tool for fault prognosis, they have limitations when it

comes to determining the a priori laws of individual nodes. To address this challenge, we have integrated decision trees with RB due to

their proficiency in swiftly deriving probabilities when data is accessible. Our purpose is to devise a method for anticipating the collapse of

manufacturing systems by evaluating the interdependence among constituents and their conduct over time. This manuscript is structured as

follows: Section 1 introduces Bayesian networks and Section 2 discusses decision trees. Then, in Section 3, we present a procedure for

predicting failures. This procedure will be illustrated using an example of a water production system in Section 4. Finally, we will have a

discussion in Section 5 and a conclusion.

Copyright © Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Bayesian Network

2.1. Static Bayesian Network

A discrete Bayesian network, denoted by B = (G,(pn)1≤n≤N)), is mathematically defined as follows:

• Let G be a directed graph without circuits: G=(X,E) with X comprising n nodes, each linked to a random variable Xi in a finite and

countable space ΩXi , and E representing the dependencies between said variables.

• (pn)1≤n≤N is a set of conditional probability distributions where pn represents the CPD associated with the random variable Xn given

its parents Xpan , where pan refers to the indices of the parent variables of Xn in G. (pn)1≤n≤N is a set of conditional probability

distributions where pn represents the CPD associated with the random variable Xn given its parents Xpan , where pan refers to the

indices of the parent variables of Xn in G. The technical term abbreviations will be explained when first used.

2.2. Dynamics Bayesian Networks

When the variables in a static Bayesian network change over time, an extension called a dynamic Bayesian network (DBN) has been proposed

[7]. The purpose of DBNs is to model the probability distribution of a sequence of variables (Xt)1≤t≤T = (X1,t , ...,XN,t)1≤t≤T for a duration

of T ∈ N∗. steps.

It consists of a pair of Bayesian networks (B1,B−→) :

• B1 defines the a priori distribution, the initial model P(X1,1, ...,XN,1).

• B−→ defines the transition model, which describes the dependencies between the variables in the previous slices and the variables in

slice t, i.e. the distribution of Xt |X1, ...,Xt−1.

We define a dynamic Bayesian network of order n, denoted as n-DBN, to have n+1 time slices. The dependence of Xt on its preceding time

slices is only conditional up to the t −n slice. Given Xt−n, ...,Xt−1, Xt is independent of Xt−n−1. [15].

B−→ defines the transition model which describes the distribution Xt |Xt−1, ...,Xt−n which verifies :

P(Xt |Xt−1, ...,Xt−n)

= P(X1,t , ...,XN,t |X1,t−1, ...,XN,t−1, ...,X1,t−n, ...,XN,t−n)

= ∏
N
n=1 P(Xn,t |paXn,t )

(1)

where paXn,t are the indices of the parent variables of the variable Xn,t in the graph of B−→.

For a dynamic Bayesian network with two time periods, the following applies:

B1 describe the initial probability distribution of the variables by :

P(X1) =
N

∏
n=1

P(Xn,1|Xpan,1) (2)

Where each node is indexed by a pair (n,t), where n is the proper index and t is the sequential index. The set of index pairs associated with

the parents of the node Xn,1 in the graph of B1 is denoted by pan,1.

For a dynamic Bayesian network with two time slices, we must write the initial probability distribution of the variables, since B−→ is a BN

that describes the transition law of the process state at time t given its state at time t −1. In other words, B−→ describes the probability law

of Xt |Xt−1, which is factored into B−→ by the conditional probability law.

P(Xt |Xt−1) =
N

∏
n=1

P(Xn,t |Xpan,t ) (3)

Where pan,t represents the indices of the parent nodes of Xn,t in the graph of B−→.

The joint distribution of the sequence of n nodes (Xt)1≤t≤T can be obtained by presenting the Bayesian Network 2D on a sequence of length

T. Simply put, the Bayesian Network 2D can be used to calculate the distribution.

P((Xt)1≤t≤T ) = P(X1)
T

∏
t=2

P(Xt |Xt−1) (4)

By introducing the equation 2 and the equation 3 into the equation 4 we obtain equation 5.
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P((Xt)1≤t≤T ) =
N

∏
n=1

P(Xn,1|Xpan,1)
T

∏
t=2

N

∏
n=1

P(Xn,t |Xpan,t ) (5)

A dynamic Bayesian network with two time slices is illustrated by the figure 1.
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Figure 1: Dynamic Bayesian Network 2-DBN

3. Decision Tree (DT)

Decision Trees (DTs) are a non-parametric method commonly used for classification and prediction[14]. DTs are generally classified into

two categories: classification trees and regression trees. Classification trees are used to predict discrete variables, while regression trees are

employed to predict continuous variables. The primary advantage of decision trees (DTs) is that variable transformations are unnecessary.

