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Abstract 
 

The theoretical model with 2 degree-of-freedom system is developed for predicting the vibration response and analyze frequency properties 

in an extended type defective ball bearing. In the mathematical formulation, the contact between the races and rolling element considered 

as non-linear springs. The contact forces produced during the collaboration of rolling elements are obtained by utilizing Hertzian contact 

deformation hypothesis. The second order nonlinear differential equation of motion is solved using a state space variable method with the 

help of MATLAB software and the vibration acceleration response of the defective ball bearing presented in the frequency spectrum. The 

effects of variation in speed and size of the defect on characteristic frequency of extended fault on the outer raceway of the ball bearing 

have been investigated. The theoretical results of the healthy (non defective) and defective bearing are compared with each other. 
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1. Introduction 

Source of vibration in any machine is unbalanced, misalignment, 

faulty gear, and faulty bearing etc. Out of these, the rolling element 

bearing is the important machine element. If a bearing fails, the 

whole production line is affected and it will also affect the 

productivity. Hence it is very crucial to monitored regularly health 

of the rolling element bearing. The defects arise mostly due to 

incorrect design, mistaken manufacturing and mounting, 

misalignment of bearing, improper lubrication, excessive loading, 

fatigue, wear etc. The defect is parted into two types such as 

localized defects and distributed defects. Because of fatigue in the 

rolling element bearing appear wisecracks, small holes, and spall 

on the rolling surfaces that are such defects is a localized defect. 

like wisecracks, pits, and spall on rolling surfaces caused by fatigue. 

The regularly occurring failure is the crack in the bearing races 

because of the fatigue caused to spread over the bearing surface 

until a piece of metal separate from the surface creating a small 

hole. This defect increase if the bearing is loaded too heavily or also 

existing impact loads during their functioning. 

The distributed defect is mainly exhibited during mistaken 

manufacturing, improper assembly, and wear. Bearing frequently 

develop a localized defect in the raceways, rollers, and cage. The 

periodic impact is generated when the ball passes upon these defects 

with the exception of cage defects. This will cause conversion of 

localized defects into the distributed defects. The contact force 

differs between the rolling elements (balls) and raceways an 

accelerating vibration level because of defects. Hence, the study of 

vibration response for the defective bearing is most important to 

check the quality of a bearing or condition monitoring.      

Many researcher works had done in the area of vibration response 

in the ball bearing, as bearing rotates, the ball changes their 

positions. R.K Purohit and K. Purohit [1] Studied, dynamic analysis 

of ball bearing with the effect of preload and number of balls and 

also study the radial and axial vibrations of the rigid shaft supported 

bearing are studied. A book by Harris [2] discusses a detailed study 

on different types of defects those occur on the surface of the 

bearing. P. D. McFadden and J. D. Smith [3][4] Developed, a 

mathematical model to describe the vibration response by single 

point defect and multiple defects on the inner race of rolling 

element bearing under constant radial load. N. Tandon and A. 

Choudury [5] [6] Studied for predicting the vibrational 

characteristic frequencies of the rolling element bearing and the 

vibration response due to a point defect on raceway or on one of the 

rolling elements under radial load. An amplitude of the outer race 

defect is found to be quite high in comparison to inner race defect 

and the rolling element defect. Also found amplitude level increases 

with increase in load. also developed, a mathematical model to 

predict the accelerating vibration due to distributed defects in 

various bearing elements under radial load. N. Tandon and A. 

Choudury et al. [7] Proposed accelerating amplitude response of the 

rolling element bearing in a rotor-bearing system for a point defect 

under a pure radial load. M. S. Patil, et al. [8] Studied theoretical 

model to make the ball bearing vibration know in advance when the 

effect of a localized defect in their functioning. V. N. Patel, et al. 

[9] Studied the vibration response of the deep groove ball bearings 

with single and various imperfections on the bearing raceway. The 

comparative study of vibration response for the cases having a 

single and two defects on raceways and this results are higher 

amplitude response with two defects. Jairo A. Grajales, et al. [10] 

Developed mathematical model of the ball bearing having localized 

defect on the outer raceway and the results obtained from the model 

validate with experimental results. In this study bearing is assumed 

as mass-spring-damper system considering each ball as a contact 

spring-damper pair. V. V. Nagale, et al. [11] studied a mathematical 
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model to determine the sensitivity of vibration signals for a 

localized defects and to find an effective number of balls in the ball 

bearing. N. Sawalhi, R. B. Randall [12] Modelling gear and bearing 

the situation in the presence of faults as an extended defect on the 

raceway of rolling element bearings. Dick Petersen, et al. [13] 

analyses contact forces in defective bearing, stiffness variation 

respective rolling elements, and also studied vibrations in radially 

loaded double row ball bearing with extended raceway defects. 

