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Abstract 
 

Extending worldwide request for sustainable energy can be attributed to two con-templations: the decrease of conventional energy sources 

and climate change. Proton exchange membrane (PEM) electrolysis generates green hydrogen, as attainable sub-stitute for clean and eco-

nomical energy. In this study the 7,9 UN sustainable goals were applied for the proton exchange membrane (PEM) electrolysis, that split 

water to oxygen and hydrogen as clean fuel. The goals applied though out all the PEM electrolysis part, to ensure that the method of 

generating hydrogen through PEM is a sustainable approach for the future clean fuel, within its production with zero carbon emission and 

within its application in the fuel cells. Results approved that PEM electrolysis offers fast reaction times during load changes, excellent 

efficiency, and modular stability. It consumes less clean energy and runs at lower pressures and temperatures, which reduces system costs 

which were aligned with the goals 7. The Current developments in catalysts and membrane materials approved the durability and efficiency 

which represents UN goal No 9. for the sustainable industry innovative resources for our future cities. 
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1. Introduction 

UNs 17 sustainable development goals, represent the road map for smart cities and development economy to assign better life and 

maintainable resources for our future generation. Goal 7: Affordable and clean energy, and Goal 9: Industry, innovation and infrastructure 

can be applied to solve the world’s population rise and the request for energy resources that increases over the decades, With limited access 

to these resources and an ever-growing need for more sustainable energy solutions, two main causes driving the global demand for 

renewable energy: the change in climate and the necessity for sustainable sources. One of the pressing issues facing the world today is 

climate change. To combat climate change, we need to find ways to reduce our carbon footprint, [1], [2].  

As a result, hydrogen has become an increasingly important and cost-effective energy storage option [3], [4]. Hydrogen is generated by 

various methods, each with a different environmental impact and associated with a different assign “colour””. Today, various colours are 

used to categorize hydrogen based on the CO2 emissions associated with hydrogen production [6]. No CO2 emissions produced within the 

green hydrogen manufacturing process. The developed technology for hydrogen generation is the electrochemical water split, [7]. Generally, 

“green hydrogen” is the hydrogen produced by electrolysis cells driven by renewable electricity. Hydrogen can convert back into electrical 

energy in fuel cells or used in combustion engines as fuel and mechanical energy generators in turbines.  

Green hydrogen produced using low-emission methods amounts to less than 1 million tons with only 0.35 kilo ton of H2 coming from 

water electrolysis. One kilogram of hydrogen formed by electrolysis, associated with eight kilograms of oxygen generation, which requires 

50–55 kWh of electricity and nine kg of pure water. The cost of $4–5 per kilogram of green H2 is more expensive than the low cost of $1–

2/kg H2 for other produced hydrogen. So, the main problem is to figure out how to produce hydrogen for use at prices comparable to the 

present without releasing CO2 into the atmosphere [12 - 15].  

The most well-known and efficient method of water splitting is electrolysis, which is broadly used in industry [16]. Electrolysis occurs 

when an electric current flows through the electrodes, causing the movement of electrons. There are many different types of electrolysis 

technologies. Some are already commercially available, while others are still in research and development. Alkaline, proton electrolysis 

membrane, solid oxide, and anion exchange membrane, are the most water splitting technologies based on the technology readiness level 

(TRL) and their market spread. [17], Table 1.  