Variable transformations will neither change the tree structure nor the resulting outcomes, resulting in time savings. Furthermore, DTs can

accurately model complex relationships between variables. Among the classification algorithms, decision trees are the most straightforward

to use and interpret, yet they maintain high performance [16]. The modeling of decision trees typically comprises two main stages: stage 1

involves creating the trees, and stage 2 involves pruning them [3]. Pruning is essential for avoiding inappropriate nodes in the tree. A good

algorithm produces a larger tree and prunes it based on detecting the ideal pruning threshold. In the case of pre-pruning, the tree grows until

a specific criterion is met. In contrast, post-pruning involves building a complete tree, and then replacing the last sub-trees with leaves based

on a comparison of the error before and after sub-tree substitution. In the next step, the gain ratio is calculated for all sub-nodes individually,

and this process is repeated until all examples within a node belong to the same class. Let T represent the training dataset, consisting of

subsets Ti(i = 1,2, ...,n). To determine the gain ratio for attribute X, use equation 9.

GainRatio =
Gain(X ,T )

SplitIn f o(X ,T )
(6)

where :

Gain(X ,T ) = Entropy(T )−
n

∑
i=1

|Ti|
|T |

Entropy (7)

SplitIn f o(X ,T ) =−
n

∑
i=1

|Ti|
|T |

log2
|Ti|
|T |

(8)

By introducing the equation 7 and the equation 8 into the equation 6 we obtain equation 9.

GainRatio =

Entropy(T )−∑
n
i=1

|Ti|
|T |

Entropy

−∑
n
i=1

|Ti|
|T |

log2
|Ti|
|T |

(9)

In the example presented in figure 2, objective classification of each instance entails initial observation of the state of component X5.

Subsequently, the corresponding branch should be followed based on the status of the X5 component - whether functioning correctly or

otherwise. Therefore, for example, evaluation of component state X8 requires following the branch X5 = good, leading to node X8 = good. A
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node is a group of instances that meet the prior criteria for separation. The highest node in the tree is X3 and includes all instances that have a

X5 attribute condition of ”good” and a X8 attribute condition of ”good”. The highest node in the tree is X3 and includes all instances that

have a X5 attribute condition of ”good” and a X8 attribute condition of ”good”. Abbreviations for technical terms will be fully explained

upon their first usage. X2 is considered good when X1 and X3 meet their respective conditions. The nodes within the tree provide further

segmentation criteria, with the root acting as the entry point for all instances. The nodes within the tree provide further segmentation criteria,

with the root acting as the entry point for all instances. Once the tree is constructed, we can extract the various configurations that result in

the probabilities found at the root. The nodes within the tree provide further segmentation criteria, with the root acting as the entry point

for all instances. This configuration enables the extraction of probabilities that can serve as prior probabilities in the Bayesian network.

Examining the example in figure 2, we observe that component 5 failing is the only requirement for the system represented by the root node

to fail. This can be observed in the condition X5 = f ailure.

Figure 2: Example of a decision tree

We also note that the values included in each node and leaf in Figure 2 provide the probabilities of success and failure for the corresponding

node or leaf.

4. Procedure for Predicting Failures

This section outlines a procedure for constructing a failure prediction model using the operational data of a dynamic system. The method

involves utilizing two modeling tools: decision trees and dynamic Bayesian networks. The combination of these tools is justified by the

need to establish causal relationships between the system’s components when working with BN data. We also need to know the prior

probability laws that define the behavior of the components. To facilitate failure prognosis, Dynamic Bayesian Networks (DBNs) are used

for representation. The proposed prognosis procedure in this article involves four stages.

• Develop the graphical model using integral causality.

• Generate the probability laws for each component and the system.

• Create the Dynamic Bayesian Network (DBN).

• Conduct future behavior estimation of the system.

4.1. Development of the graphic model

This phase necessitates extensive knowledge of the system under investigation. The professional with a comprehensive comprehension of the

system’s operation and the causal connections governing component interdependence during operation is best suited to offer assistance

at this stage. To account for the subjective nature of human response, it is advisable to conduct a survey with numerous system experts

employing a response grid. This will provide a more realistic representation of the dependencies among the system components.



