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Abstract 
 

This paper examined the two-wheeled self-balancing robot mathematical model. A Linear Quadratic Regulator (LQR) controller was 

then successfully used by the author for this system. The trial and error method and two optimization algorithms, particle swarm optimi-

zation (PSO) and butterfly optimization algorithm (BOA), are suggested for tuning the LQR controller parameters. The comparison be-

tween the three LQR controller tuning techniques is performed to select the best one. With the help of the Python program, the perfor-

mance of the control strategy is investigated and shown with regard to the tilt and heading angles. Controlling outcomes were tested 

through a simulation, and it was proved that the LQR control system based on the BOA succeeded in finding a better response in tracking 

tilt and heading angles with enhancement percentages of 61.111% and 78.348% than the LQR response based on PSO and the trial and 

error techniques, respectively. 
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1. Introduction 

A common multi input, multi output model in control system experiments is the two-wheeled self-balancing robot, often known as the 

inverted pendulum and cart models [1]. The two wheeled self-balancing robot is a common robot with potential uses in exploration and 

transportation, among other fields. Over the past few decades, two-wheeled self-balancing robot design and control have garnered a lot of 

interest from both industry and academics. The two-wheeled self-balancing robot is a high-order, multivariable, nonlinear, tightly cou-

pled, and intrinsically unstable system that exemplifies an underactuated mechanical system. Underactuated mechanical systems have 

fewer control inputs than robot’s degrees of freedom that need to be become stable. This makes it challenging to apply classical robotic 

approaches for system control. Therefore, a two wheeled self-balancing robot is an excellent platform for researchers to study the effec-

tiveness of different controllers in control systems. 

Numerous academics had suggested various controller designs and analytical techniques to manage the two wheeled self-balancing robot 

so that it could balance itself [1][2]. A fuzzy logic-based controller for an inverted pendulum model was developed and successfully test-

ed in [3][4][5]. In [6], a linear state-space model for motion control of a two wheeled self-balancing robot was developed. A Newtonian 

method was used in [7] to calculate dynamics, and the control was designed using equations that were linearized around an operational 

point. In [8][9][10] and [11], a planar model was used to build a linearly stabilized LQR controller and Proportional Integral Derivative 

(PID) without taking the robot's heading angle into account. The aforementioned control law was created using a planar model without 

taking the robot's heading angle into account, so it cannot be applied to an actual system. 

Control engineers have used a variety of optimization techniques to find the best values for the components of LQR matrices, including 

artificial bee colony [12], PSO algorithm [7][12], the combined simulated annealing and modified genetic algorithm [13], bacteria foraging 

optimization algorithm [14], genetic algorithm [12][14], differential evaluation [15], and ant colony optimization [16].  

In this research, the two wheeled self-balancing robot system serves as the study object, and the dynamic equation is derived using the 

Newtonian mechanics equation method. By assuming that the system runs only around a single operational point and that the signals in-

volved are tiny signals, a linear state-space model that roughly approximates the nonlinear system in the region of operation can be created. 

The LQR controller is employed the state-space model to regulate the system's tilt and heading angles, allowing the system to be directed 

to travel to a specific point. The trial and error method and two optimization algorithms, PSO and BOA, are suggested for tuning the diag-

onal of the LQR controller parameters (Q and R matrices). The comparison between three LQR tuning techniques is performed to select 

the best one. With the help of the Python program, the performance of the control strategy is investigated and shown with regard to the tilt 

angle (𝞪) and heading angle (ϴ). 

The remaining paper is as follows: The method of the LQR control system is modeled in Section 2. The LQR control systems, with the 

suggested algorithms, are designed in Section 3. Experimental work results are discussed in Section 4, and the summarizing of the work in 

the paper is concluded in Section 5. 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


International Journal of Engineering & Technology 295 

 

2. Model system 

Fig. 1 illustrates the three main components of the robot: the platform, the pendulum, and the pendulum as the mass wheels. The system 

receives inputs in the form of torques, which are applied to the robots’ two left and right-side wheels, respectively. The control system 

schemes’ goals are to move the system's model to the required location while maintaining the robot's tilt angle in the vertical position [1]. 

