

Copyright © 2018 D. NagaMalleswari et al. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (1.1) (2018) 314-318

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A study on risk assessment techniques in information systems

D. Nagamalleswari 1, J. Nagalakshmi 2 *, G. Karthik 2, P. Harthita 2

1 Professor Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation,

Vaddeswaram, Guntur, Andhra Pradesh, India-522502
2 Student Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation,

Vaddeswaram, Guntur, Andhra Pradesh, India-522502

*Corresponding author E-mail: nagalakshmi3045@gmail.com

Abstract

In today’s world, IT industry is rushing forward with an advancement of developing the advanced software. The Developers always try

to develop the software projects without any errors or failures. Even though the developers take many measures to avoid software project

failures, they are facing the failures that are occurred due to Risks that take place in the software projects. We cannot remove risk com-

pletely to the 100% extent, but we can try to minimize the risk in the projects by assessing the risks. So, in this paper we are providing a

survey which overviews on different risk assessment techniques. This survey provides information about various risk assessment tech-

niques which will be further useful for the software developers to minimize the risk and make the successful project.

Keywords: Assessment; Failures; Risk; RiskManagement; Techniques.

1. Introduction

Software projects will be perfect when they are assessed with

risks. Risk based software project or any other information sys-

tems may lead to the unsuccessful results. So in order to get the

perfect outcome risk should be assessed based on the type of pro-

ject or an information system. Risk may happen in all type of sys-

tem like electronics, networks etc. based on the type of action.

This paper gives information and role of risk in the information

system. It also explains the type of risks that happen in the infor-

mation system and make the project fail. Many of them proved

that, to get a software project risk free, is only possible through

assessing the risks. To assess the risk we need to know completely

about risk management. So, here we are discussing and surveying

about software Risk Management and steps involved in it, how the

risk is assessed and what are the risk assessment techniques.

1.1. Definition of risk

Risk can be defined as an unexpected interruption taken place

which leads to failure of the project. According to ISO Guide 73

ISO 31000 [23], Risk is defined as “Effect of uncertainty on ob-

jectives. Note that an effect may be positive, negative, or a devia-

tion from the expected result. Also, risk is often described by an

event, a change in circumstances or consequences”. Institute of

Risk Management (IRM) [23] defined risk as “Risk is the combi-

nation of the probability of an event and its consequence. Conse-

quences can range from positive to negative. The Institute of In-

ternal Auditors (IIA) defines risk as the uncertainty of an event

occurring that could have an impact on the achievement of objec-

tives [23]. Risk can produce any type of results either positive or

negative or may leads to the uncertainty. Guide 73 [23], defini-

tions of risks states that risks are classified into three sections.

They are: (i) hazard (or pure) risks (ii) control (or uncertainty)

risks. (iii) Opportunity (or speculative) risks.

2. Risk management

2.1. Risk Management is always a continuous process

Risk Management is well defined as the combination of risk con-

tainment and risk mitigation [1].Unless project managers take

appropriate measures, Risks may cause adverse effects in the

software projects. Risk Management have two main steps, they are

Risk control and Risk Assessment, each are alienated into three

interior stages [2]. Risk assessment has Risk Identification, Risk

Analysis and Risk Prioritization. Risk Control will have Risk

Management Planning, Risk Resolution and Risk Monitoring.

Risk identification gives project-specific risk items list that they

may reduce the successful outcomes in the project. Many more

lists of risks which have possibility to occur in software projects

have been described [3] [4] [5], and they are classified based on

their effects [6]-[10].

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 315

Fig. 1: Steps in Risk Management.

Risk management planning defines provides the description about

the activities of the risk reduction regards the importance of the

process [11], organization [8] [12], and technology [13].The in-

formation about the elimination of the risk items are provided by

the Risk Resolution. The tracing of tracks development of the

project towards risk items resolve is done by Risk Monitoring. By

this we may observe that the Risk Management is a process which

is continuous. Software development is the most complicated and

incalculable action related with the risks causing the fatal error.

With increase in many organizations that are highly supporting for

the growth of the software because the risk assessment and risk

mitigation becomes the vital [14]. The Aihua Yan [14] tries to

question the following:

1) In practice the way How to apply risk management?

2) What are the different risk management strategies consid-

ered?

