

Copyright © 2018 C. Vasan Sai Krishna et al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 230-233

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Reducing distributed denial of service (DDoS) attacks using

client puzzle mechanism

C. Vasan Sai Krishna1 *, Y. Bhuvana1, P. Pavan Kumar1, R. Murugan2

1Student, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation

2Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation

*Corresponding author E-mail: vasanchanumolu@gmail.com

Abstract

In a typical DoS attack, the attacker tries to bring the server down. In this case, the attacker sends a lot of bogus queries to the server to

consume its computing power and bandwidth. As the server’s bandwidth and computing power are always greater than attacker’s client

machine, He seeks help from a group of connected computers. DDoS attack involves a lot of client machines which are hijacked by the

attacker (together called as botnet). As the server handles all these requests sent by the attacker, all its resources get consumed and it

cannot provide services. In this project, we are more concerned about reducing the computing power on the server side by giving the

client a puzzle to solve. To prevent such attacks, we use client puzzle mechanism. In this mechanism, we introduce a client-side puzzle

which demands the machine to perform tasks that require more resources (computation power). The client’s request is not directly sent to

the server. Moreover, there will be an Intermediate Server to monitor all the requests that are being sent to the main server. Before the

client’s request is sent to the server, it must solve a puzzle and send the answer. Intermediate Server is used to validate the answer and

give access to the client or block the client from accessing the server.

Keywords: Distributed Denial of Service Attacks (DDoS); Client Puzzle Mechanism; Cryptographic Puzzles; Authentication.

1. Introduction

In a typical DoS Attack, the attacker hacks a set of computers and

uses them to flood the server. DoS attacks do not impose any

threat to the server. But they prevent access to the server or the

website. DoS attacks are classified into Volume based, Protocol,

and Application layer attacks. DoS attacks crash the system to

disrupt the access which is given to a real client who can't send or

get the acknowledgement/response from server after the attack.

The attacker consumes and uses the majority of the assets of the

web server like computational power.

A counter measure is a process that avoids or mitigates the conse-

quences of the DoS attack done on the server. In this paper we

provide details regarding a project we have developed in light of

the thoughts of Yongdong Wu, Zhigang Zhao. Denial of Service

attacks are of three types: Smurf, UDP flood and SYN flood at-

tacks. Regardless of the huge assortments of attacks there is a

typical target among a wide range of DoS attacks. The attackers

intend to disrupt the assets of the framework which contains CPU

cycles, memory, computation power. The attacker usually produc-

es a large number of requests or bogus queries so that he can con-

sume all the computation power of the server and thereby prevent

the server from being accessed by the legit users for whom the

services are intended. Regularly their task is just to generate and

send a lot of queries to the web server or the website. However,

the attack can shift fundamentally in numerous angles. In this

paper we propose cryptographic puzzles as a counter measure on

the attacks which can save a lot of resources of the server and let it

offer services to the intended users. In the puzzle scheme, the

client has to do some work before the server responds to its re-

quests. The client machine which cannot solve the puzzle within

the required time will be blocked from accessing the server. This

whole process requires a human to operate the client machine so

that the process cannot be automated just like in the case of bot-

nets. If the process is automated in a botnet, the puzzle cannot be

solved and submitting the wrong answer or not solving or not

submitting the answer within the specified time leads to blocking

the client. In most normal cases, each puzzle requires a great

number of cryptographic operations to be performed, for example,

hashing to process the puzzle arrangement. So, in this case, the

attacker need to possess and control a lot of resources like client

machines, more bandwidth, and processing power than the server.

Initially, the client won’t be able to send request to the server di-

rectly.

Fig. 1: A Typical DDoS Attack.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 231

We introduce an intermediate server which lies in between the

client and the server. The intermediate server looks after the puz-

zles, Answers to the puzzles and all. It processes the request and

gives the client a puzzle to solve. The intermediate server can also

specify the time period in which the puzzle is supposed to be

solved. If the client machine is unable to solve, it blocks the ac-

cess. The development of this scheme is to block access to the

attackers or illegitimate users and provide services to the legit

users for whom the services are intended.

2. Literature survey

Juels et.al presents a protocol where small crypto puzzles can be

used to prevent or control resource depletion attacks [1]. This

protocol is useful when attackers are capable of depleting connec-

tions at a fast rate i.e., attackers exploiting internal resources or

SSL protocols.

Jeff Green et.al analyses different attack types in perspective of

GPU-based attacks and distinguishes attributes that enable securi-

ty systems to withstand attacks [2]. Specifically, they exhibit hash-

reversal plans which adjust exclusively on server. He also presents

about different Proof of Work techniques which require the client

to put some computational effort to be able to solve the puzzle to

gain access to the server. The main proposal is that the Hash-

Reversal Proof of Work schemes are able to restrict by adjusting

the difficulty of the puzzle by basing on the client’s past behavior.

