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Abstract 
 

The estimated Power Spectral Density (PSD) gives the information regarding the architectural structure of random process; it can be 

utilized for mathematical modeling, removal of noise, prediction of the signal of the deserved processes. The objective of spectral density 

estimation is to approximation the spectral density of a random signal from a series of time sample of the signal. Spectral estimation and 

coefficient estimation is concerned with determining the distribution in frequency of the power of a random process. In this paper, a well-

known adaptive filter is used to the estimation of the spectral density of the signal. It includes the LMS, RLS and improves RLS (pro-

posed method) to analyze the coefficient of the sinusoidal signal. 
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1. Introduction 

The power spectral evaluation of cyclic and arbitrary signals is 

one of the most vital appliance areas of DSP. Spectral estimation 

then becomes a problem of estimating the parameters in the 

assumed scheme. If this scheme is not fit the data, the parametric 

model performance will degrade, and lead to a biased estimation 

[1]. The single channel PSD estimation; there are two broad 

categories of PSD estimators. Among them, the Fourier-based 

estimators are the most popular. Also, the Capon and Amplitude 

and Phase estimate with much lower side lobes and more narrow 

spectral peaks than the fast Fourier transform methods, which is 

also a special case of Finite Impulse Response (FIR) filtering 

approaches.  

To overcome these disadvantages, an alternative estimation 

procedure for data with a mixed spectrum containing an unknown 

number of spectral lines was proposed. An adaptive equalizer is 

customarily placed in the receiver with the channel output as the 

source of excitation applied to the equalizer; different parameters 

are adjusted using or Recursive least squares (RLS) algorithm to 

provide an estimate of each symbol transmitted. The drawbacks of 

the RLS algorithm, the increased computational power required 

and the output is unsteadiness. So, to get better the performance of 

RLS algorithm, the adaptive capon and amplitude and phase 

estimation based spectral analysis methods are used. 

Regarding the computational complexity, conventional 

coefficients evaluation scheme, like LS, RLS and LMS cannot 

achieve fast convergence speed and little computational 

complexity at the same time. LS algorithm works on a block of 

data samples and requires a matrix inversion. RLS and LMS 

algorithms are updated sample by sample. RLS algorithms 

converge rapidly but consume a group of hardware resources. 

LMS algorithm consumes little hardware resources but converges 

slowly. By applying the orthonormal basis functions, we 

recommend an adaptive method that exhibits a low computation 

complexity of LMS algorithm while retaining the very fastly 

convergence velocity of RLS algorithm.  

The remaining part of the manuscript is planned as follows: 

Section 2 describes the specific work done by other authors on an 

adaptive DPD system and then Section 3 proposes a general 

approach to derive the orthonormal basis functions that can 

alleviate the numerical instability during the coefficients 

estimation. And also includes the implementation of the model 

coefficients estimation algorithms. We propose an adaptive 

algorithm by applying the orthonormal basis functions. Section 4 

validates the efficiency of the projected algorithm via simulation 

done in Matlab with experimental results. At the end of this paper 

is concluded with the conclusion of this projected method.  

2. Literature survey 

This section briefly summarizes related works done by the 

different author based on orthonormal basis function that can 

alleviate the numerical instability during the coefficients 

estimations.  

Ram et al. [1] employed in critical care units to measure the vital 

medical parameters like heart speed and blood infiltration levels. 

In this work, we present an adaptive coefficient estimation 

technique to detect motion artifact (MA) components from quasi-

periodic natured photoplethysmographic (PPG) signal and then 

deduce MA reduced PPG signal. Fourier coefficients are estimated 

using basic least mean squares algorithm. The novelty of the 

proposed technique lies in detection and reduction of MA noise by 

estimating the Fourier coefficients and then based on randomness 

measures considering only the required number of Fourier 

coefficients dynamically to generate MA reduced PPG signal. 

SpO2 has estimated from MA reduced PPGs by utilizing the 

calibration curve. The superiority of proposed technique is proved 

by comparing the experimental results with results obtained using 

basic least mean squares (LMS) method. PPG data recorded with 
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different MA (Vertical, Horizontal and Bending movements of 

patient's finger) is considered for experiment analysis. Obtained 

SpO2 parameter calculations proved the efficacy of estimation 

technique in the measurement of reliable and accurate SpO2, 

helpful for medical diagnosis.  