 

 
Fig. 1: A Two-Wheeled Self-Balancing Robot Model [1]. 

 

Where Fr, Fl are forces interacting between the platform and the right and left wheels (N), Hr, Hl are the friction forces applying on the 

right and left wheels (N), τr, τl are torques acting on the right and left wheels (N/m), ϴl, ϴr angles of rotation for the left and right 

wheels (rad), xr, xl are the movement of the left and right wheels relative to the x-axis (m), 𝞪 is the robot’s tilt angle (rad), ϴ is the ro-

bot's heading angle in relation to the z-axis, M, m are the wheel’s mass and the pendulum’s mass respectively (kg), Iw is the wheel's 

moment of inertia around the y-axis (kg.m2), r indicates to the wheel’s radius (m), g is the acceleration of gravity (m/s2), l is the meas-

urement along the z-axis from the robot’s platform to the pendulum's center of mass (m), d represents the distance along the y-axis be-

tween the left and right wheels (m), IM specifies platform's moment of inertia relative to the y-axis (kg.m2), Ip denotes the platform and 

pendulum's moment of inertia with respect to the z-axis (kg.m2), FP interacting forces between the platform and the pendulum relative to 

the x-axis (N), MP interaction moment about the y-axis between the platform and the pendulum (N/m), v is the robot's forward velocity 

(m/s), and 𝝎 determines the robot’s rotation velocity. According to the Newton law, forces and torques related to the right and left 

wheels are selected in Equations (1 to 4) [1]: 

 

Iωϴ̈r = r(Fr − Hr)                                                                                                                                                                               (1) 

 

Mwẍr = Hr − Fr                                                                                                                                                                                   (2) 

 

Iωϴ̈l = r(Fl − Hl)                                                                                                                                                                                 (3) 

 

Mwẍl = Hl − Fl                                                                                                                                                                                    (4) 

 

The pendulum’s moments applied on the platform about the y-axis and forces operating on the pendulum in the direction of the x-axis are 

balanced to produce [1]: 

 

Mẍ = Fr + Fl + Fp                                                                                                                                                                               (5) 

 

Fp = m(lα̈ cos α+ẍ − lα̇2 sin α)                                                                                                                                                           (6) 

 

Mp = ml(lα̈ + cos α ẍ +  g sin α                                                                                                                                                           (7) 

 

Mp = − Imα̈                                                                                                                                                                                         (8) 

 

The balancing between pendulums’ moments and the moments acting on the platform around the z-axis, the result gives [1]: 
 

Ipϴ̈ = (Fl − Fr)d                                                                                                                                                                                  (9) 

 

The dynamic model of the robot is then linearized around the point α = α̇= 0, cos α=1, sin α=α, assuming that the robot only operates 

around a limited operating point. So, the state space equation of the balancing robot motion is selected in Equation (10) [1]. 
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=
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Here, 

 

s = 𝑚2𝑙2 + ((𝑀 − 𝑚 + 2((
𝐼𝜔

𝑟2 + 𝑀𝑤)(𝑚𝑙2+𝐼𝑀))                                                                                                                                 (11) 

 

𝑎21 = −𝑚𝑙𝑔(𝑀 − 𝑚 + 2(
𝐼𝜔

𝑟2 + 𝑀𝑤)) 𝑠⁄ )                                                                                                                                            (12) 
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𝑎31 = −(𝑚2𝑙2𝑔)/𝑠                                                                                                                                                                             (13) 

 

𝑏21 = −𝑚𝑙 𝑠⁄ , 𝑏22 = 𝑏21                                                                                                                                                                   (14) 

 

𝑏31 = (𝑚𝑙2 + 𝐼𝑀) 𝑠⁄ , 𝑏32 = 𝑏31                                                                                                                                                          (15) 

 

𝑏51 = 𝑑 𝑟⁄ (𝐼𝑝+𝑑2(𝑀𝑤+(𝐼𝑤/𝑟2)), 𝑏52 = −𝑏51                                                                                                                                      (16) 

 

The values of the systems’ parameters are listed in Table 1 [1]. 