Most researchers focused their attention on the detection of 

localized defects in the bearing whereas less attention is given to an 

extended defect. However, when local defect grows, it becomes 

extended one and tends to spread over the track of the bearing race. 

There is a necessity to implement effective diagnosis of an extended 

fault in the ball bearing. It is a need to anticipate the vibration 

response of an extended imperfection on the outer raceway of the 

ball bearing by utilizing the Newton's law of motion. 

2. Mathematical model of system 

A bearing is chosen with the end goal that it ought to be effortlessly 

amassed and disguise. A single row deep groove ball bearing is to 

be chosen for development of theoretical model according to the 

low-speed application. A characteristic value such as inner 

diameter, outer diameter, depth of the groove, could be known. 

Consider a 2 degree-of-freedom non-linear spring-mass system, in 

which the outer race is settled in an unbending support and the inner 

race is settled inflexibility with the motor shaft. Elastic deformation 

amongst raceways and rolling elements delivers a non-linear 

phenomenon between force and deformation, which is obtained by 

the Hertz contact theory. The rolling element bearing is considered 

as non-linear contact spring as shown in above figure 1 

 
Fig. 1: Rolling element replaced by non-linear spring 

While building up the model, the assumptions considered are 

mentioned below: 

1. In the ball bearing model rolling elements (balls) are equi-

spaced. 

2. There is no Slipping of the balls. 

3. The motion of races and balls present in the plane of the bearing 

only. 

4. The outer race is unbendingly settled with bearing housing.  

5. There is no elastic deformation of an inner and outer race.  

6. There is no change in temperature of the selected ball bearing. 

Table 1 Geometric Properties of Bearing. 

Parameter Value 

Stiffness of bearing (K) 8.5471*10^5 (N/m3/2) 
Bearing outside diameter (D) 85 mm 

Bearing bore diameter (d) 30 mm 

Ball diameter (db) 17.463 mm 
No of ball (z) 7 

Bearing width (B) 23 mm 

Pitch diameter (Pd) 57.5 mm 
Inner race groove radius (rgi) 9.168 mm 

Outer race groove radius(rgo) 9.255 mm 

Damping coefficient(c) 200 Ns/m 
Mass of Bearing (M) 800 gm 

Radial clearance (Cr) 0.013 mm 

Different expressions for developing the bearing model are derived 

from a book by Harris [2], for calculating the contact forces in the 

bearing using the Hertz contact theory of deformation. Geometric 

Properties of the bearing shown in Table 1. These properties are 

required for computing the contact forces and the figuring bearing 

load distribution as for the precise position of the ball. 

2.1. Analysis of defective ball bearing 

While developing the numerical model, the defect on the races is 

represented like a sinusoidal wave. The location of the defect (θ) is 

at 45 degrees from the X-axis. 

 

 
Fig. 2: Defective ball bearing 

 

 An extended defect is spread similarly both sides from the focal 

point of the defect location. The ball goes through the defect 

accordingly the additional deflection (𝐷𝑑𝑒𝑓) for the travel of the ball 

in the defective region of the outer race can be determined, 

 

 𝐷𝑑𝑒𝑓 = 𝑅𝑎∗sin(𝜋/𝜑)∗(𝜃𝑖−𝜃)  )1( 

  

φ = 𝑁𝑤 ∗ (ωc ∗ t + ∅𝑑 ∗
i − 1

z
) 

 )2( 

 

Where Ra is a depth of the defect, φ is an overall size of the defect, 

∅d is the size of defect span in degree, ωc is cage velocity, Nw 

number of waves, 𝜃𝑖 is the angular distance between each ball in 

degree, 𝜃 is the location of defect from X-axis in degree. 