Kaiser et.al in their research work described an approach to

mod_kaPoW system which has great efficiency and human trans-

parency of PoW strategy [3]. The proposed mechanism has a

software backwards compatibility. Still, there are a few places

where CAPTCHAs do not work up to the mark. For example,

visually challenged people cannot solve them.

Christos et.al presents different methods to deal with the DDoS

and DoS attacks so that they can be prevented [4]. Besides, differ-

ent specifications, effect of the attacks on the server, attack land-

scapes are presented in the paper. The objective of the paper is to

give a brief about the different types of DoS and DDoS attacks,

how DDoS attacks can be done and in this way more productive

and viable calculations, strategies, and techniques to battle these

attacks can be created. They have mentioned in their research

work that not only wired networks, but also wireless networks are

prone to DDoS attacks.

Qiang Tang et.al have proposed a security architecture where he

concentrated on two properties, regarding the determinable diffi-

culty and the parallel computation resistance [5].

Yves Igor et.al introduces a client puzzle mechanism where the

generation of puzzle is dependent on calculating of square roots

modulo with a prime [6]. This mechanism is a counter measure for

solving the puzzles by using parallel computing i.e., running a

single puzzle on different machines to solve it. According to the

proposed method, it is impossible to distribute the puzzle solving

task to different machines. This is an advantage because the solu-

tion cannot be obtained faster than scheduled. The puzzles can be

implemented with feature rich UI in an interactive manner without

compromising comfort with security. They’ve also introduced a

bandwidth based cost factor for solving the puzzle. This uses cli-

ent-side computation in order to reduce the consumption of serv-

er’s computational resources.

3. Implementation

3.1. Time-lock mechanism

In a time-lock puzzle scheme the client machine will be demanded

to give solution to the puzzle in a specific atime. Unlike in the

other puzzle schemes where the solution can be found at any time,

A time lock puzzle restricts to a specific amount of time. A time

lock puzzle system hides the puzzle at the client side and allows

the sender to solve the puzzle only within a particular amount of

time. If the sender fails to solve it in the specific time, He will be

blocked. The first objective was to guarantee that a customer can't

decode a given message until the point that a given timeframe has

passed. This is the notion of time-released crypto where we end up

encrypting a message so that it cannot be decoded by others in-

cluding the sender until a particular amount of time has passed.

Here we are trying to send information into the future. These puz-

zles need a precise amount of time to solve. The solution reveals a

key that can be used to decrypt the encrypted information.

3.2. Puzzle based authentication

Puzzle Based mechanisms are used to ensure that access to the

server or the website is only given to a client for whom the service

is intended. Puzzle based mechanisms usually try to reduce the

burden on the server and will require the client machine to per-

form computationally expensive tasks so that we can ensure that

the access is given to only the legitimate client but not the hacker.

These mechanisms are used to maintain authenticity. Here a puz-

zle will be generated at the client side. The client puzzle is gener-

ated at the client side and the client has to solve it so that the serv-

er can be accessed.

3.3. Memory-bound client puzzles

A resource can be exploited by the attackers if the clients have no

cost to use it. So, we require the client to do some computationally

expensive tasks. This prevents DDoS attacks because the attacker

has to spend a lot of resources to send requests to the server or the

website. But there may be many legit users who have access to

low computation powers. This prevents legit users from accessing

the website or server. Abadi et. al. [7] and Dwork et. al. [8] ad-

dressed this limitation by showing that memory access times vary

much less than CPU speeds, and hence offer a viable alternative.

We are proposing a software puzzle methodology in this paper in

order to ensure authenticity and provide access to only those legit-

imate users. This can prevent botnets from exploiting the websites

or the servers’ resources. Here we introduce an intermediate server

which lies in between the client and the server. This intermediate

server can be used to look after the IPs that are doing malicious

activities. The intermediate server can be used to monitor the traf-

fic because the users are not actually provided access directly to

the web server. There are intermediate servers in between to regu-

late and monitor the traffic. They can be used for block-

ing/unblocking the users too.

To access the web server the client has to solve the puzzle given

by the server so that he can be recognized as the legitimate users.

Fig. 2: Architecture of the Proposed System.