 
Table 1: Robots’ Parameters 

Parameter Value Unit 

Iw 0.0313 kg.m2 

Mw 1 Kg 

𝑚 70 Kg 

R 0.250 m 

𝑙 1 m 

𝑔 9.80 m/s2 

M 5 Kg 

𝑑 0.5 m 

Ip 1.8569 kg.m2 

IM 0.0385 kg.m2 

 

According to the data involved in Table 2, the robots’ state space equations are selected in Equation (17) [1]. 
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𝜏𝑙

𝜏𝑟
]                                                                                                  (17) 

3. LQR controller system design 

The LQR approach is the most developed method for controller design in the evolution of modern control theory. It uses state-space 

methods to analyze a system has many output and input. Fig. 2 illustrates the schematic for this kind of two wheeled self-balancing robot 

control system [1]. 

 

 
Fig. 2: Control Schematic for the Two-Wheeled Self-Balancing Robot. 

 

Where,  

 

𝑘𝑢(𝑡) = −𝑘𝑥(𝑡)                                                                                                                                                                                  (18) 

 

𝑘 = 𝑅−1𝐵𝑇𝑃                                                                                                                                                                                       (19) 

 

Where u is the LQR control input, k is the feedback gain, P and R are square symmetric, positive definite matrices. The P matrix is se-

lected by solution of the algebraic Riccarti equation matrix defined in Equation (20) [1][17]. 

 

𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0                                                                                                                                                      (20) 

 

Q is the square symmetric positive semidefinite matrix. The Q and R matrices are tuned by the BOA, PSO, and trail and error techniques, 

and they are denotes in Equation (21) [17]. 

𝑄 =

[
 
 
 
 
𝑑1 0 0 0 0
0 𝑑2 0 0 0
0 0 𝑑3 0 0
0 0 0 𝑑4 0
0 0 0 0 𝑑5]

 
 
 
 

, 𝑅 = [
𝑟1 0
0 𝑟2

]                                                                                                                                        (21) 
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The Q and R matrices are properly tuned in order to reduce the integral absolute error (IAE) denoted in Equation (22) [18]. 

 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
∞

0
. 𝑑𝑡                                                                                                                                                                            (22) 

3.1. LQR design based on the PSO (LQR-PSO) 

PSO is a new meta-heuristic optimization method that has been explored by the researchers Eberhart and Kennedy since 1995, and it is 

dependent on the swarm of individuals or particles. It uses an iterative process to explore random solutions until it finds the best one. 

Each individual in the swarm represents a particular solution, and it is given a position and speed, which they update at every generation 

to generate many solutions. These solutions are evaluated to select the global best and particle past. The global best is the best solution 

across all generations; on the other hand, the particle best stands for the best solution from each generation. The global best and the parti-

cle best are utilized to define the new position and speed in accordance with Equations (23 to 25) [17][18]. 

 

𝜔 = 𝜔𝑚𝑎𝑥 − 𝑡 (𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)/𝑁                                                                                                                                                       (23) 

 

𝑣𝑖
𝑡+1 = 𝜔 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑡−𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑖
𝑡−𝑥𝑖

𝑡)                                                                                                                                      (24) 

  

𝑥𝑖
𝑡+1 = 𝑣𝑖

𝑡+1 + 𝑥𝑖
𝑡 𝑖 = 1, 2,… , 𝑛                                                                                                                                                          (25) 

 

Where, 𝑡, 𝑛, 𝑐1, 𝑐2, 𝜔, 𝑟1, 𝑟2, 𝑝𝑖, 𝑔𝑖, N, 𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 , 𝑥𝑖, and 𝑣, are iterations number, individuals’ numbers, cognitive learning element, 

social learning element, inertia weight, random value inside the range (0,1), random value inside the range (0,1), the best position of the 

individuals, the most effective individual among group members, maximum iteration, the inertia weight's minimum value, the inertia 

weight's maximum value, particle’s position, and the particle’s velocity, respectively. This process is repeated until reaching the maxi-

mum bound of the repetition. The boundaries of the PSO technique are scheduled according to Table 2 [17][18]. 