 
Table 1: Comparison of Water Electrolysis Technologies, [17] 

Cell  Alkaline Cell (AL) 
Proton Electrolysis 

membrane (PEM) 
Solid Oxide (SO) 

Anion Exchange 

membrane (AEM) 

Technology Reading Level 

(TRL) 
8–9 8 5–6 3–4 

Market penetration  Bulky scale Fast expansion Restricted development Laboratory scale 

*TLR range from 1-9, 1; is the basic research until 9 : the system is lunch and operationally tested.  

http://creativecommons.org/licenses/by/3.0/
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All electrolysis technologies work with similar reaction of water splitting, but this report concerns the polymer membrane electrolysis 

(PEM) [18]. The reaction can be described as following equation 1:  

 

H2O(l)+237.2kJmol−1(energy)+48.6kJmol−1(heat)→H2(g)+0.5 O2(g) (1), [19] 

 

PEM cell is a promising technology that offers a clean and efficient energy source that could alleviate the global energy problem. However, 

there are still some issues that need to be considered. The high price of platinum group metals (PGMs) which is applied as catalysts in 

PEM cells [20 - 23].  

Many electrolysis technologies were researched, the PEM is an efficient, wide-open research and development future approach. A study 

of the production process starting from the renewable energy resources to the production of hydrogen through reviewing the materials and 

procedures applied in the PEM technology will enhance the knowledge of the opportunities to the global utilization of the PEM as fuel 

production source. In addition to know the challenges that can be resolved to raise green hydrogen production as an economic, 

environmental energy method.  

Different green production with its ecnomical benefites and enviromntal impact were studied and associated with UNs goal as energy road 

map,[24]. The lack of clean energy and the increse of carbon footprints , a reserch was conducted to green hydrgen storage in ,[25]. 

Research ,[26], implemented the UNs goal to PEM water electrolysis and assesed the available energy technologies through the energy 

and its efficencies. The use of green hydrogen in watertretment plants were coupled with UN goal 7 to insure cost reduction ,[27]. The 

production of hyrogen from wind,solar, nuclear resources …,ect was studied to present the devolpment goals and energy challenges of 

water electrolysis ,[28]. 

Inspite that some reserches worked to link UNs devolpment goals with green hydrogen production[24,25,26,27,28], mainly goal 7, there 

are few reserch that conect the PEM electrolysis green hydrogen production method with the UNs goals and no study have related the clean 

energy withUN goal 9. 

So, this article targets to explore the manufacture of green hydrogen through proton exchange membrane (PEM) electrolysis as a sustainable 

energy approach for the future, linking the study with UN development goals 7 and 9. It investigates the parts of the PEM electrolysis cells, 

the anode and cathode materials and their progression. Sustainable PEM electrolysis opportunities and the challenges are also discussed.  

2. Materials and methods 

2.1. Resources for green hydrogen production 

Goal 7 ; which is affordable and clean energy goal is related to the renewable resources that can be utilized in green hydrogen generation. 

The applied energies are, solar energy, wind energy and hybrid energy. 

2.2. Green hydrogen from solar energy 

It is possible to electrolyze water to produce hydrogen using electricity generated by photovoltaic (PV) panels. This is one of the convenient 

techniques of producing hydrogen. Unfortunately, the high installation costs and lower efficiency of PV-based hydrogen production com-

pared to fossil fuels are a major drawback today [29]. Purnami et al [30] investigated the effectiveness of solar-powered water electrolysis 

using pulse, magnetic, light, and ultrasonic electric fields. Toghyani et al [31] found that efficiency increases when hydrogen refueling 

stations are connected to the electricity grid. Clouds and operating temperatures are two factors that limit the 20% electricity yield that 

photovoltaics can achieve. This problem can be solved with hybrid systems that utilize renewable energy sources, but the price per kWh 

decreases.  

2.3. Green hydrogen production from wind 

Wind energy employs the same component as the previously mentioned sun-oriented energy to electrolyze water. It is the best and cleanest 

method to create hydrogen. In terms of hydrogen generation, it is cheaper and more effective than other renewable energy sources. In any 

case, for electrolysis, an appropriate hydrogen capacity framework and a progressed wind turbine structure are required to deliver hydrogen 

from wind energy [32]. Wind speed estimation can move forward the framework reliability and decrease misplaced costs. Another wind 

energy constraint is the generation inconstancy, which is the main difficulty of wind operation. It is broadly conceded that the inconstancy 

in power generation can be decreased by power blending from geologically or technologically diverging sources.  