In general, the deflection of ball located at any angular position 

given by, 

 

δ = [(xcos(θi) + ysin(θi)) − (C
r
)] (3) 

 

Where θi is a location of the ball, x is deflection along the X-axis, 

y is deflection along the Y-axis, Cr is radial clearance and the 

contact force is, 

 

F = K ∗ [δ]3/2         (4) 

 

The contact stiffness of the ball is calculated by using following 

equation (5)[2] 

 

𝐾 =  [
1

(
1
𝑘𝑖

)
1
𝑛 + (

1
𝑘0

)
1
𝑛

]

𝑛

 

    

 

  (5) 

 

Contact stiffness of inner race (ki) and Contact stiffness of outer 

race (k0) also calculated from the geometrical properties of the ball 

bearing. 

The Hertzian forces arise only when there is contact deformation 

when spring is performed only in compression. The total restoring 

force along the X-and Y-axis is obtained. 

 

Fx = ∑ K ∗ [(xcos(θi) + ysin(θi)) − (C
r
)]z

i=1

3/2
∗ cos(θi) 

(6) 

Fy = ∑ K ∗ [(xcos(θi) + ysin(θi)) − (C
r
)]z

i=1

3/2
∗ sin(θi) 

(7) 
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For calculating the contact forces in the defective bearing we 

required to account this Ddef is an additional deflection in the 

equation (3) and (4) become, 

 

FXD = ∑ K[(xcos(θi) + ysin(θi)) − (C
r

z

i=1

+ 𝐷def ))]
3/2

cos(θi) 

 

(8) 

FYD = ∑ K[(xcos(θi) + ysin(θi)) − (C
r

z

i=1

+ 𝐷def ))]
3/2

sin(θi) 

 

(9) 

 

Angular distance between each ball in the bearing in 

degree(θi) 

 

θi = ωc ∗ t +
2π(z − i)

z
 

 

(1 

 

 

 

(10) 

Angular velocity of the shaft (ωs) will be  

 

ωs =
2πNs

60
 

 

 

 

(11) 

Angular velocity of the cage (ωc)will be 

 

ωc =
ωs

2
− (1 −

d𝑏

𝑝𝑑
∗ cos(α)) 

 

 

 

(12) 

Ns is the speed of the shaft, ωc is angular velocity of the cage in 

rad/s, ωs is angular velocity of the shaft in rad/s. 

2.2. Equation of motion 

Taking x and y as the displacement of the X and Y directions, the 

governing equation for a two degree of freedom system is formed. 

 

Mx ̈ + cẋ + ∑ K[(xcos(θi) + ysin(θi)) − (C
r

+ Ddef))]

z

i=1

3/2

∗ cos(θi)

= W + Fu ∗ cos (θ) 

 

(13) 

  

Mÿ + cẋ + ∑ K[(xcos(θi) + ysin(θi)) − (C
r

+ Ddef))]

z

i=1

3/2

∗ sin (θi) = 0 

(14) 

 

Where M is mass of ball bearing, FXD & FYD is a resolving forces 

for the presence of a defect in the bearing race and Fu= m*r* ω2 is 

an unbalanced force.                      
Equation (10) and (11) are a second-order nonlinear differential 

equation. A solution of these equations obtained by converting into 

first order differential equation using state space variable method. 

A computer program is developed to obtain the solution. Using the 

state space method equation (10) are solved in MATLAB and 

frequency in X and Y directions and their amplitude are obtained. 

2.3 Solution for equation of motion 

 For mathematical solutions, the initial conditions and step sizes are 

very important for progressive and monetary computational 

solutions. Especially for nonlinear systems, different starting 

conditions mean an entirely unexpected system and subsequently 

unique solutions. Improper initial conditions can also cause a larger 

computation time or sometimes wrong results obtained. The larger 

the time step, the faster the computation time. Then again, the time 

step should be small enough to achieve an adequate accuracy. 

Additionally, little time steps can build truncation errors. In this 

way, an advancement ought to be made between them. At time t=0 

the following assumptions are made: 

 

1. The initial displacements and velocities of the shaft are set to 

be the following values:x=10−5 m, y=10−5 m. The velocities 

are assumed to be zero: �̇�=0, �̇�=0. The initial accelerations 

are obtained using Equation (13) and (14).  

2. The initial displacements of the ball centers in radial direction 

are set to be Cr= 0.0013 mm; and acceleration is xo= 1 m/s2, 

yo= 1 m/s2. 