 
Table 2: PSO Techniques’ Boundaries 

Description Symbol Value 

Minimum and maximum bounds of inertia weights   𝜔𝑚𝑖𝑛, 𝜔max  0.4 and 0.7 

Cognitive learning element  𝑐1 2 

Social learning element  𝑐2 2 

Velocity’s maximum bound  𝑣𝑚𝑎𝑥 6 

Population size  𝑛 20 

Maximum bound of the repetition  𝑁 300 

Lower gains bounds 𝑙𝑏 [0, 0, 0] 

Upper gains bounds 𝑢𝑏 [50, 50, 50] 

3.2. LQR design based on the BOA (LQR-BOA) 

The BOA is a modern meta-heuristic method that Singh and Arora developed in 2018. It is inspired by butterflies’ natural behavior in the 

search for food. This technique is dependent on two matters, which are the fragrance function formulation and the difference in fragrance 

intensity. The formulation of the fragrance function can be represented according to Equation (26) [20]. 

 

𝑓𝑖 = 𝑐𝐼𝜏                                                                                                                                                                                              (26) 

 

Where, 𝑓𝑖 is the fragrance's perceived strength, c selects the sensory modality, I denotes the stimulus intensity, and τ signifies the power 

exponent based on how much of the smell is absorbed. The sensory modality c may be updated as in Equation (38) [20]. 

 

𝑐𝑡+1 = 𝑐𝑡 +
0.025

𝑐𝑡 ∗ 𝑁
                                                                                                                                                                                 (27) 

 

Where 𝑁 states maximum iteration. As that, the butterfly’s algorithm involves global search and local search. The worldwide search is 

the behavior of a butterfly when it detects the scent coming from another butterfly and moves toward it. Contrarily, the local search oc-

curs when the butterfly transfers at random when it is unable to detect the fragrance coming from any other butterfly. The formulas for 

the global and local searches are explained in Equations (28) and (29), respectively [20].  

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 ∗ 𝑋∗ − 𝑋𝑖
𝑡) ∗ 𝑓𝑖                                                                                                                                                        (28) 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 ∗ 𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) ∗ 𝑓𝑖                                                                                                                                                         (29) 

 

Where 𝑿∗is the optimal solution and r denotes random number between the interval 0 and 1. The mode to change between global and 

local search is named a switch probability and indicated the symbol P. The boundaries of the BOA that were used in that work are stated 

in Table 3 [20]. 

 
Table 3: BOA Techniques’ Boundaries 

BOA technique’s parameter name Symbol Value 

Switch probability P 0.1 

Absorbed smell amount 𝛕 Between 0.1 and 0.7 

Sensory modality 𝑐 0.01 

Population size 𝑛 20 

Maximum bound of the repetition 𝑁 300 

Lower gains bounds 𝑙𝑏 [0, 0, 0] 

Upper gains bounds 𝑢𝑏 [50, 50, 50] 
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Figs. 3 and 4 offer the flowchart and the anticipated block built chart for the optimal LQR controller, respectively. 

 

 
Fig. 3: Optimal LQR Chart. 

 

 
Fig. 4: LQR-BOA Flowchart. 

4. Simulation results and discussion 

In this part, the simulation outcomes of the suggested controllers, which are achieved on the model of a robot, are presented. The Python 

simulation program is used to stimulate and design the LQR, LQR-PSO, and LQR-BOA controllers for the system. Controllers’ perfor-

mance characteristics are also included in this section. 

A two wheeled self-balancing robot system with each control system (LQR, LQR-PSO, or LQR-BOA) produced two output responses: 

the robot’s heading angle (𝜭) and tilt angle (𝞪). In order to examine the effectiveness of the controller, the initial tilt angle of the balanc-

ing robot in this study was set to -1 rad, and the initial state of the heading angle was set to 0 rad. On the other hand, the reference head-

ing angle is given a unit-step signal. The results of Tables (4 to 6) comprise the best Q and R diagonal matrices in addition to the mini-

mum performance index offered by the LQR, LQR-PSO, and LQR-BOA controllers. 