Choi et al. [2] presented an efficient method like linear zed RLS 

method, in which it utilize the both vehicle lateral as well as 

longitudinal dynamics in real time. The study indicates that the 

evaluated algorithm was examined through vehicle dynamic 

software Carsim as well as Matlab tool. Sardellitti et al. [3] 

proposed a distributed recursive least squares (RLS) algorithm 

incorporating an l1-norm regularization with time-varying 

regularization coefficient that enables a recursive distributed 

solution with no losses on the centralized solution. The method is 

especially useful in cooperative sensing when the parameters to be 

estimated are structurally sparse and time-varying. As well known, 

the l1-norm is useful to recover sparsity, but it also introduces a 

non-negligible bias. To tackle this issue, we further apply a garrote 

correction to our distributed mechanism that strongly reduces the 

bias. 

Kobayashi et al. [4] accessible a simple system of combination 

coefficient evaluation with RLS filter is projected. Dynamics of 

WPT scheme is analyzed with a transfer function. Furthermore, 

the modelling and the manage technique of DC/DC converter are 

introduced. The investigational outcome shows that the coupling 

coefficient evaluation is provided the effective of the proposed 

system and it is controlled in a real-time. Wanger et al. [5] studied 

Diffusion strategies for learning across networks which minimize 

the transient regime mean-square deviation across all nodes is 

presented. The problem of choosing combination coefficients 

which minimize the mean-square deviation at all given time 

instances results in a quadratic program with linear constraints. 

The implementation of the optimal procedure is based on the 

estimation of weight deviation vectors for which an algorithm is 

proposed. Additionally, the optimization that uses relaxed 

constraints is considered. The results show a potential for 

significant improvement of the convergence speed.  

Kobayashi et al. [6] explaining the efficiency is controlled by 

exchanging the input impedance at the receiving end of the 

converter. But the proposed method has not at all been useful in 

the sequence of coupling coefficient is desirable continually to 

attain the control. In this paper, an easy technique of coupling 

coefficient evaluation with RLS filter and improve efficiency 

control using a PID feedback controller are planned.  

Umay et al. [7] propose a new adaptive biomedical capsule 

localization scheme utilizing a recent geometric cooperative 

sensor technique to estimate the path loss coefficient for 

permittivity for time-of-flight (TOF) based range sensors. This 

cooperative environmental coefficient estimation technique 

involves the use of a mobile sensor triplet in place of a single 

sensor, and provides instantaneous estimates. K. Dongarkar et al. 

[8] proposes an online estimation strategy to simultaneously 

estimate the vehicle mass, road frictional coefficient and wind 

velocity for a Series-Parallel Hybrid vehicle. The estimation 

strategy uses inputs from the vehicle longitudinal accelerometer 

sensor for determining road grade along with other powertrain 

signals. 

Das et al. [9] introduced a new sparsity-aware RLS method is 

implemented for distributed learning in a diffusion network. The 

algorithm deploys a RLS based adaptive filter at each node which 

is made sparsity-aware by regularizing the conventional RLS cost 

function with a sparsity promoting penalty. The regularization 

introduces certain “zero-attracting” terms in the RLS update 

equation which help in shrinkage of the coefficients. Each node 

shares its tap weight information with every other node in its 

neighborhood and refines its estimate by linearly combining the 

incoming tap weight information from neighboring nodes by a set 

of pre-defined weights. Results on both first and second order 

convergence of the algorithm are also provided. As simulations 

show, the proposed scheme outperforms additionally obtainable 

algorithms together in conditions of convergence speed and 

steady-state excess mean square error.  

3. Proposed method and implementation 

This division talks about the computational complexity of RLS 

algorithm, LMS algorithm, and the proposed algorithm. In this 

paper, we only compare the number of real multiplications 

required by each algorithm per iteration. Fig 1 shows the system 

architecture of the proposed method. It contains the input signal 

generation block. It generates the sinusoidal signal for this 

proposed method to get the PDF as well as PSD and coefficient 

estimation of these proposed methods. The orthonormal basis 

function constant is selected for this simulation work. The 

quantization will be performed. The error PDF will be calculated 

after this step. Finally, the constellation M-ary is initialized like 

4,16,32,64,128 and 256 are selected. At the end of this system, the 

coefficient will be estimated for all the techniques and also the 

comparison is performed. 

