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Abstract 

 

We propose a four-ring hexagonal holey fiber (HF) which exhibits near zero ultra-flattened chromatic dispersion and 

nonlinear property simultaneously in a modest number of rings. The finite element method with perfectly matched 

layers boundary condition is used to investigate the guiding properties. A four ring HF with flattened dispersion of 

0.85ps/nm/km from 1.14 to 1.60 µm wavelength range, 21.34W-1km-1 nonlinear coefficient and splice loss 3.82 dB at 

1.55µm is numerically demonstrated. 
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1 Introduction 

Holey fibers (HFs) [1] consisting of a central defect region surrounded by air holes running parallel to the fiber length 

have been one of the most interesting development in recent fiber optics [2]. HFs has emerging applications such as 

power delivery ultra-short pulse delivery, and pulse compression require refining and designing other characteristics, 

most notably increased bandwidth, near-zero flat chromatic dispersion, and control of the nonlinear responses [3]. 

Nowadays, highly nonlinear Holey Fibers [1] (HNL-HFs) has finding applications in all-optical signal processing, 

wavelength converter, ultra-short soliton pulse transmission, optical parametric amplification, and super continuum 

generation [4]. HFs provide higher nonlinear interaction over a significant length of fibers even with a moderate input 

power level [5]. Due to this important reason HNL-HF is important in research applications.  

We, in this paper, propose a four-ring hexagonal holey fiber which exhibits the flat dispersion and nonlinear property 

simultaneously. Many HFs design exists in the literature with remarkable dispersion and leakage properties but 

nonlinear coefficient of HFs are often less than a 16 W-1km-1 [5] and the fiber having nonlinear coefficient greater than 

this value is treated as highly nonlinear fiber. Only two variable parameters are used in the proposed HFs. We obtain 

ultra-flattened dispersion of 0.85ps/nm/km over the band 1.14 to 1.60µm and nonlinear coefficient of the order of 21.34 

W-1Km-1from the proposed HOF. Due to lesser number of air-hole and shortest varying parameter the fabrication of 

the proposed fiber will be easier. Abdur Razzak et al. [3] proposed HNL-HF with 200nm dispersion flat whereas our 

proposed HNL-HF exhibits 460nm flat dispersion. 

 

2 Design methodology of the proposed DF-HNFs 

Consider the cross-section of the simple four ring structured highly nonlinear dispersion flattened Holey fiber (DF-HF) 

as shown in Fig. 1. The cladding consists of air holes embedded in silica and the air hole pitch is labeled Λ (the distance 

between the centers of neighboring air holes). The cladding is formed by an equilateral triangular lattice of air holes. 

We use four rings of air holes surrounding the core. Two types of air-hole with diameters d1 and d is introduced. Here, 

the first air-hole diameter is d1 and the second, third and fourth ring diameter is same and is denoted by d. The refractive 

index of fiber silica is ns=1.4457 and refractive index of air-hole is na=1. The major challenge associated with designing 

highly nonlinear HFs is setting the zero dispersion wavelength around the telecom window because a HF with a short 

pitch and uniform smaller air-hole dimensions tend to shift the zero-dispersion wavelength towards shorter wavelengths 

and a HF with higher air-hole dimension relative to the pitch sets a limit on the single mode operation bandwidth [4].  

mailto:engr.rumman@gmail.com


 

 

 
International Journal of Engineering and Technology 71 

 

 

 

In index-guiding HFs, since the periodicity in the cladding region is not essential to confine the guiding light into the 

high-index core region, this paper is followed this design principle to control the dispersion and dispersion slope in wide 

wavelength range. The challenge exists to minimize confinement loss and control of the sensitivity to parameter 

variations. In fig. 1 there are three degrees of freedom for controlling dispersion behavior and nonlinear property of four 

rings HNF, namely d1, d (d1<d) and Λ, the diameter of first ring is kept low to obtain near zero flat dispersion and 

diameter of the outer three rings are kept large for better field confinement and for reducing confinement loss. We have 

shown theoretically that it possible to design a simple HNF with reduced air-hole without distorting the dispersion 

flatness in telecommunication band. 

 

 
Fig. 1: Proposed Geometrical structure of four rings DF-HNF. Number of rings, Nr=4. 

 

3 Simulation technique 

The COMSOL 4.2 and MATLAB 2008a version software are used as a simulation tool. Effective refractive index, 

effective area, chromatic dispersion and confinement loss are calculated by using finite element method (FEM) with 

perfectly matched boundary layers (PML). FEM has been combined with most of the other computational methods to 

develop more efficient hybrid computational methods. The FEM allows the MOF cross-section in the transverse x – y 

plane to be divided into a patchwork of triangular elements, which can be of different sizes, shapes and refractive 

indices. FEM is suited for studying fibers with no periodic air-hole arrangements [6]. The FEM directly solves the 

Maxwell equations to best approximate the value of the effective refractive index. However, the modal effective 

refractive index, neff is obtained by solving an Eigen value problem drawn from Maxwell equations using the COMSOL 

4.2 software, effective area Aeff can be obtained using the following equation [7]. 