 
Table 4: Optimal Diagonal for the Q Matrix 

Optimal controller 𝑞1 𝑞2 𝑞3 𝑞4 

LQR 0.1 0.1 0.1 0.001 

LQR [1] 10 1 1 10 
LQR-PSO 6.903 38.60 26.18 0 

LQR-BOA 0.053 0.017 0 0 

 
Table 5: Optimal Diagonal for the R Matrix 

Optimal controller 𝑟1 𝑟2 

LQR 0.8 0.4 

LQR [1] 1 1 
LQR-PSO 16.3308 13.9282 

LQR-BOA 0.003 0.001 
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Table 6: Performance Index of the Optimal Controllers 

Optimal controller IAE 

LQR 0.1045967 
LQR [1] 1.01 

LQR-PSO 0.0582339 

LQR-BOA 0.0226465 

 

As chaired in Table 6, the LQR-BOA method involves a better performance index in comparison to the LQR and LQR-PSO controllers. 

On the other hand, the feedback gains k for the LQR, LQR-PSO, and LQR-BOA controllers are listed in Table 7. 

 
Table 7: Performance Index for the Optimal LQR Controllers 

Optimal controller   K 

LQR 
-127 -143 0.019 0.003 4.077 

-186 -20.9 0.418 -0.002 -3.786 

LQR [1] 
-153.462 -16.803 0.707 2.236 1.730  

-153.462 -16.803 0.707 -2.236 -1.730 

LQR-PSO 
-1.20 -13.83 0 0 4.909 
 -207 -23.9 0 -0 -4.936 

LQR-BOA 
-1.44 -15.6 0.817 0 1.336 

-163 -17.6 1.047 0 -1.223 

 

The cost functions’ convergence curve for the BOA and PSO algorithms is depicted in Fig. 5. The PSO method converged in this figure 

more slowly than the BOA method. That proves the suggested algorithm's strength. 

 

 
Fig. 5: Convergence Curve of the LQR-PSO and the LQR-BOA. 

 

As shown in Figs 6 and 7, the optimal LQR controllers are capable of tracking reference signals for the tilt and heading angles. The 

LQR-BOA response for the tilt and heading angles is faster and smoother than the LQR and LQR-PSO controllers. 

 

 
Fig. 6: tilt Angle’s Response. 

 
Fig. 7: Heading Angle’s Response. 
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Table 8: Performance Standards of the Robot’s Tilt Angle 

Optimal controller  ts (sec) SSE (rad) 

LQR 0.3427 0.0028 
LQR [1] 2.23 0.0086 

LQR-PSO 0.3629 0.0053 

LQR-BOA 0.3528 0.0018 

 
Table 9: Performance Standards of the Robot’s Heading Angle 

Optimal controller  ts (sec) SSE (rad) 

LQR 0.494 0.0782 

LQR [1] 2.76 0 

LQR-PSO 1.4516 0.0069 
LQR-BOA 0.373 0.0008 

 

As chaired in Table 8, the LQR-BOA response has a smaller value of steady state error than the LQR, LQR [1], and LQR-PSO control-

lers, in addition to maintaining a small value of settling time. On the other hand, Table 9 content proves that the LQR-BOA response for 

the target heading angle has less settling time than the LQR, LQR [1], and LQR-PSO controllers in addition to maintaining a small value 

of steady state error than the LQR and LQR-PSO controllers. 

5. Conclusion 

This paper investigated the optimal LQR control system to stabilize the two wheel self-balancing robot. In order to design a LQR control 

system, the robot system dynamics must be modelled in state space. Trial and error method and two swarm optimization algorithms, PSO 

algorithm and BOA, are used for tuning the optimal LQR controller’s parameters (diagonal Q and R matrices). Simulation outcomes of 

the tuned controllers are presented and then compared based on system stabilizing parameters. According to the comparison results, the 

LQR-BOA controller response for the tilt angle has a better value of steady state error than the LQR and LQR-PSO controllers, in addi-

tion to maintaining a small value of settling time. Besides, the heading angle response for the LQR-BOA controller has a better value of 

the steady state error and the settling time than the LQR and LQR-PSO controllers. 
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