 

Generate Input Signal
Select Orthonormal Basis 

Function Constant (K)

Perform QuantizationCalculate Error PDF

Implement 

LMS

Implement 

RLS

Implement 

Proposed method

Initialize Constellation M-Ary (4,16,32,64,128,256)

Calculate Coefficient Estimation

Performance Parameters
 

Fig. 1: System Architecture of the Proposed Method. 

 

The projected technique is implementing by means of three differ-

ent algorithms like LMS, RLS and finally the proposed method. 

The following section gives the pseudo code for the postposed 

method as well as another method.  

Pseudo Code for cost effective LMS:  

1) Start 

2) Initialize Xbit, M, mod;  

3) Calculate k, Nbit, Dtotal, Nframe;  

4) Initialize Dsam=64,Dfft=128,Dgi=22,Stotal=150; 

5) Perform QAM/PSK 16-bit modulation;  

6) Transmit signal; 

7) XintConvert the bits in Xbit into k-bit symbols; 

8) A1 modulate using 16-QAM; 

9) For 1:Nframe  

10) {  

11) A2Initialize vector; 

12) Extract data samples form 1st frame;  

13) Perform zero padding;  

14) B1Perform IFFT operation on data; 

15) For i=1:Dfft 

16) { 

17) Arrange IFFT data samples one by one; 

18) B2Generate data streams;  
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19) } 

20) } 

21) End: 

22) End; 

23) Add cyclic prefix; 

24) Add Gaussian noise; 

25) End; 

Pseudo Code for cost effective Proposed Method:  

1) Start 

2) Input Xbit, M, mod;  

3) Calculate k, Nbit, Dtotal, Nframe;  

4) Initialize Dsam=64,Dfft=128,Dgi=22;  

5) Stotal = Dfft+Dgi; % Total symbol length with guard inter-

val;  

6) Perform QAM/PSK 16-bit modulation;  

7) Transmit signal; 

8) XintConvert the bits in Xbit into k-bit symbols; 

9) A1 modulate using 16-QAM; 

10) Perform IFFT operation;  

11) Perform Orthonormal to each other;  

12) Add Gaussian noise; 

13) End;  

Pseudo Code for cost effective RLS:  

1) Start 

2) Input Xbit, M, mod, h[]; 

3) Initialize N=2000, sysorder=10; 

4) Perform training;  

5) Lambda=0.9995;  

6) Initialize P matrix;  

7) P = delta * eye (sysorder ) ; 

8) w = zeros ( sysorder , 1 ) ; 

9) for n = sysorder : N  

10) u = inp(n:-1:n-sysorder+1) ; 

11) phi = u' * P ; 

12) k = phi'/(lamda + phi * u ); 

13) y(n)=w' * u; 

14) e(n) = d(n) - y(n) ; 

15) w = w + k * e(n) ; 

16) P = ( P - k * phi ) / lamda ; 

17) % Just for plotting 

18) Recordedw(1:sysorder,n)=w; 

19) end  

20) for n = N+1 : totallength 

21) u = inp(n:-1:n-sysorder+1) ; 

22) y(n) = w' * u ; 

23) e(n) = d(n) - y(n) ; 

24) end  

25) Initialize Dsam=64,Dfft=128,Dgi=22,Stotal=150; 

26) Calculate k, Nbit, Dtotal, Nframe;  

27) Perform QAM/PSK 16-bit modulation;  

28) Transmit signal; 

29) XintConvert the bits in Xbit into k-bit symbols; 

30) A1 modulate using 16-QAM; 

31) For 1:Nframe  

32) {  

33) A2Initialize vector; 

34) Extract data samples form 1st frame;  

35) Perform zero padding;  

36) B1Perform IFFT operation on data; 

37) For i=1:Dfft 

38) { 

39) Arrange IFFT data samples one by one; 

40) B2Generate data streams;  

41) } 

42) } 

43) End: 

44) End; 

45) Add cyclic prefix; 

46) Add Gaussian noise; 

47) End;  

 

Table 1: Notations 

1. Xbit Input binary data 

2. M M-ary 

3. mod Modulation techniques (QAM/PSK) 

4. B3 OFDMA signal 

5. A1 Modulation signal after modulation 

6. k Number of bits per symbol 

7. Nbit 
Nbit=1024*k; 
% Number of generated bits. 

8. Dtotal All transmitted data symbol 

9. Dsam 64 samples of data per frame 

10. Dfft 128 samples per frame for IFFT 

11. Dgi length of guard interval 

12. Stotal Total symbol length with guard interval.  

4. Research and discussion 

In order to validate the effectiveness of the proposed low-

complexity predistortion algorithm in terms of spectral regrowth 

suppression, experiments are performed to calculate the PDF, PSD 

and coefficient estimations of the system. Fig 2 to fig 12 shows the 

outcomes of the proposed method. In the method we assumed or-

thonormal basis function constant as 2. It gives the quantization of 

the signal. Error vector signal also displayed in this paper. The 

error PDF of signal of k=1, 2, 3, 4 and 5 also displayed. 