The effective area Aeff  is calculated by  

 

Aeff = (      
  

  

  

  
dx dy)2 /     

  

  

  

  
2dx dy (1) 

 

Where, E is the electric field derived by solving the Maxwell equations. 

Chromatic dispersion D can be calculated by the relations [8]. 

 

D(λ) = − λ/c (d2Re[neff]/dλ2 (2) 

 

Where Re[neff]  is the real part of effective refractive index, neff, λ is the wavelength, c is the velocity of light in vacuum. 

The material dispersion given by Sellmeier formula is directly included in the calculation. Therefore, D in (2) 

corresponds to the chromatic dispersion of the DF-HNF. 

 

The confinement loss Lc is obtained from the imaginary part of neff as follows [8] 
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Lc = 8.686×k0 Im[neff] (3) 

 

Where Im[neff] is the imaginary part of the refractive index, k0 = 2π/λ is the wave number in the free space.   

 

4 Simulation results 

In this proposed DF-HNF design, optimizing the geometrical parameters, such as air hole diameters and pitch, the ultra-

flattened near zero dispersion with high nonlinear coefficient can be efficiently designed. We first set air-hole diameters 

of the outer cladding at d/Λ=0.7 for Fig. 2. In the outer most cladding a high value air filling fraction is chosen for 

better field confinement. Dimension of the first ring is lowered down to flatten the dispersion characteristics. As shown 

in Fig. 1, there are three tuning parameters d1, d and Λ for shaping the dispersion behavior of desired shape. We 

carefully investigated the effects of d1/Λ, d/Λ and pitch, Λ on dispersion behavior which has been shown later. 

 

4.1 Effect of changing d1/Λ on the dispersion slope 
 

Suitable normalized air-hole diameter of first ring d1/Λ is found by calculating the dispersion as a function of 

wavelength for several different d1/Λ. Fig. 2 shows an example of the effect of changing d1/Λ on the dispersion slope 

with d1/Λ=0.385, 0.386, 0.387, 0.388 respectively, for a fixed air-hole pitch Λ=1.15μm and outer ring air filling fraction 

d/Λ=0.7. From fig. 2, it has been shown that flattened dispersion greatly depends on first ring air-filling fraction d1/Λ. if 

the first ring air-filling fraction raises the slope changes significantly from the positive slope to the negative slope near 

the wavelength 1.20µm. 

 
Fig. 2: Effect on dispersion due to d1/Λ variation with d1/Λ= 0.385, 0.386, 0.387 and 0.388. 

 

4.2 Effect of changing d/Λ on the dispersion level 

 
Suitable normalized air-hole diameter of outer ring d/Λ is found by calculating the dispersion as a function of 

wavelength for several different d/Λ. Fig. 3 shows an example of the effect of changing d/Λ on the dispersion slope 

with d/Λ=0.7, 0.8 and 0.9 respectively.  

Fig. 3 shows the effect of changing d/Λ on dispersion level with d/Λ=0.6, 0.7 and 0.8 respectively for a fixed air-hole 

pitch Λ=1.15 and d1/Λ=0.386. It has seen that there is a large impact on variation of slope for variation of outer ring 

diameter. Here, optimum dispersion is obtained at Λ =1.15, d1/Λ=0.386 and d/Λ=0.7. 
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Fig. 3: Effect on dispersion due to d/Λ variation with d/Λ = 0.7, 0.8 and 0.9. 

 

4.3 Effect of changing pitch Λ on the dispersion level 
 

Fig. 4 shows the pitch variation Λ on the dispersion level. Generally pitch dominantly influence the dispersion level but 

little impact on the slope of dispersion but in case of HNF dispersion behavior is too much sensitive to the pitch. Fig. 4 

shows the effect of changing air-hole pitch Λ on the chromatic dispersion behavior with d1/Λ=0.86, d/Λ=0.9. Air-hole 

pitch is varied to achieve target zero ultra-flattened chromatic dispersion in wide-band wavelength range. 

 
Fig. 4: Effect on dispersion due to Λ variation with Λ = 1.00, 1.15, 1.20 and 1.25 µm. 

 

4.4 Nearly-Zero ultra-flattened dispersion 

 
For optimum result, air-hole diameter on the first ring is scaled down to shape dispersion property while diameter of air-

holes on outer rings is kept larger for better field confinement. Finally, air-hole pitch, Λ is varied to achieve target zero 

ultra-flattened chromatic dispersion in wide band wavelength range. 

