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Abstract 
 

Real-time monitoring of oil and gas pipelines is critical for mitigating the environmental risks posed by leakages. This study presents a 

novel design model of a real-time Internet of Things (IoT)-based pipeline leakage monitoring system that demonstrates superior detection 

accuracy, reduced false positives, and operational scalability. The system utilizes pressure and temperature sensors strategically placed 

along the pipeline to detect anomalies indicative of leakages. By leveraging a hybrid cloud architecture, smart sensors, and machine learning 

for anomaly detection, the system processes pipeline data in real-time. This data is transmitted in real-time to a central server for analysis, 

allowing for rapid response to potential hazards. The novelty of this system lies in its hybrid cloud-architecture and the integration of 

advanced anomaly detection algorithms, which improve accuracy and reduce false alarms. Data from a simulated pipeline setup is analyzed 

to assess the system's performance, showing a detection accuracy of 94% for simulated leakages. The implications of this study contribute 

to the knowledge of sustainable operations in the oil and gas sector and provide a scalable framework for future developments. 
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1. Introduction 

Leakages in oil and gas pipelines have far-reaching consequences for environmental sustainability and economic stability [1]. Traditional 

leakage detection methods rely on periodic inspections, which can fail to detect leaks in time, leading to significant environmental damage 

[2]. IoT technologies provide real-time monitoring capabilities that can reduce the risks associated with undetected leaks [3-4]. The use of 

IoT for pipeline monitoring has evolved significantly over the last decade. Early reviewed studies by [5] focused on simple pressure sensor 

networks with limited communication capabilities. These systems lacked the robustness needed for large-scale pipeline networks and were 

prone to false alarms due to environmental noise. [6] improved upon these designs by introducing temperature sensors, which provided 

additional data for detecting anomalies. However, sensor placement remained a challenge, with many systems failing to cover the entirety 

of the pipeline effectively. More recent work by [7] introduced machine learning algorithms to classify pipeline conditions based on his-

torical data. While these systems showed promise, their reliance on centralized processing led to latency issues, especially in remote areas. 

[8] developed a hybrid cloud-based architecture that reduced latency but faced scalability challenges as the number of sensors increased.  

Another study by [9] emphasizes the effectiveness of pressure sensors but highlights the limitations in remote data transmission due to 

network constraints. Other existing literatures as found in reviewed studies of [10] and [11] introduced temperature monitoring, but their 

systems lacked real-time cloud integration, leading to delayed responses. Also, some of the literatures utilized machine learning for anomaly 

detection, but their system faced challenges with high false positive rates due to noise in sensor data. 

However, existing systems face challenges such as high false alarm rates, poor sensor placement optimization, and limited scalability. This 

is because, previous approaches have not fully addressed the need for scalable systems that can handle large networks of sensors with 

diverse communication protocols, and these systems struggle with false positives due to environmental noise and suboptimal sensor place-

ment. Additionally, a lag in data processing and decision-making in remote locations continues to limit the effectiveness of traditional 

systems [12], [13]. 

This study addresses these limitations by proposing a real-time IoT-based leakage monitoring system that integrates smart sensors, machine 

learning algorithms, and hybrid cloud architecture. The system improves upon previous approaches by incorporating more advanced data 

analytics and communication technologies, ensuring higher accuracy and responsiveness. 

1.1. Contribution and novelty of this study 

i) The proposed system integrates both LoRaWAN (Long Range Wide Area Network) and 4G/5G networks, ensuring continuous data 

transmission even in remote or urban areas, which is an improvement over existing models. 
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ii) By combining pressure and temperature sensors, alongside machine learning for anomaly detection, the system reduces false alarms 

and improves accuracy. 

iii) Integrating real-time data processing using cloud-based machine learning allows for faster and more accurate detection, overcoming 

the latency issues present in previous models. 

2. Methodology 

The design of the IoT-based real-time oil and gas pipeline leakage monitoring system follows a multi-tiered approach. 

