

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 133-137

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Methodology for regression testing with open source tool

K. Hema Shankari 1*, R. Thirumalai Selvi 2

1Research Scholar, Bhartath University, Associate Professor, Department of Computer Science, Women’s Christian College, India

2Research Supervisor, Assistant Professor, Department of Computer Science, Govt. Arts College (Men), Nandhanam.

*Corresponding author E-mail:hems_banu@yahoo.com

Abstract

The paper describes our methodology for optimizing regression testing that forms a major part of software maintenance. It necessitates

the use of an automated testing tool, and we have selected Selenium, an open source tool. For simple projects, a formula is proposed that

has been derived through data mining with Selenium. A genetic algorithm is added to this methodology for industry based projects,

where the test cases are so large that they have to be grouped as Test Suites; this algorithm reconfigures Test suites in each cycle of

regression testing. Commonly used APFD metric ignores fault severity but is included in our formula; this severity is determined by

professional testers. The use of ANN to amend severity without manual intervention enhances the genetic algorithm. Tables presented in

the paper are from both simple and industry projects. Comparison is made with IBM’S RFT, a proprietary tool for automated testing.

Keywords: Regression testing, genetic algorithm, selenium tool, APFD metric, ANN.

1. Introduction

As distinct from unit testing, integration testing, and user

acceptance testing, that take place during development phase,

regression testing takes place during the maintenance phase. It is

estimated that some sixty percent of project cost is associated with

maintenance. A great deal of research has therefore been

conducted about regression testing both in academia and industry.

An important milestone is the availability of software tools that

support regression testing. While RFT is an IBM tool that

integrates with its Rational Manager, Selenium is an open source

tool. Initial automation was confined to capturing key strokes of

testers in a computer terminal; there has been rapid progress in

building a comprehensive database of test data with these tools

and consequent data mining. This is even more critical with agile

software development methodology. Our research makes

extensive use of such databases. For projects completed by us, we

dealt with test cases and detected faults. For severity rating, we

relied on our testers. The severity classification was kept

unchanged in subsequent cycles of maintenance. The priority of

test cases was established with a formula that is explained later. In

our discussions with industry, it became apparent that the number

of test cases is so large that they have to be grouped as 'Test

Suites'. Consequently, the formula proposed by us must be applied

to Test Suites rather than to test cases. Another important

observation was the industry's focus on building business models

to describe software functionality, and generation of Test Suites

based on business model. This means that a manufacturing

industry will approach regression testing differently to retail

industry. Software development companies in India like Infosys

and TCS divided their organizations into so called 'verticals'. This

made our task difficult since we attempt to develop a generic

approach to regression testing irrespective of the industry. The

next sections of this paper elaborate the building of business

model and the methodology.

2. Metrics

In relapse testing, reusing of utilized cases can significantly

enhance test effectiveness, and decrease time and duplication of

exertion. Along these lines, there is an enormous experiment

library at the steady stage. It lists all the utilized cases in inventory

to connect the particular cases with related organizations, and

offices the reference of cost-evaluation display and the

programmed age of the test script.

Though benefits of the business frameworks progress for the

change for demands, What's more with the transforms for

framework upkeep and different reasons; whether new forms of

the programming need aid generated Toward those improvement

department, execution steps relapse trying from claiming are as

takes after:

1. Examine What's more dissect those sourball codes in the

new version, Furthermore behavior dissection for

transforms bases on the requisition model, programmed

recognizing framework changes;.

2. Examination for transform effects Investigation

faultlessly pointed crazy the scopes for practical benefits

of the business straightforwardly alternately by

implication impacted Eventually Tom's perusing An

change about rendition.

3. For those provision for benefits of the business rules, the

relapse test ranges would controlled Eventually Tom's

perusing masters Furthermore investigators.

4. Test suited will be created in the appraisal model for

expense and risk, Furthermore it will a chance to be

compacted with streamlining calculation.

5. Finish programmed trying Eventually Tom's perusing

denying utilized test instances in the library alternately

Creating new instances.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:hems_banu@yahoo.com

134 International Journal of Engineering & Technology

Those APFD metric simply exhibited depends around two

assumptions: (1) at faults have equivalent severity, Also (2) the

sum test cases bring equivalent expenses. Over practice, however,

there need aid situations clinched alongside which these

presumptions don't hold: instances On which faults fluctuate done

seriousness and test situations change over expense. Clinched

alongside such cases, those APFD metric might furnish unsuitable

outcomes.

1. Average Percentage Block Coverage (ABC).

This measures those rate In which a prioritized test

suited blankets the obstructs.

2. Average Percentage Decision Coverage (ADC).

This measures the rate at which a prioritized test suited

blankets those choices (branches).