Unlike existing puzzle schemes, the puzzle will only be generated

after the request is received from the client side. Here we protect

the puzzle code so that it cannot be decoded by bots so easily. We

also put time limit for solving it. The client will be demanded to

produce a solution to the puzzle in a given specific time period

that is given by the server. If he fails to solve the puzzle in the

given time or provides a wrong answer, the message will not be

sent to the server. At first the client is required to send the mes-

sage. The message will not be received at the server side until the

puzzle has been solved. The intermediate server will then have to

232 International Journal of Engineering & Technology

set some time limit to solve the puzzle. Upon successful solving of

the puzzle, the message will be received at the server’s end.

Though we focus on GPU inflation techniques, it can be extended

to prevent attackers from exploiting other resources like cloud

computing too.

SSL protocol is most widely used across many websites. There is

a limitation/drawback for this protocol i.e., the SSL server must

perform expensive operations like RSA decryption. The server

performs the decryption for every request or query from the client

thereby processing a great number of requests. This makes the

protocol vulnerable to DoS attack. In our work we mainly concen-

trate on protecting the web server against DoS attacks. We will

always ensure that the process of solving the puzzle should always

be done by physical presence of a human being and cannot be

automated. The main motto is to secure the SSL server from the

GPU inflated DoS attacks. SSL protocol usually involves several

rounds which include RSA decryption round. The depth of the

defence mechanism is dependent on time cost of the server. The

proposed client puzzle mechanism is dynamic and is generated

after a request is received from the client side. This method helps

when the attacker can inflate the GPU and automate the puzzle

solving process. This weakens the effectiveness of the client puz-

zles. Here we introduce a new web server called the Intermediate

Server. The Intermediate Server can be a virtual and isolated space

in the same web server or a different web server at another loca-

tion. Unlike in traditional client-server model where both data and

authentication mechanism are in the same web server, we use an

intermediate server to authenticate users. Intermediate server also

maintains a log of the IPs and can also be used to block suspicious

users. We divide the whole thing into three parts namely the Client,

Intermediate Server and Web Server.

3.4. Web server

A typical client-server model consists of a web server where we

will have all the data in a centralized web server. In our work,

puzzle generating code and the data will be in the web server.

There will be different Intermediate servers deployed at different

places. The main server will generate the puzzle algorithm and

will validate the solution. The client will be sending requests to

the web server.

Fig. 3: Server-Side Log.

Upon receiving the requests from the client, the network server

checks if the request is legit or not by going through the IP log

(Fig 3). The database consists of the secret key, number of packets,

keypath, issued time, resolved time. If the IP is supposed to be

blocked, the Intermediate Server will block it. Else the request will

be forwarded to the web server. The web server will then generate

a puzzle which has to be solved by the client. The web server will

also give some time to solve the puzzle. If the puzzle is solved by

the client in the specified time, the web server accepts the request

and a secure connection will be established. Request processing

and resource sharing will be done post connection establishment.

3.5. Client/node

Client is nothing but the computer that belongs to the user from

which he/she is trying to access the website. In order to gain ac-

cess to the server, the client machine has to solve computationally

expensive tasks.

Fig. 4: Client-Side fields for Puzzle Solving.

The client puzzle needs to be solved before the client’s message or

query is sent to the server. Puzzle generation is done before re-

ceiving the query by the intermediate server. Then the client needs

to solve the puzzle in the time specified by the intermediate server.

This is done to authenticate client to the website or the server.

We will always ensure that the client machine cannot automate the

puzzle solving process and human presence is required to solve

the puzzle. The attackers usually hack botnets to automate the

puzzle solving process. Thus, by taking proper security measures

like “puzzle generation upon receiving the request”, we can pro-

tect websites/servers from Denial of Service attacks.

3.6. Intermediate server

Fig. 5: Log Maintained by the Intermediate Server.

Between the client and the server, there exists an intermediate

server which is used to generate puzzles that are to be solved by

the client to gain access to the server. The intermediate server is

responsible for preventing the malicious activities by clients and

abuse of the server’s resources. It generates a puzzle upon receiv-

ing request from the client node and allocates some time to solve

the puzzle. If the client fails to solve the puzzle within specified

time, he cannot access the server or the website. Through interme-

diate server we can monitor traffic (Fig 6). It also maintains a log

(Fig 5) of the IPs for which the access is given and those for which

the access is not given. The log consists of Source IP, Destination

IP, Seq Number, Status. Intermediate server can block and un-

block the malicious clients from accessing the website.

Fig. 6: Signal in Intermediate Server.