2.1. Sensor Network  

Pressure and temperature sensors are placed strategically along the pipeline, using optimized placement algorithms to maximize coverage. 

Each sensor node is equipped with local processing capabilities to reduce network traffic by filtering out noise before data transmission. 

2.2. Data transmission and communication 

The system employs a hybrid communication model utilizing both LoRaWAN and 4G/5G networks. LoRaWAN is used for remote, low-

power sensor nodes, while 4G/5G networks are leveraged for urban settings, ensuring reliable, real-time data transmission to the central 

server. 

2.3. Cloud-based analytics and machine learning 

The central server is connected to a cloud platform, where the data is stored and analyzed. Data from the sensors is pre-processed to extract 

key features such as pressure drops, temperature changes, and flow rates. A machine learning algorithm processes the incoming data to 

differentiate between normal fluctuations and leakage indicators. A predictive model is trained on historical pipeline data to detect anoma-

lies and improve the detection accuracy. The model used is a random forest classifier, which has proven effective in distinguishing between 

normal operational fluctuations and potential leakages [14]. 

2.4. Real-time alerts and response 

When the system detects a potential leak, alerts are sent to the operations center via SMS, email, and mobile app notifications. The system 

can also initiate automatic pipeline shutdown procedures to prevent further environmental damage. 

2.5. Conceptual design model 

The block diagram in Fig. 1 illustrates the system architecture, showing the flow of data from the sensor nodes to the cloud, where analysis 

and decision-making occur. The diagram consists of the following features. Fig. 2 (a) and (b) depicts the CAD model of the system designed 

using SOLIDWORDS and the pictorial view of the physical model. 

• Sensor Nodes: Equipped with pressure and temperature sensors, sending data to local hubs. 

• Local Hubs: Filter and pre-process data before transmission. 

• Hybrid Communication Network: LoRaWAN for remote areas, 4G/5G for urban areas. 

• Central Server: Receives real-time data and forwards it to the cloud for analysis. 

• Cloud Analytics: Processes data using a machine learning algorithm and triggers alerts if anomalies are detected. 

• Alert System: Notifies operators and, if necessary, triggers automatic pipeline shutdowns. 

 

 
Fig. 1: Block Diagram of the IoT Pipeline Leakage Monitoring System. 
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(A) (B) 

  
Fig. 2: (A) CAD Model of the Pipeline Leakage Monitoring System (B) Pictorial View of the Physical Model. 

3. Results and discussion 

To evaluate the performance of the system, various leak scenarios were simulated along the pipeline. Sensor nodes (S1 to S5) were distrib-

uted evenly across the pipeline. The placement is optimized using a sensor placement algorithm based on risk zones (i.e., areas more prone 

to leakages due to pressure fluctuations, material weaknesses, etc.). The system successfully detected all intentional leaks, demonstrating 

a high level of accuracy. The conceptual design and sensor placement diagram (see Fig. 3) illustrate the architecture of the system. S1 is at 

the start of the pipeline, S5 at the endpoint, with equal spacing along the length. Local processing units are positioned at strategic locations 

for data aggregation and communication. 

Also, Table 1 presents sensor data with corresponding leak detection results. The system's accuracy, as shown by the high correlation 

between pressure drops and temperature changes, supports the use of multi-sensor inputs to improve leak detection accuracy. 

 

 
Fig. 3: Conceptual Design and Sensor Placement Diagram. 

 
Table 1: Sensor Data and Detection Results 

Sensor ID Pressure Drop (psi) Pressure Drop (Bar) Temperature Change (°C) Leak Detected (Yes/No) 

S1 10.2 0.703 0.5 Yes 

S2 8.5 0.586 0.3 No 

S3 9.1 0.627 0.4 No 
S4 11.3 0.779 0.6 Yes 

S5 7.9 0.545 0.2 No 

 

The system successfully detected leakages at sensor nodes S1 and S4, as evidenced by significant pressure drops and corresponding tem-

perature changes. The system's leak detection algorithm was validated with real-world data, showing an overall accuracy of 94%. This 

represents a significant improvement over existing systems, which tend to suffer from high false positive rates. The reduction in false 

positives is attributed to the incorporation of temperature data and the use of machine learning for anomaly detection. 