3. For each ball in the ball bearing considered as same deflection 

and velocities. 

4. Assume the contact stiffness for each ball are same while 

modeling the solution for the defective and healthy bearing. 

2.3.1 Solution procedure: 

A solution of equations using the simulation program can be 

carried out in the following order: 

a. Read all necessary data for the ball bearing system. 

b. All the variables (i.e. 𝜃𝑖 , 𝛿∗, 𝛿𝑚𝑎𝑥, etc.) are calculated using 

the above stated initial conditions. 

c. Calculate the contact stiffness factor (K) using equation (5).  

d. The maximum contact force is calculated by using equation 

(4) 

e. The shaft angular velocity (𝜔𝑠) cage angular velocity (𝜔𝑐)  is 

calculated for the respective speed of the rotating shaft. 

f. The new contact forces are obtained in x & y-direction from 

equation (6) and (7) if a ball in the defective region then 

calculates the equation (8) and (9). 

g. The total restoring forces in the x, y directions are obtained. 

h.  The equations of motion (i.e., equation (13) & (14)) are 

solved to find an acceleration response  

i. Steps (e to h) are repeated for the required speed of the 

shaft. 

j. The results are recorded to show the frequency response. 

 

 
Fig. 3: Block diagram of a program 

3. Results and discussion 

The results for peak amplitudes of vibration for each variation of 

the running parameter in different shaft speeds and defect size are 

to be analyzed in this study. The nonlinear equations are solved to 

obtain an acceleration response of healthy and defective ball 
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bearing. In order to get the outcomes, the source of inputs is shown 

in Table 1. 

3.1. Vibration response of healthy bearing 

The time step for the investigation is considered at the time required 

for 0.1 degrees of rotation. For the shaft speed of 300 RPM, 600 

RPM, 900 RPM, 1200 RPM the initial displacements set to the 

values: x=10-5 m and y=10-5 m. The starting velocities are 

considered to be zero. For a shaft speed, Ns=300 RPM 

Shaft speed, ωs =
2πNs

60
 = 31.41 rad/s 

Shaft frequency, Fs = Ns/60 =5 Hz 

Cage speed, ωc =
ωs

2
− (1 −

d𝑏

𝑝𝑑
∗ cos(α)) =10.85 rad/s    

Ball pass frequency outer (BPFO)= 
Z Ns

2∗60
− (1 −

d𝑏

𝑝𝑑
∗ cos(α)) 

                                                      = 12.075 Hz. 

 

 

 

  
           (a) (c) 

  
(b) 

 
(d) 

 

Fig. 3: Vibration response of healthy bearing at (a)300; (b) 600; (c) 900; (d) 1200 RPM 

 

Above fig. 3 shows the vibration amplitude of the healthy bearing 

is obtained as 0.0563 m/s2, 0.07193 m/s2,0.0983 m/s2, 0.1071 m/s2 

at 300, 600, 900, 1200 RPM respectively. There is a significant 

increase in the amplitude of vibration with an increasing the speed 

of the shaft. The peaks at BPFO have seen in the frequency spectra 

is 13.12 Hz, 24.10 Hz, 37.04 Hz, 49.37 Hz. From the theoretical 

model while calculating ball pass frequency outer (BPFO) are 

12.075 Hz, 24.15 Hz, 36.225 Hz, 48.30 Hz for the speed 300, 600, 

900, 1200 RPM respectively. The calculated ball pass frequency 

outer (BPFO) and the peaks generated in the frequency spectra are 

very close to each other this is clearly shown in fig. 3. 
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3.2. Vibration response of the defective ball bearing 

The defect in the bearing is modeled as a sinusoidal wave. The 

defect size corresponding to the length of the defect in the direction 

of the motion. The depth of defect is taken as 4μm and the location 

of the defect (θ) is at 45 degrees. An extended defect is spread 

equally both sides of the center of defect location. Vibration 

response from ball bearing due to the constant radial load for the 

defective bearing (defect sizes 10-degree & 20-degree) with 

varying speed (300 to 1200 RPM) is simulated by using MATLAB. 