4. Conclusion

Denial of Service attacks are evolving day by day. The attackers

are creating botnets with more resources. In this paper we have

proposed a method to authenticate users. The users are required to

prove that they’re humans before they are given access to the web

server. In this method, a client puzzle algorithm is generated only

after the client sends request for resources to the web server. This

International Journal of Engineering & Technology 233

method reduces the burden on web server which is done by at-

tackers to crash it. Access is given only to those legitimate users

for whom the resources are intended. This demands the client to

spend some computing resources than putting it all on the web

server. We also introduced an intermediate server which receives

the requests first and then forwards to the web server where the

actual resources exist. The intermediate server is used to maintain

a log of the IPs which are accessing the resources, to

block/unblock IPs, to monitor the traffic. The scheme always en-

sures the physical presence of human being and blocks those client

machines which belong to botnets.

References

[1] A. Juels and J. Brainard, “Client puzzles: A cryptographic counter-
measure against connection depletion attacks,” in Proc. Netw. Dis-

trib. Syst. Secur. Symp. 1999

[2] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and C. A. Gun-

ter “Reconstructing Hash Reversal based Proof of Work Schemes,”

in Proc. 4th USENIX Workshop Large-Scale Exploits Emergent

Threats, 2011.
[3] E. Kaiser and W.-C. Feng “mod_kaPoW: Mitigating DoS with

transparent proof-of-work,”, in Proc. ACM CoNEXT Conf., 2007.
https://doi.org/10.1145/1364654.1364737.

[4] Christos Douligeris, “DDoS attacks and defense mechanisms: clas-

sification and state-of-the-art,” Department of Informatics, Univer-
sity of Piraeus, 80 Karaoli and Dimitriou Str, Piraeus 18534, 13 Oc-

tober 2003.

[5] Qiang Tang* and Arjan Jeckmans, “Towards a security model for
computational puzzle schemes,” International Journal of Computer

Mathematics Vol. 88, No.11,pp. 2246–2257, July 2011.

https://doi.org/10.1080/00207160.2010.543951.
[6] Yves Igor Jerschow Martin Mauve, “Non-Parallelizable and Non-

Interactive Client Puzzles from Modular Square Roots”, Institute of

Computer Science, Heinrich Heine University, D¨usseldorf, Ger-
many.

[7] Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately

hard, memory-bound functions. In: Proceedings of Network and
Distributed Systems Security Symposium, San Diego, California,

USA, 2003, pp. 107–121 (February 2003)

[8] Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions
for fighting spam. In: Proceedings of the 23rd Annual International

Cryptology Conference, pp. 426–444 (2003)

https://doi.org/10.1007/978-3-540-45146-4_25.
[9] T. J. McNevin, J.-M. Park, and R. Marchany, “A DoS limiting net-

work architecture,” Virginia Tech Univ., Dept. Elect. Comput. Eng.,

Blacksburg, VA, USA, Tech. Rep. TR-ECE-04-10, Oct. 2004.
[10] Sujata Doshi, Fabian Monrose, and Aviel D. Rubin Johns, “Effi-

cient Memory Bound Puzzles Using Pattern Databases” J. Zhou, M.

Yung, and F. Bao(Eds.): ACNS 2006, LNCS 3989, pp. 98–113,
2006. c Springer-Verlag Berlin Heidelberg 2006.

[11] Yongdong Wu, Zhigang Zhao, Feng Bao, and Robert H. Deng, ”

Software Puzzle: A Countermeasure to Resource-Inflated Denial-
of-Service Attacks ” Ieee Transactions On Information Forensics

And Security, Vol. 10, No. 1, January 2015

[12] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms for
Systems and Processes. San Mateo, CA, USA: Morgan Kaufmann,

2005, p. 19.

[13] J. Ansel et al., “Language-independent sandboxing of just-in-time
compilation and self-modifying code,” in Proc. ACM SIGPLAN

Conf. Program. Lang. Design Implement. 2011, pp. 355–366.

https://doi.org/10.1145/1993498.1993540.
[14] H.-Y. Tsai, Y.-L. Huang, and D. Wagner, “A graph approach to

quantitative analysis of control-flow obfuscating transformations,”

IEEE Trans. Inf. Forensics Security, vol. 4, no. 2, pp. 257–267, Jun.
2009. https://doi.org/10.1109/TIFS.2008.2011077.

[15] D. Kahn, the Codebreakers: The Story of Secret Writing, 2nd ed.

New York, NY, USA: Scribners, 1996, p. 235.
[16] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion at-

tacks using congestion puzzles,” in Proc. 11th ACM Conf. Comput.

Commun. Secur, 2004, pp. 257–267.
https://doi.org/10.1145/1030083.1030118.

https://doi.org/10.1145/1364654.1364737
https://doi.org/10.1080/00207160.2010.543951
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1145/1993498.1993540
https://doi.org/10.1109/TIFS.2008.2011077
https://doi.org/10.1145/1030083.1030118