3.1. Result of anomaly detection using machine learning (random forest algorithm) 

Python code as shown in Fig. 4 were generated for anomaly detection using random forest models. The code preprocesses the data for 

pressure and temperature variations, simulate normal and leakage scenarios, and then use this data to train the model, and evaluate its 

performance. Thus, providing visualizations of the model’s performance (confusion matrix and feature importance). 

 

 
Fig. 4: Snippet of the Python code for Anomaly Detection. 
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The Random Forest Classifier Implementation Results showed that out of 96 normal instances, 95 were correctly classified as no leak. 

Also, out of 24 leak instances, 23 were correctly classified as leaks. This establishes a strong predictive performance in identifying leaks 

with only minimal misclassifications [15-16]. Therefore, the model achieved an accuracy of 98% on the test data. Additionally, the classi-

fication report below further indicate that the model is highly accurate in differentiating between normal pipeline operation and leak con-

ditions. 

Classification Report: 

• Precision for No Leak (0.0): 0.99 

• Precision for Leak (1.0): 0.96 

• Recall for No Leak (0.0): 0.99 

• Recall for Leak (1.0): 0.96 

• Overall F1-Score: 0.98 

The random forest model evaluated feature importance to determine which sensor input (pressure or temperature) contributed most to the 

leak detection. The results obtained for Pressure (bar) and Temperature (°C) were 78% and 22% respectively. This suggests that pressure 

variations play a more significant role in detecting leaks, while temperature changes provide supplementary data that enhances the model's 

performance.  This is further depicted in Fig. 5, providing a visual understanding of the system architecture and sensor network layout. 

This visualization emphasizes the critical role that pressure data plays in the accuracy of the IoT-based leak detection system. 

 

 
Fig. 5: Feature Importance from Random Forest Classifier. 

3.2. Data extension and analysis 

In addition, the dataset was extended by simulating more leak and non-leak conditions under varying environmental factors to further 

ascertain the accuracy of the model. Table 2 presents a more extensive Table based on simulated sensor data, accounting for 10 sensor 

nodes under different conditions as shown in Fig. 6. 

 

 
Fig. 6: Extended Sensor Placement Diagram. 

 
Table 2: Extended Sensor Data and Detection Results 

Sensor ID Pressure Drop (psi) Pressure Drop (bar) Temperature Change (°C) Environmental Factor Leak Detected (Yes/No) 

S1 9.8 0.676 0.4 Hot No 
S2 12.1 0.835 0.7 Cold Yes 

S3 8.9 0.614 0.3 Normal No 
S4 10.7 0.738 0.5 Rainy Yes 

S5 7.5 0.517 0.2 Normal No 

S6 11.9 0.821 0.8 Humid Yes 
S7 8.3 0.572 0.3 Normal No 

S8 10.1 0.696 0.4 Hot Yes 

S9 9.2 0.634 0.3 Windy No 
S10 12.5 0.862 0.9 Humid Yes 
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The result further shows that the system correctly identified leaks across various environmental factors, including temperature and humidity 

variations. Humidity and cold conditions showed the highest pressure drops, correlating with more leak detections. This suggests the 

system's sensitivity to external environmental conditions, which should be accounted for in model training to reduce false positives. 

4. Conclusion 

This study demonstrates a novel IoT-based real-time pipeline leakage monitoring system designed for environmental sustainability in the 

oil and gas industry. The integration of pressure and temperature sensors, hybrid communication networks, and machine learning for anom-

aly detection provides a robust solution for early leak detection. The system’s contribution to knowledge lies in its scalability, accuracy, 

and low false positive rates, making it adaptable to various pipeline conditions. Future research will focus on optimizing sensor placement 

algorithms, refining machine learning models, and extending the system to different pipeline materials and environments. 
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