3. Average Percentage Statement Coverage (ASC).

This measures the rate at which a prioritized test suite

covers the statements.

4. Average Percentage Loop Coverage (ALC).

This measures those rate during which a prioritized test

suited blankets those proclamations.

5. Average Percentage Condition Coverage (ACC).

This measures the rate toward which a prioritized test

suited blankets the loops.

6. Problem Tracking Reports (PTR) Metric

The PTR metric is An alternate approach that those

viability of a test prioritization might a chance to be

investigated.

Review that an viable prioritization system might put test cases

that are well on the way on recognize faults toward the start of the

test succession. It might make useful to ascertain the rate of test

cases that must a chance to be run in front of at faults bring been

uncovered. PTR may be ascertained as takes after:

Ptr(t,p) = nd/n

Give t - be those test suited under evaluation, n - those aggregate

number for test instances in the aggregate amount about test

situations required with identify at faults in the system under test

p.

3. Testing tools

A. RFT tool

Normal utilitarian analyzer product is an robotized device which

gives testers with robotized trying competencies for utilitarian

testing, relapse testing, GUI trying Furthermore information

determined trying.

As a robotized trying tool, RFT need a few Characteristics below:

1. Provide robust testing support for Java, Web 2.0, SAP,

Siebel, terminal-based and Microsoft Visual Studio

.NET Windows Forms applications

2. Perform story board testing to combine natural language

test narrative with visual editing through application

screen shots.

3. Use keywords to bridge the gap between manual and

automated testing

4. Manage validation of dynamic data with multiple

verification points and support for regular expression

Pattern matching

5. Reduce rework, minimize the rerecording of scripts, and

reduce script maintenance

B. Selenium tool

For web applications, we have portable software called Selenium.

We use this tool for both recording and subsequent playback; for

authoring test cases we do not need to learn Selenium IDE; we

need, however, to learn a test-specific language Selenese; with this,

we can write tests in a number of popular programming languages,

including C#, Groovy, Java, Perl, PHP, Python, Ruby and Scalar.

The tests can then be run against most modern web browsers.

Selenium deploys on Windows, Linux, and OSX platforms. It is

open-source software, released under the Apache2.0 license, and

can be downloaded and used without charge.

Selenium is at present the most powerful freeware of open source

automation tool. It is developed by Jason Huggins and his team.

This is release under the Apache2.0 license and can be

downloaded and used without any charge.

Selenium is easy to get started with for simple functional testing of

web application.

It supports record and playback for testing web based application.

Selenium supports multithreading feature i.e. multiple instance of

script can be run on different browsers.

Test Maker integrates Selenium to provide the important features

and benefits:

1. Selenium supports languages such as Java, Perl, and

Python, C #Ruby, Groovy, Java Script, and VBScript

etc.

2. Selenium support many operating systems like

Windows, Macintosh, Linux, Unix etc.

3. Selenium supports many browsers like Internet explorer,

Chrome, Firefox, Opera, and Safari etc.

4. Selenium can be integrated with ANT or Maven kind of

framework for source code compilation.

5. Selenium can be integrated with Test NG testing

framework for testing our applications and generating

reports.

6. Selenium can be integrated with Jenkins or Hudson for

continuous integration.

7. Selenium can be integrated with other open Source tools

for supporting other features

8. Selenium can be used for Android, IPhone, Blackberry

etc. based application testing.

9. Selenium supports very less CPU and RAM

consumption for script execution.

10. Selenium comes with different component to provide

support to its parent which is Selenium IDE, Selenium

Grid and Selenium Remote Control (RC).

4. Simple case study

This was developed in Java by students and tested using Selenium

Tool Tester. Six test cases were used to test its functionality and

they were prioritized by using the formula for test case ranking:

TCR = (S * N) / time --- (2)

In this formula, N is the number of faults detected while using the

test case, time is the number of minutes of testing with this test

case, and S is the severity value of the fault detected (as assigned

by the tester). Where more than one fault is detected, a weighted

summation is used in the formula.

Full explanation for the formula is given in our previous paper [1]

presented at the Multi Conference of Engineers and Computer

Scientists 2016. There were 6 test cases and 8 faults were detected

during these tests.

The table gives in binary format which of the faults were detected

during the six tests (zero representing absence of detection and

one representing detection).

However, once risk severity and time for testing are

included, the priority sequence became T4, T2, T5, T1, T6, T3 as

explained in our paper [1].

Factors consider for new proposed approach

Three factors that were considered for prioritization [1] include

Rate of Fault Detection, Percentage of Fault Detected, and Risk

Detection Ability [7]. To every fault a Risk value has been

allocated based on a 10-point scale expressed as

Very High Risk: RV of 10

International Journal of Engineering & Technology 135

High Risk: RV of 8

Medium Risk: RV of 6

Less Risk: RV of 4

Least Risk: RV of 2.