International Journal of Engineering & Technology 5

4.2. Generation of a priori probability distributions

For the determination of prior probability distributions, it is recommended by some literature to conduct an expert survey of the system. In

order to reduce subjectivity in the prognostic process, we propose the use of a non-human subjective tool, specifically the decision tree.

This tool can classify the probability of component failure by considering all other components, an important factor at this stage. This

tool can classify the probability of component failure by considering all other components, an important factor at this stage. Technical

terminology will be explained when used for the first time. This tool can classify the probability of component failure by considering all

other components, an important factor at this stage. We propose the following approach: Utilize a database to display the behavior of the

system and its components during a specific operational period. With the assistance of the graphical model’s dependencies, categorize

each component according to the other components to deduce the likelihood of each component being in a particular state based on the

configurations. In our case study, these probabilities will be implemented as prior probabilities for dependent components. For components

that operate independently, it is suggested to associate a behavior law with them. In this article, we suggest using the Weibull law because it

encompasses a variety of laws and can accurately represent the behavior of degradable components throughout their lifespan. The probability

density function for the three-parameter Weibull distribution W(λ ,α ,θ ) is defined by the equation relation 10.

f (x,λ ,α,θ) = αλ (x−θ)α−1e−λ (x−θ)α

1[0,+∞](x) (10)

Its probability density is expressed by the relation 11.

F(x) =
∫

t
f (x,λ ,α,θ) =−e−λ (x−θ)α

(11)

This density function serves to randomly generate a failure probability to be utilized in Bernoulli’s Law for generating the states of

non-dependent components. When the component is in optimal working order (denoted by ”ok” or ”0”) at the previous time, the Weibull

distribution generates the probability of failure for the current time. On the other hand, if the component failed in the previous period (ko or

1), it is immediately restored to a good condition in the next period. The random probabilities generated by the Weibull distribution are

determined by equations 12 and 13.

P(Xt = ko|Xt−1 = ok) =
F(t)−F(t +dt)

F(t)
(12)

P(Xt = ko)|Xt−1 = ok) =
e−λ (t−θ)α − e−λ (t+dt−θ)α

e−λ (t−θ)α
(13)

With α , λ and θ which are the parameters of the weibull distribution.

4.3. Generation of the dynamic Bayesian network

In generating the dynamic Bayesian network, which is utilized to estimate the system’s future state, we suggest that only the independent

components are considered from a dynamic perspective. The state of these components at time (t) is contingent upon their state in time (t-1)

(refer to equation 3). Conversely, the state of other components is dependent on that of their parents at each instant (refer to equation 2). The

equation model in 4 provides the overall system model, as shown in figure 1.

4.4. Estimation

The Weibull law, an a priori law utilized in the simulation, extends the exponential law to capture lifetimes and is also applicable in extreme

value scenarios. To estimate its parameters, a learning stage is necessary. For parameter learning, we consider the set of probabilities to be

estimated as (θi, ...,θD). The estimators, denoted as (θ̂i, ..., θ̂D), can be established from the information contained in a database listing a

specific number of realizations of the process studied. This database is commonly referred to as an example database or a feedback database

in the industry. In 2006, Leray proposed various parameter learning methods, depending on whether the data is complete or incomplete. The

Maximization Expectation and Maximum Likelihood algorithms can be employed for complete data. For incomplete data, the Maximum

a Posteriori and Expectation a Priori algorithms can be applied. Two types of inference are known in the literature: exact inference and

approximate inference. Exact inference is utilized for real-time estimation of the system’s failure probability [8]. For comprehensive data

analysis, we have access to the algorithms of Maximization Expectation, Maximum A Posteriori, Expectation A Priori, and Maximum

Likelihood. The literature outlines two types of inference: exact inference and approximate inference. Exact inference is employed to
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estimate the probability of system failure in real-time. To facilitate more pertinent monitoring and active decision-making, it is essential to

utilize a model that accounts for the temporal aspect.

5. Application to a water production system

The water production system is frequently utilized in Cameroonian homes, particularly in Ngaoundéré, to address the issue of limited access

to drinking water [1]. To initiate the water production process, the ignition button on the start-up box must be activated, causing the pump to

transfer water from the well to the storage reservoir, which can then be distributed for use. After water is pumped through the circuit, it is

passed through a non-return valve to prevent backflow. Prior to reaching storage or usage points, the water is filtered to eliminate impurities.