2.4. Green hydrogen production from a hybrid system 

Han and Vinel, [32], generate an optimum solar- wind system with seventeen times more than single wind system efficiency. So, hybrid 

renewable energy framework (Figure 1) has appeared to be a possibly compelling arrangement to energy productivity, [33]. The benefits 

of hybrid systems depend on a variety of renewable energy sources to guarantee a dependable, continuous power supply. As a result, the 

expanded energy mix will decrease gas emission and balance the difficulties of a single renewable vitality source [34], [35].  

 

 
Fig. 1: Green Hydrogen Generation from Hybrid System. 
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3. Components of the PEM water electrolysis cell 

The UN goal 9 which concerns about industry, innovation and infrastructure , applied to the electrolysis assembly . The PEM comprises 

of (MEA) membrane electrodes assembly, (GDL) gas diffusion layers and the catalyst layers CLS or known as separator plates. The water 

is pumped onto the anode side, where oxygen evolution reactions (OER) take place. The injected water diffuses through separator plates 

and GDL and comes to the electrode surface. The water particles are split into protons, oxygen, and electrons. Oxygen returned to the cell 

through the anode surface, the GDL and the separator plates. The protons move through the membrane to the cathode side, where the 

electrons move from the current collectors to the cathode surface and recombine with the protons to create hydrogen molecules. In the 

PEW cell, the main component is the MEA, which divides the cell into two halves (anode and cathode) is shown in Figure 2.  

 

 
Fig. 2: PEM Water Electrolysis Cell. 

3.1. Membrane 

Anode and cathode electrocatalysts, an ionomer solution, and a membrane make up the membrane electrode assembly, which costs twenty 

four percent of the entire cell. Membrane is the main part of PEM cell. Perfluorosulfonic acid membranes is the most widely utilized 

polymer membranes, such as Aciplex®, Fumapem®, Nafion®, and Flemion® [36, 37]. The Special characteristics of these membranes 

the strength, efficiency, oxidative stability,  

proton conductivity, dimensional stability during temperature variations, and exceptional durability. Nonetheless, Nafion® 115, 117, and 

212 membranes are currently typically utilized for PEM water electrolysis due to their many advantages, including the ability to operate at 

greater current densities (2 A/cm2) [38]. R 

The required quantity of electrocatalyst was ultrasonically treated for approximately 30 minutes together with isopropanol, water, and an 

ionomer solution (such as Nafion® Ionomer) to create a homogenous electrocatalyst slurry. The ionomer increases the cell's efficiency by 

decreasing the ohmic loss and accelerating proton transfer from electrode layers to the membrane. Furthermore, ionomer solution serves 

as a binder, providing the catalyst's dimensional stability as well as the electrodes' mechanical stability and long-term viability [39]. ead. 

3.2. Basic anodic and cathodic materials 

The specified amount of electrocatalyst was ultrasonically treated for roughly 30 minutes beside isopropanol, water, and an ionomer 

solution (such as Nafion ® Ionomer) to form a homogenous electrocatalyst slurry. The ionomer increments the cell's productivity by 

decreasing the ohmic loss and accelerating proton exchange from the anode to cathode through the membrane. Moreover, the ionomer 

arrangement serves as a cover, giving the catalyst's dimensional stability as well as the electrodes' mechanical stability and long-term 

viability [39], [40], Table 2.  

 
Table.2: Examples of Ir, Ru Electrocatalysts in PEM Water Electrolysis 

Anode Elec-
trode  

Cathode Elec-
trode  

Loading of An-
ode (mg/cm2)  

Loading of 

Cathode 

(mg/cm2)  

Membrane Cell  
Operating 
Temp (oC)  

Voltage at 1 
A/cm2  

Ref.  