 

 
Fig. 2: Input Signal. 

 

Select Orthonormal Basis Function Constant (K) (range 1-5) = 2. 

 

 
Fig. 3: Quantization of Signal. 

 

 
Fig. 4: Error Vector of Signal. 
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Fig. 5: Error PDF of Signal For K=2. 

 

 
Fig. 6: Error PDF of Signal for K = 1, 2, 3, 4 and 5. 

 

 
Fig. 7: Coefficient Estimation (PDF) For LMS Algorithm for Different 

Values of Constellation M-Ary=4, 16, 32, 64, 128, 256. 

 

 
Fig. 8: Coefficient Estimation (Quad-Phase Amplitude) for LMS Algo-
rithm for Different Values of Constellation M-Ary=4, 16, 32, 64, 128, 256. 

 

 
Fig. 9: Coefficient Estimation (PDF) for RLS Algorithm for Different 

Values of Constellation M-Ary=4, 16, 32, 64, 128, 256. 

 

 
Fig. 10: Coefficient Estimation (Quad-Phase Amplitude) for RLS Algo-
rithm for Different Values of Constellation M-Ary=4, 16, 32, 64, 128, 256. 

 

 
Fig. 11: Coefficient Estimation (PDF) For Proposed Algorithm for Differ-

ent Values of Constellation M-Ary=4, 16, 32, 64, 128, 256. 

 

 
Fig. 12: Coefficient Estimation (Quad-Phase Amplitude) for Proposed 

Algorithm for Different Values of Constellation M-Ary=4, 16, 32, 64, 128, 

256. 

 
Table 2: Coefficient Estimation: for LMS – K=2 

Constellation M-ary 
ACPR 

EVM 
L H 

4 29.5673 28.3452 -29.1502 
16 36.0264 36.7817 -29.1063 

32 37.2101 38.37 -29.1598 

64 41.8945 42.8825 -29.0589 
128 47.3237 45.1915 -28.9798 

256 49.2443 48.8052 -29.32 

 
Table 3: Coefficient Estimation: for RLS – K=2 

Constellation 

M-ary 

ACPR 
EVM 

L H 

4 29.1988 28.882 -30.2078 

16 34.7955 33.0891 -29.9774 

32 34.9433 38.5547 -30.0184 
64 42.3061 41.9217 -30.2385 

128 44.1697 43.9847 -30.2213 

256 46.7548 48.1497 -30.093 

 
Table 4: Coefficient Estimation: For Proposed – K=2 

Constellation M-ary 
ACPR 

EVM 
L H 

4 27.9781 25.7587 -30.8544 

16 35.9127 37.0484 -30.5935 
32 34.8564 37.4537 -30.9674 

64 40.0128 41.7318 -30.9903 

128 43.6804 41.5822 -30.9941 
256 45.5436 48.7227 -30.9106 
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5. Conclusion and future direction 

In this manuscript, we recommend an all-purpose method to derive 

the orthonormal basis functions that can significantly alleviate the 

numerical instability problem in coefficients estimation. Also, by 

applying the orthonormal basis functions, we further develop an 

adaptive algorithm that exhibits a low computation complexity of 

LMS algorithm while retaining the quick convergence velocity of 

RLS algorithm. Via both simulation and experimental results, we 

validate the implemented LMS algorithm yet as efficient as RLS 

algorithm. An efficient technique for improving the power signal 

spectral estimation is intended to propose here. The technique aims 

at enhancing the spectral estimation accuracy of RLS algorithm 

along with resolving its drawbacks. Further, the recursion minimi-

zation function will be included in the RLS algorithm to minimize 

the computation complexity. The technique provides spectra with 

improved resolution and smoother characteristics over competitive 

spectral estimation techniques. The proposed technique will be 

implemented in MATLAB working platform, and the output per-

formance will be evaluated. 
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