Other components in the system include a safety box that stops the pump when there is insufficient well water. This box is triggered by a

sensor (probe) located in the well. The manometric kit is used to regulate pressure within the circuit (see figure 3).

Figure 3: Water production system

This presentation illustrates the functioning of the system, inspired by the depiction of a production system by system experts. Technical

abbreviations are explained when introduced. It helps identify the components of our application system, along with their operational

dependencies. This is because the failure of the parent components impacts the state of the child components. This is because the failure of

the parent components impacts the state of the child components. The components without parents are the ones whose state is not affected by

any other component. This results in the graphical causality model presented in figure 4.

The table 1 helps us visualize the correspondences.

Table 1: Concordance table

Variables Names components
Compo 1 Filter box component 1
Compo 2 Pressure gauge kit component 2
Compo 3 non-return valve component 3
Compo 4 Water shortage safety box component 4
Compo 6 Water Circuit component 6
Compo 7 starter box component 7
Compo 5 Sensor component 5
Compo 8 Submersible Pump component 8
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Compo 1 Compo 2 Compo 3 Compo 4

Compo 6 Compo 7Compo 5

Compo 8

System

Figure 4: Bayesian network for the system

Once the causality model is constructed, we can proceed to determine the a priori probability distributions for each dependent component.

To establish these probability laws, we consider the causal relationships between the components and use decision tree classification based

on the data. The decision trees were constructed utilizing the Rpart library in the R software. With regards to the independent components,

as previously stated, we assume their behavior during operation adheres to a Weibull distribution. We have assigned the following values to

the Weibull parameters (α =0.95, λ=2, and θ= 0) to ensure the components behave similarly to that of the mature phase. The data utilized

was obtained from the simulation of a water production system’s operation spanning 260 weeks.

The probability distributions resulting from the classification of data using the decision tree tool are presented below.

• For component 6, which relies on components (1, 2, 3), we have derived the classification indicated in figure 5.

Figure 5: Decision tree for component 6

• For component 7, which is dependent on component 4, the classification displayed in figure 6 is obtained.

• For component 8, which relies on components (5, 7), the classifications shown in figure 7 are obtained.
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Figure 6: Decision tree for component 7

Figure 7: Decision tree for component 8

• For the system that depends on components (6,8), the figures depicted in figure 8 illustrate the classifications.

Figure 8: Decision tree for system

From the classification figures 5, 6, 7, 8, four tables 2, 3, 4, 5 emerge, each presenting the probability tables associated with respective nodes.

The a priori probabilities are extracted by tracing the path that connects the different components, identified as parent nodes in the graphical

model depicted in Figure RBSF. The value 0 denotes the operational status without any failure, while 1 signifies the operational status with a
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failure. To better understand the priori determination of probabilities, we can consider the example of component 6. The decision tree for

component 6 is presented in figure 5. By observing figure 4, we can infer that the status of component 6 relies on that of components 1, 2,

and 3. For this reason, to determine the a priori probability of component 6 being in a particular state, given that components 1,2,3 are in a

certain state, we only need to follow the relevant paths on the decision tree that include components 1,2,3. This enables us to ascertain that:

P(X6 = 0|X1 = 0,X2 = 1,X3 = 1) = 0. By adhering to the conditions X6 = 0,X1 = 0,X3 = 1,X2 = 1 we can reach the sheet which presents

us with the desired outcome. To calculate the probabilities of paths that are not directly visible on the tree, the Bayes law is employed.

Table 2: Probability table for component 6

C1 C2 C3 0 1
0 0 0 0.44 0.56
0 0 1 0.48 0.52
0 1 0 0.35 0.65
0 1 1 0.00 1.00
1 0 0 0.47 0.53
1 0 1 0.21 0.79
1 1 0 0.16 0.84
1 1 1 0.00 1.00

Table 3: Probability table for component 7

C4 0 1
0 0.25 0.75
1 0.38 0.62

Table 4: Probability table for component 8

C6 C7 0 1
0 0 0.30 0.70
0 1 0.30 0.70
1 0 0.30 0.70
1 1 0.30 0.70

Table 5: Probability table for system

C6 C8 0 1
0 0 0.28 0.72
0 1 0.28 0.72
1 0 0.29 0.69
1 1 0.25 0.75

For the construction of the DBN model, temporal dependencies only exist among the incoming nodes of the static Bayesian network. This

relationship is explained in sub-section 3.3, and is depicted in figure 9.