For test case Tk, RDAk have been computed using severity value

Sk ,Nk is the number of defects found by Tk, and time k is the

time needed by Tk to find those defects. The equation for RDA

can be expressed as:

RDAk = (Sk * Nk) / time k --- (3)

A. Test Case Ranking

For ranking the test cases, all we need to do is sum up the three

different components that are RFD, PFD and RDA. This is given

below in the form of an equation:

TCRk = RFDk + PFDk + RDAk --- (4)

Table I: Fault Matrix

In Table I, the regression test suite T contains six test cases with

the initial ordering as T1, T2, T3,T4, T5, and T6

Table II: Binary Representation of Test Cases

Table III: Number of Faults, Execution Time and Risk severity of Faults

for Every Test Case

This Table III assumes a priori knowledge of the faults detected by

T in the program P.

Table IV: RFD, PFD, RDA for Test Cases T1..T6

The values of RFD, PFD, and RDA for testcasesT1..T6 are

calculated by using (1), (2)and (4), respectively. Table IV

represents the values for all three factors which are RFD, PFD,

RDA for tes case T1.. T6 respectively.

Table V: Test Case Ranking for T1..T6 Respectively

Table VI: Test Cases Ordering for Proposed Approach and Previous Work

5. Industry based case study

APGPCL the First Gas Power Plant in A.P. and South India APG

PCL is the first gas based power plant to be set up in Andhra

Pradesh and South India– attribute to the pioneering efforts of

APSEB and the entrepreneurial spirit of Industries in Andhra

Pradesh. APGPCL is an innovative business model of Public-

Private Partnership. APGPCL is the lowest cost Gas based

electricity generating station in the country. Both Stage-I and

Stage-II Plants of APGPCL were built ahead of the scheduled time

and within the estimated costs.

This research endeavor displays an intricate industry requisition.

They exemplify, dependent upon An cement the event study, how

test particular architects camwood Right away fill in with the

coordinated test nature's domain.

Here, the test cases were made into several sets, each set of test

cases being called a Test Suite. So, while Tn is Test Suite n, tjk is

the test case j in Test Suite k. For prioritization, a genetic

algorithm was used.

The process includes

Step 1: Organize manually the test cases as sets in Test Suites

Step 2: Identify the scope of the next release and determine which

change request will be included in the next build.

Step 3: Document the system requirements, functional requirents

and implementation plans

Step 4: Implement the change

Step 5: Test or verify the change

Step 6: Release

136 International Journal of Engineering & Technology

Improvised Industry Oriented Genetic Algorithm f or

Regression Test Case Prioritization

Input: Test suite TK and test case ranking (TCR) for every test

case are inputs of the algorithm.

Output: Prioritized order of test cases

Algorithm: A web based project had a total of 244 test cases.

Here, these test cases were made into several sets, and each set of

test cases is called a 'Test Suite'. So, while Tn is Test Suite n, tjk is

the test case j in Test Suite k. For prioritization, a genetic

algorithm was used.

1. Organize, manually, test cases as sets in Test Suites

2. Carry out Regression Testing, tracking defects,

measuring test time, and assigning severity manually

(very high risk = 10 etc. to least risk = 2)

3. Select Test Suites for mutation based on the formula

4. Perform mutation of selected Test Suites

5. Repeat steps 2, 3,4 Only the top 80% of Test Suites were

selected for mutation, bottom 20% being left untouched.

Mutation involved a simple (and random) swap of test

cases between pairs of Test Suites. So, the genetic

algorithm did not increase the number of Test Suites or

the number of test cases, but merely the way the

grouping was done. Another approach is mentioned in

[9].

There are 244 cases for this Industry case study in which each test

case assigned a priority in which Priority number 5 has the least

priority and Number 1 has the Highest priority and there are 34

functionality.

Table VII: 34 Functionality with no. of Test Cases and Priority

6. Use of neural network in regression testing

Neural Network is a computational intelligence technique inspired

by biological nervous system. They are information processing. A

paradigm and are use for pattern recognition. Neural networks are

physical cellular systems which can acquire, store and process the

experiential knowledge .Like humans, neural networks learn by

examples and their past experiences. They are expert in deriving

meaning form imprecise data and extracting patterns. They are

adaptive to the surroundings. They do not use any algorithmic

approach to solve a problem to train the neural network model is

as follows

Step 1: Data should be collected

Step 2 : A Network should be created

Step 3: Configure the network

Step 4: Initialize the weights and biases

Step 5: Train the network

Step 6: Validate the network

Step 7: Use the network.