 

 

 
 

(a) (c) 

  
(b) (d) 

 
Fig. 4: Vibration response of 10-degree defective bearing at (a) 300; (b) 600; (c) 900; (d) 1200 RPM 

 

 

Fig. 4 shows the vibration amplitude of the 10-degree defective ball 

bearing is obtained as 1.364 m/s2, 1.594 m/s2, 1.396 m/s2, 2.523 

m/s2 at 300, 600, 900, 1200 RPM respectively. There is a significant 

increase in the amplitude of vibration with an increasing the speed 

of the shaft. The peaks at BPFO have seen in the frequency 

spectrum is 12.451 Hz, 23.803 Hz, 36.132 Hz, 48.095 Hz. From the 

theoretical model. The calculated ball pass frequency outer (BPFO) 

and the peaks generated in the frequency spectra are very close to 

each other this is clearly shown in table 2. 
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(a) (c) 

  
(b) (d) 

Fig. 5: Vibration response of 20-degree defective bearing at (a) 300; (b) 600; (c) 900; (d) 1200 RPM 
 

Above fig. 5 shows the vibration amplitude of the 20-degree 

defective ball bearing is obtained as 1.641 m/s2, 1.995 m/s2, 2.852 

m/s2, 4.674 m/s2 at 300, 600, 900, 1200 RPM respectively. There is 

a significant increase in the amplitude of vibration with an 

increasing the speed of the shaft. The peaks at BPFO are seen in the 

frequency spectra is 12.390 Hz, 23.498 Hz, 34.790 Hz, 50.903 Hz. 

from the theoretical model. The calculated ball pass frequency outer 

(BPFO) and the peaks generated in the frequency spectra are very 

close to each other this is clearly shown in table 2.

 

Table 2 Comparison of vibration response for the healthy and defective ball bearing. 
 

 

Speed 

(rpm) 

 

Calculated 

frequency (Hz) 

 

Healthy bearing response 

Defective bearing response 

10-degree 20-degree 

Frequency (Hz) Amplitude (m/s2) Frequency (Hz) Amplitude (m/s2) Frequency (Hz) Amplitude (m/s2)        

300 12.07 13.12 0.0563 12.451 1.364 12.390 1.641 

600 24.15 24.10 0.0719 23.803 1.594 23.498 1.995 

900 36.22 37.04 0.0983 36.132 1.396 34.790 2.852 
1200 48.30 49.37 0.1071 48.095 2.523 50.903 4.674 
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The peaks at BPFO are seen in the frequency spectrum is 12.451 

Hz, 12.390 Hz for defective bearing and 13.120 Hz for healthy 

bearing obtained from the theoretical model while calculating ball 

pass frequency outer (BPFO) is 12.075 Hz. For the speed 300 RPM. 

Hence the defective bearing rotating with 300 RPM, then the peak 

generated in frequency spectrum observed near to the calculated 

BPFO. Similarly, for the other speed 600, 900 and 1200 RPM 

generated peak nearest to the calculated BPFO see the table 2 for 

better understanding the results. 

4. Conclusion 

When a local defect grows, it becomes extended one and tends to 

spread over the track of the bearing race. There is a necessity to 

implement effective diagnosis of an extended fault in the ball 

bearing. Hence, the Theoretical model is developed to predict the 

vibration response of an extended defect in the outer race of the ball 

bearing. 

As discussed in the above section the model response of healthy 

bearing is obtained 0.0563 m/s2, 0.07193 m/s2, 0.0983 m/s2, 0.1071 

m/s2 at 300, 600, 900, 1200 RPM. It is concluded that the amplitude 

of vibration of the healthy bearing increases with increasing speed. 

But the value of vibration amplitude is less than the defective 

bearing amplitude in the same range of speed. 

The model response of an extended defect on the outer race of the 

ball bearing is obtained and discussed in the above section. The 

effect of speed and size of defects on the defective bearing shows 

the variation in frequency spectra as compared with the response of 

the healthy bearing. From the frequency spectra is clearly observed 

an increasing the speed of the defective bearing increases the 

vibration amplitude. Again, observe that the vibration amplitude 

increases with increasing the defect size.   

The performance of the model has been confirmed by obtaining 

peaks of vibration amplitude in the healthy and defective ball 

bearing close to the calculated BPFO in frequency charts. The 

forecast of actual estimation of amplitude vibration isn’t possible 

with this model because the difficulties occur while considering the 

rotor bearing system. Hence, defect size and speed are the affecting 

values to cause vibration of the bearing. 
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