Knowing the graphical model, the next step is to estimate the probability of system failure at time (t+1), based on its state at time (t). To

estimate the probability of failure of components that are part of the nodes without parents (network entry nodes) at time (t), we must

find the optimal parameters (α̂, β̂ , λ̂ ) of equation 13 using the Nelder-Mead method. This equation effectively presents the probability

of a component failing at time (t), given it was in good condition at time (t-1). After determining optimal parameters using the available

data at time (t), they are utilized in the same equation to evaluate the likelihood of component failures at time (t+1). As the system and its

components are in binary operation, the binomial law is utilized to determine the state of each component and the system every time its

probability of failure is estimated. It is important to note that technical term abbreviations will be explained when used for the first time. To

determine the probability of failure of the children and their states, it becomes necessary to test the states of the components representing the

nodes between using the associated probability tables for each node. By following this procedure, we can derive the probability of system

failure at every point during the 50-year (260-week) functioning period, as illustrated in figure 10.

The figure 10 illustrates two curves, the black one representing the probability of system failure over time and the red curve displaying the

estimated probability. It is noteworthy that there is a significant difference between the estimated probability and the actual probability in the

first few weeks, but as time passes, the two curves converge. It can be inferred that as the data increases over time, the estimate becomes

more reliable. The goal is to confirm this statement via a compliance examination. To verify our estimate, we will conduct a confidence

interval test. This test will determine if the estimation error is genuinely zero or approaching zero. If so, we can confidently assert that the
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Figure 9: Dynamic Bayesian Network for the system

Figure 10: Probability of failure

probability of failure estimation is accurate with additional data. In the event that the estimation error is zero, the probability of failure

estimation is identical to the true probability. To demonstrate that the estimation error is zero, it must be within the confidence interval of the

estimation error, including the zero point.

The graph in figure 11 displays the time estimation error as the black curve, with an ideal average of estimation errors being equal to zero.

The red and black curves show confidence intervals. This graph enables verification of any statistical difference between the system’s

probability and the estimated probability. In order to affirm equality to zero, it is imperative for the confidence interval of the estimation

error to encompass zero. On the graph, the curve of zeros should be situated between the blue and red curves. Upon examination of the

black curve, it is evident that almost none of the estimation errors match zero within the selected time interval. With time, we can observe a

convergence towards the zero line. To conclusively determine if there are estimation errors that differ from zero, we constructed a two-sided

95 percent confidence interval for each estimation. After constructing the confidence interval, we conducted a two-sided test with the null
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Figure 11: Error curve

hypothesis that the estimation error equals zero. As Figure 1 depicts, the null hypothesis is rejected for all lengths in a period of 5 years (260

weeks). Nevertheless, there is a swift approach towards the null value. In addition, we noticed that the initial weeks’ estimation error is in the

order of hundreds, which is acceptable.

6. Discussion

Dynamic Bayesian Networks (DBNs) and Decision Trees (DTs) are two popular machine learning techniques used in a variety of fields.

DBNs are a type of probabilistic graphical model that captures causal relationships between variables in time-dependent systems. DTs, on

the other hand, are a supervised learning method that classifies data based on a set of decision rules. While DBNs are highly effective for

modeling complex systems with dynamic behavior, they require large amounts of data and can be resource-hungry. DTs, on the other hand,

are computationally efficient and require relatively little data for learning, but they may not be as accurate as DBNs for complex problems.

This study focuses on failure prediction for a bi-state system with application to a water production system. Pairing these two methods has

made it possible to set up a prediction process that can be applied to complex systems with little data. The joint use of these two methods

limits human subjectivity in the prediction process, in that the state of determination of the conditional probability tables is no longer the

responsibility of the experts [10], but is determined using data and DTs. In the case of the water production system in our study, we realize

that prediction becomes more accurate over time as the system evolves.

7. Conclusion

The aim of this article is to suggest a method for anticipating breakdowns of multi-component single-state production systems. We commence

by introducing the tools used in our research. We then explain the prediction approach proposed to gauge the dependability of production

systems and apply it to a water production system. Therefore, it appears that combining decision trees and dynamic Bayesian networks

minimizes human subjectivity in estimating the reliability of production systems. The amount of data significantly affects failure prognosis

as it works in opposition during the learning phase. This paper aims to gather more data to enhance machine learning for precise estimation

and intends to conduct comparable work for multi-component, multi-state systems. As complete data is often difficult to obtain in reality, it

would be valuable to consider the inclusion of missing data in failure prediction research.
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