A. Defect severity automation

Even with automated testing tools like Selenium, some amount of

manual intervention is required. Our attempt, using genetic

algorithm, is an effort to minimize such intervention in subsequent

cycles of regression testing. For this reason, the defect severity

was kept unchanged. This section of the paper describes our

attempt to modify defect severity in each cycle of regression

testing with the help of an Artificial Neural Network (ANN). The

initial ANN for our case study has just 2 inputs --- functionality

code and error code. It has just one hidden layer.

International Journal of Engineering & Technology 137

For the project completed there were 2 functionality codes as

shown in the table below.

Code | Functionality

 1 | Change password

 2 | Monthly generation

The error code was assigned zero when the actual output did not

match predicted output; otherwise, the run time error code of the

Java Virtual Machine was assigned.

The table below presents the results of ANN as compared with

manually assigned severity. (For each of the 8 faults, the

remaining 7 faults were used to train the ANN.)" Each Output has

defined category.
Table VIII

ANN OUTPUT Tested application output

 CORRECT WRONG

Correct 1 True Positive 2 True Negative

Wrong 4 False Negative 3 False Positive

Table VIII displays the four possible categories where each output

can be placed. Since the ANN is only an approximation of the

actual system, some of its outputs may be incorrect. On the other

hand, the tested application itself may produce errors, which is the

main reason for the testing process. If the ANN output is correct

while the output of the tested application is wrong, the evaluation

of the comparison tool is classified as being a true negative or a

category of 2.

7. Conclusion

A simple case study in regression testing is first discussed where

the formula derived through data mining is sufficient to prioritize

test cases. For a project completed by our students, the

methodology is illustrated through tables. However, for industry

based projects, the test cases are so large that they need to be

grouped as Test Suites. A genetic algorithm described in this paper

is used to re-configure Test Suites, comprising of test cases, to

enhance prioritization. Since defect severity is needed for this

prioritization, an attempt is made to automate this step through

ANN with just two inputs (functionality code and error code). The

methodology proposed by us requires use of automated testing

tool, and the use of Selenium open source tool is demonstrated.

References

[1] HemaShankari K, ThirumalaiSelvi R & Balasubramanian NV,

“Industry Based Regression Testing Using IIGRTCP Algorithm

and RFT Tool”, Lecture Notes in Engineering and Computer
Science: Proceedings of The International Multi Conference of

Engineers and Computer Scientists, pp.473-478, (2016).

[2] Rothermel, G, Untch, R, Chu, C & Harrold, M, “Test case
prioritization: An empirical study”, IEEE International conference,

on Software Maintenance, pp.179-188, (1999).

[3] Pravin A & Srinivasan S, “An Efficient Algorithm for Reducing
the Test Cases which is Used for Performing Regression Testing”,

2nd International Conference on Computational Techniques and

Artificial Intelligence, pp. 194-197, (2013).
[4] Elbaum S, Malishevsky A & Rothermel G, “Prioritizing test

casesfor regression testing”, Proc. ACM SIGSOFT International

Symposium on Software Testing and Analysis, pp.102–112, (2000).
[5] Wong W, Horgan J, London S & Agrawal H, “A study of effective

regression testing in practice”, Proc. of the EighthIntl. Symp. On

Softw, pp.230-238, (1997).
[6] Beena R & Sarala S, “Code Coverage Based Test Case Selection

And Prioritization”, International Journal of Software Engineering

& Applications, Vol.4, No.6, (2013).

[7] Kavitha R & Sureshkumar N, “Test Case Prioritization for

Regression Testing based on Severity of Fault”, International

Journal on Computer Science and Engineering (IJCSE), (2010).

[8] Musa S, Sultan A, Md AGA & Baharom S, “A regression test case

selection and prioritization for object-oriented programs using

dependency graph and genetic algorithm”, Research Inventy:
International Journal of Engineering and Science, Vol.4, No.7,

pp.54-64, (2014).

[9] Sujatha M.K & Varun, K, “Requirements based Test Case
Prioritization using Genetic Algorithm”, International Journal of

Computer Science and Technology, Vol.1, No.2, pp.189-191,

(2010).
[10] Farooq QUA, Iqbal MZZ, Malik ZI & Nadeem A, “An approach

for selective state machine based regression testing”, Proceedings

of the 3rd International Workshop on Advances in Model-based
Testing, pp.44–52, (2007).

[11] Rothermel G, Untch R, Chu C & Harrold MJ, “Test case

prioritization: an empirical study”, Testing European Journal of
Scientific Research, Vol.55, No.2, pp.261-274, (2011).

[12] Elbaum S, Malishevsky A & Rothermel G, “Incorporating varying

test costs and fault severities into test case prioritization”, IEEE
Proceedings of the 23rd International Conference on Software

Engineering, pp. 329-338, (2001).