Ir-Black  Pt black  2.0  0.8  Nafion-117  90  1.71  [41]  

RuO2  40% Pt-C  10  0.4  Nafion-115  -  1.88  [42]  

IrO2  30% Pt-C  1.5  0.5  Nafion-1035  80  1.67  [43]  
RuO2  46% Pt -C  1.0  0.2  Nafion-117  80  1.68  [44]  

 

Although the green hydrogen research field is immediately being developed to find an approach to lower the IrO2 loading required for the 

highly corrosive anode side of PEM by improving the catalyst insert. Table 4 shows some recently discovered Ir-based catalysts such as 

Ru0.9Ir0.1O2 [44] and lrO2@TiO2, [45], which can maintain a stable current density of 1 to 2 A /cm2 between 1.6 to 1.8 V for hundreds 

of hours. In addition, the nanostructure of Ir (IrO2 nanoneedles [46], nano-sized IrOx , [47] affects the functions of the PEM electrolysis 

as a whole by improving the mass transfer capacity and electrochemical surface area [48].  

A case of perpetual substitutions on the cathode side was proposed to make HER cathodes with restricted platinum loading through applying 

galvanic displacement of Pt nanoparticles on a carbon paper (CP) substrate and Co-dendritic deposition, driving to high activity and 

durability, [49]. Maximilian et al. explored the utilize of carbon-supported platinum (Pt-C) with 0.5-1 milligram Pt/cm2 without influencing 

the cell performance, since the HER kinetics of Pt in an acidic cathodic electrode is fast, [50]. Molybdenum disulphide (MoS2) has moreover 

shown an effective catalyst for HER [51]. MoS2 is less costly than Pt and is around 104 times more abundant than Pt. It may be a 

dichalcogenide metal that shows semiconductor behavior comparable to silicon and high chemical stability, leading to significant 

performance in PEM water electrolysis [52].  

3.3. Gas diffusion layer (GDL) 

To improve the PEM infrastructure the basic component added to the water electrolysis process with proton exchange membranes (PEM) 

is the diffusion layer of gas . It’s important for water management and gas diffusion of the reactants [53]. The GDL is responsible for 
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developing the supporting framework of the fuel cell [54,55], collecting the current and distributing the reactant gas through flow channels 

over the surface of the electrodes. Typically, a thin layer of carbon black and a hydrophobic polymer are applied to a porous carbon fibre 

paper or fabric to form the GDL. The hydrophobic polymer is used to repel water and prevent flooding of the electrode, while the carbon 

black provides electrical conductivity [56].  

3.4. Separator plates (catalyst layers (CLs) 

The separator plate divides the cathode and anode electrodes, allowing the reaction gases to pass through the GDL film into the catalyst 

layer (CLs). In addition, separator plate supports the cell mechanically and facilitates the eliminate the water and heat from the cell. It 

consists of conductive materials such as metal, carbon fiber and graphite. The required mechanical properties, corrosion resistance and 

electrical conductivity are some of the variables that influence the choice of material. Graphite plates offer high electrical conductivity and 

light in weight but may need to be coated to prevent corrosion. Metal plates have a higher contact resistance and are heavier, but they are 

also more resistant to corrosion,[57].  

4. PEM thermodynamics 

The innovation UN goal related the engineering principle to application to exhibit smart solution for energy sector. To understand the 

energy efficiency of current and voltage generated from PEM cell , the minimum Gibbs free energy (ΔG)  

required for water splitting can be calculated from equation 2:  

 

ΔG = n*F*Erev                                                                                                                                                                                              (2) 

 

n = number of electrons, F = Faraday’s constant= 96500 and Erev = Reversible voltage 

Applying the numeric values from equation 1, the energy (ΔG) = 237.22 kJ mol-1 , and the heat (ΔH) = 285.84 kJ mol-1 , the reversible 

energy from equation 3 is : 

 

Erev = (ΔG/ n*F) =1.23 V                                                                                                                                                                             (3) 

 

Also from the energy conversion, its more applicable to replace ΔH with ΔG in water spit calculation, so the minimum thermal voltage (V 

min), can be found from equation 4. 