Suitable normalized air-hole diameter of first ring d1/Λ is found by calculating the dispersion as a function of 

wavelength for several different d1/Λ. We have shown in fig. 2 that flattened dispersion greatly depends on first ring air-

filling fraction d1/Λ. if the first ring air-filling fraction raises the slope changes significantly from the positive slope to 

the negative slope near the wavelength 1.20µm. 
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Fig. 5: Wavelength dependence of the DF-HNF’s chromatic dispersion for optimum parameters: d1/Λ=0.386, d/Λ=0.7, Λ=1.15µm and Nr=4. 

 

4.5 Effect of nonlinear co-efficient: 
 

The fiber is said to be highly nonlinear fiber, if nonlinear coefficient is greater than 16            at 1.55µm 

wavelength. Fig. 6 shows the nonlinear coefficient of the HNL-HF with respect to wavelength. We have found from the 

fig. 6 that the nonlinear coefficient of the HNL-HF at 1.55µm is 21.34          . 

 

 
Fig. 6: Wavelength dependence of nonlinear co efficient of the DF-HNF for Optimum parameters: d1/Λ=0.386, d/Λ=0.7, Λ=1.15µm and Nr=4. 

 

4.6 Effect of confinement loss 

 
In this proposed DF-HNF design confinement loss at 1.55µm wavelength is the order of 102dB/km, which is very large. 

This large confinement loss is undesirable. This large confinement loss occurs due to small size of outer ring diameter. 

By increasing number of ring or using air hole in octagonal structure instead of hexagonal structure, confinement loss 

can be efficiently minimized. Increasing ring number introduces fabrication challenge. Graph shows wavelength 

dependence on confinement loss of the proposed DF-HNF’s at 1550nm wavelength for optimum design parameters. Fig. 

7 shows the confinement loss of the HNL-HF corresponding to d1/Λ=0.386μm, d/Λ=0.7μm. Confinement loss is 

increasing smoothly with respect to wavelength and there is no evidence of abrupt change in leakage. Increasing losses 

due to corresponding decrease in air-hole diameters are also consistent.  
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Fig. 7: Wavelength dependence of the DF-HNF’s confinement loss for optimum parameters: d1/Λ=0.35, d2/Λ=0.38, d/Λ=0.9, Λ=1.63µm and Nr=4. 

 

4.7 Wavelength dependence of effective area 
 

Fig. 8 shows effective areas of the fiber for optimum design parameters. The effective area of the proposed DF-HNF’s 

is obtained from optimum design parameters: d1/Λ=0.386, d/Λ=0.7, Λ=1.15µm and Nr=4. If outer ring diameter 

increases, the effective area of the proposed HNF decreases. Again, similarly the effective area of the proposed HNF 

decreases according to first ring diameter increases. The effective area of the proposed fiber at 1.55µm is approximately 

4.4µm2. 

 
Fig. 8: Wavelength dependence of the DF-HNF’s effective area for optimum parameters:   d1/Λ=0.386, d/Λ= 0.7, Λ=1.15µm and Nr=4. 

 

4.8 Effect of splice loss 
 

Fig. 9 shows wavelength dependence of mode field diameter (MFD) and splice loss between this fiber and conventional 

single mode fibers (SMFs). The MFD of the SMF is considered 10.0μm. The MFD is calculated by the well-known 

pitermann II formula [9], and the splice loss Ls is calculated by [10]- 
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Where, WSMF and WHF are the mode field diameters of the SMF and the HF respectively. MFD and Splice loss of 

proposed fiber is 3.65μm and 3.82 dB at 1.55μm. 

 
Fig. 9: Wavelength dependence of the DF-HNF’s Splice loss and MFD for optimum parameters: d1/Λ=0.386, d/Λ= 0.7, Λ=1.15µm and Nr=4. 

 

5 Conclusion 

A truly near zero ultra-flattened dispersion HNF has been proposed in simple design. This fiber has a modest number of 

design parameters, four rings, three air-hole diameters, and a common air-hole pitch. It has been shown through 

numerical simulation results that a four-ring DF-HNF can assume nearly zero ultra-flattened dispersion of 

0.85ps/nm/km in a 1.14μm to 1.6μm (460 nm bandwidth) wavelength range with high nonlinear coefficient. The main 

drawback of our proposed HNF is high confinement loss. Fibers having nearly zero ultra-flattened chromatic dispersion 

and high nonlinear coefficient are very crucial for broadband communication systems.  

We have demonstrated how a smart utilization of the geometry of the photonic crystal cladding of a hexagonal HF 

permits an outstanding control of the dispersion properties of the fiber. The fact that the geometrically-induced 

dispersion of a HF has remarkable properties and it is highly tunable in terms of the geometrical parameters of the fiber 

can be used to properly compensate the inherent dispersion of the silica in many different ways. The key point is the 

understanding of the interplay between both type of dispersions, which is easily achieved by means of a suitable 

graphical representation and the use of the approximate equation for the total dispersion. With further optimization of 

the structure and better control of the fluctuations in fiber diameter, we expect these dispersion values to be reduced still 

further. 
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