 

V min = (ΔH/ n*F) = (ΔG/ n*F) +(TΔS/n*F) = 1.48 V                                                                                                                                (4) 

 

Vmin = minimum thermal voltage , ΔS = Entropy change ,T = temperature 

 

In the practical application the voltage is higher than Vmin, minimum thermal voltage . So, the efficiency can be calculated from equation 

5. 

 

Cell efficiency = (Vmin /Vcell) 

5. Opportunities and challenges of PEM water electrolysis 

5.1. Water to water production 

Water electrolysis is a strategy of changing over renewable energy sources into chemical energy that can be stored in hydrogen (H2) [58]. 

On the other hand, fuel cells can create power by electrochemical recombination of hydrogen atoms with water, so, hydrogen serves as an 

energy carrier in this system, [59 - 62]. To discharge the stored energy, the hydrogen must first be collected, then changed over back into 

water [60]. To attain this objective, fuel cells and water electrolysis must be combined. (HER) hydrogen revolution reaction and (OER) 

oxygen evaluation reaction control the water electrolysis cell and the (ORR) oxygen reduction reaction and hydrogen oxidation response 

(HOR) governate the fuel cells electrochemical reactions for energy generation and transformation, [63-64]]. Figure 3 and Table 3 show 

the two innovations of water electrolysis and fuel cells and their differences. 

 

 
Fig. 3: Hydrogen Water Electrolysis and Hydrogen Fuel Cells, [65]. 
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Table 3: Comparison Between Water Electrolysis (PEM) and Fuel Cell (FC) ,[66], [67] 

Water electrolysis Parameters  Water electrolysis (PEM)  Fuel Cell (PEM)  

Electrode reactions  
Cathode: 4H+ + 4e− → 2H2  
Anode:  

2H2O → 4H+ + 4e− + O2  

Cathode: 4H+ + O2 +  
4e− → 2 H2O  

Anode:2H2 + 4H2O → 4H+·4H2O + 4e−  

Current density (A/cm2)  1 – 3  0.4-0.9  
Efficiency (%)  67 – 82  40 – 60  

Operating temperature (oC)  ≤ 80  60- 100  

Operation Pressure (bar)  30-50  3-4  
Electrolysis energy consumption (kWh/Nm3)  4.0 – 5.0  50-60  

Response time  Seconds  < 1 seconds  
Electrolyser life (h)  80,000  40,000-80,000  

Applicability  commercial application  commercial application  

Disadvantages and challenges  high cost of catalyst and the PEM  
Expensive, sensitive to impurities in the fuel, 
require a pure hydrogen resource  

5.2. PEM challenges 

Hydrogen production with high purity can be achieved by the promising technique of proton exchange membrane (PEM). However, several 

challenges require resolution of the financial issues and efficiency improvement of PEM technology. The development of efficient 

electrocatalysts is an important requirement for the approach,[68]. The ability of the membrane assembly (MEA) to withstand extreme 

conditions such as high temperature and pressure , which can lead to membrane degradation and reduced performance,[66], needs to 

develop.  

PEM water electrolysis has restrict utilization due to the platinum group metals (PGMs) high cost, which used in the catalyst layers (CLs) 

[69]. Researchers are looking for new materials and structures that can increase the durability and efficiency of the catalysts. Commercial 

PGM catalysts with higher loading have not performed as well as dendritic platinum nanoparticles (dend-Pt NPs), [68] which have been 

fabricated. Also, industrial use of non-PGM catalysts such as chalcogenides and metal oxides are being investigated,[70], [71]. These new 

catalyst designs and materials can reduce the PGMS cost .Also, Pt alloy catalysts was developed to improve performance and moderate 

the use of PGMs. The application of non-PGM catalysts such as nickel and cobalt phosphide gave well improvement and acceptable 

durability, [72 - 75].  

For polymeric membranes cost decline, the composite techniques can be applied to improve the cell mechanical properties. Membrane 

thickness reduction will raise the performance and reduce the cost.  

CCS, Catalyst coating substrate and CCM, catalyst coating membrane are the two types of membrane electrode manufacturing techniques 

applied for resistance decreasing. In the CCS method, the active catalyst components coated on the diffusion layer, while in the CCM 

method, the active catalyst components coated on both sides of the proton membrane [76], [77]. In CCM method, the catalyst is better 

utilized and the transfer of proton resistance between the catalyst layer and the membrane is significantly reduced compared to the catalyst 

coating substrate method. For CCM method, the membrane is coated with a homogeneous catalyst slurry produced by solubilization of 

catalysts, ionomer solution and solvent combination, then it’s hot pressed under high pressure [78]. Also, the membrane ionic conductivity 

will increase, resulting in low membrane resistance and electrolytic energy, which subsequent upgrades the overall performance of the 

electrolysis.  

Another challenge with PEM is enhancing the pressure to extend efficiency. The hydrogen created within the cell shall be stored under 

high pressure. It is controversial whether the gas is compressed electrochemically by electrolysis or in downstream gas compressors. The 

electrochemical compression with no moving parts and hydrogen purification function, is more sustainable for PEM technology. The 

perfect pressure of cathode is a function of film thickness and current density by presenting pressure-optimized cell operation. Concurring 

to this strategy, thick layers increment the safety and efficiency of the PEM. Also, utilizing Nafion212- rather than Nafion117 with a 

compressor produces twice as much hydrogen ass Nafion 117, [79], [80].  

6. Conclusions 

In sustainable green hydrogen generation utilizing PEM, proton exchange membrane , for water split into hydrogen and oxygen employing 

selective membrane barrier. This framework could be a promising innovative development for economical energy arrangements because 

it is characterized by great productivity, quick load change times and modular stability. The MEA, membrane exchange assembly , the gas 

diffusion layers and the separator plates (catalytic layers) are the fundamental parts of the PEM . As ionomer arrangement quickens the 

proton exchange and decreases the ohmic misfortune of the cell, it increments the effectiveness of the cell. These parts, with functional 

shift, can be applied for both hydrogen water electrolysis and fuel cell as energy storage and power supply.  

The improvement of viable electrocatalysts, film degradation and the high cost of platinum group metals (PGMs) are among the challenges 

that limit the viability of this approach. To extend the proficiency and durability of catalysts, researchers are exploring novel materials and 

structural configuration non-PGM catalysts for research and development. PEM can be a promising sustainable approach for energy sectors 

all over the globe.  

7. Recommendations 

Green hydrogen is an innovated energy source, align with UNs goal 9, that can replace carbon fuels in several commercial sectors. It is 

formed through renewable energy resources and water. to convince the increasing demand, and environmental sustainability, which is one 

of UN development goal ( UN 7) . However, the operating green hydrogen generation techniques are either too costly or low efficient. 

Thus, advanced technologies that can recover efficiency and sustainability are required. Proton exchange membrane electrolysis which 

moves protons from oxidation pole to reduction pole, is one of the most promising electrolysis cells. Compared to others, PEM offers 

additional advantages, including high current density, low operating temperature, quick response time, and high hydrogen purity. But PEM 

has various disadvantages, such as expensive material costs, durability, and hydrogen embrittlement. To address these issues, many proce-

dures were recommended. Production of novel membranes and catalysts with different fabrication procedures that can lessen platinum 

loading and improve the stability of PEM cells. Also, enhance the efficiency and reliability of the hydrogen production process by 
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optimizing the PEM systems' design and performance. By implementing these actions, PEM can become a competitive technology for 

green hydrogen manufacture and contribute to comprehensive energy modification and climate change mitigation.  
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