3) What is the role of risk management in software develop-

ment?

4) What is the process of risk management?

2.2. Strategies in risk management

From the analysis older researches risk management strategies are

classified into four types they are

Risk -action list, risk-strategy analysis, risk-list, risk-strategy

model. From the dynamic system theory a continuous process is

introduced and also the author introduces a framework for the

application of management of risk [14]. The Aihua Yan [14] tries

to explain the approaches of Risk Management. Risk Management

has the following approaches [14]

1) Risk -action list.

2) Risk-strategy analysis.

3) Risk-list.

4) Risk-strategy model.

2.2.1. Risk action list

The record of the prioritized risk with the corresponding resolu-

tion actions [25].

2.2.2. Risk strategy analysis

Risk-strategy analysis makes a sense that it is a stepwise process.

It also provides the in depth details of the risk [25].

This model shows the similarities like the risk-strategy model.

This also provides percentage of resolution actions and risk items

but, it offers different application of trial-and-error techniques.

These two methods differs at the point that there is no model cou-

pling aggregate risk elements to aggregate resolution actions [25].

Customers, Developers, Managers are involved in this process that

merges all the risks to actions in order to develop a complete risk

strategy.

2.2.3. Risk-list

This approach gives the detailed Prioritized Risk items list

[25].This list of prioritized risk items might help the project man-

agers only concentrate on the possible risk source. This risk list is

most useful for risk assessment [25].

2.2.4. Risk-strategy-model

This approach is also called as the contingency model which is

used to link the risk events to percentage of resolution actions

[25]. Basically, this approach mainly hides the types of risks in it

and form a profile for risk. Abstracting this is the first task and

then abstracts the action categories and then makes the overall risk

strategy [25]. This helps us to classify the project into a category.

According to that category, this approach helps us to provide de-

tailed resolution action. The author made a detailed survey to

prove that risk management is a continuous process [14]. Here is a

continuous process of risk management. Aihua Yan [14] proposed

a practical approach based on the Iversen et al [14]. This is modi-

fied model for the Iversen Risk assessment model. In order to

improve the Software performance Iversen et al developed a risk

assessment model by using the action research. The following

model is modified by authors [25] [14].

From risk management in software development by Aihua Yan

[14] defines the risk in two ways, one is in qualitative and other is

in quantitative. The qualitative definition of risk by author is that

extent of risk as the project uncertainty and the project failures

with potential loss [24].The other one is quantitative, and the risk

in the form of quantitative was defined:

RE = Prob (UO) * Loss (UO)

Loss (UO) - loss to the parties affected if the result is unsatisfacto-

ry

Prob (UO) - probability of an unsatisfactory outcome, and RE

refers to risk exposure [14].

2.3. Advantages of risk management

There are many advantages by using risk management in the soft-

ware related projects and includes helping the developers to be

focused on linking potential threats to possible actions, emphasiz-

ing potential causes of failure, providing the combined interface of

the project among its members [25] , and problematic aspects.

There are many approaches in risk management that are developed

to find, analyze, and challenge risks in portfolio of project, re-

quirement risks, system development risks, and implementation

risks [25].

3. Literature review

In order to improve the Software performance Iversen et al devel-

oped a risk assessment model by using the action research. This

model is modified by Iversen, Jakob H [25], Aihua Yan [14]. A

lesser acknowledged trying out risk-based technique checking out,

this considers the failure rate of the source code and decided by

means of complexity [15]. The object-oriented application, a new

method was introduced for detecting risk. Risk-based testing is

one of the procedures makes sure that it examines and fix solu-

tions for the muddle. Risk can be classified into two factors main-

ly probability of the failure and intensity of the failure event. Risk

calculation can be expressed as:

Risk = ∑ P (Ei) * C (Ei), i=1, 2, 3 ...n.

N= no. of events failed that are unique [15].

Risk Manage-

ment

Risk Assess-

ment

Risk Control

Risk Manage-
ment Planning

Risk Resolu-

tion

Risk Identifica-

tion

Risk Analysis Risk Prioritiza-

tion

Risk Monitor-

ing

316 International Journal of Engineering & Technology

P (E) - probability

C (E) – Event’s cost.

Risk-based test mostly concentrates in examining product then

determining test design stipulated on the regions well on the way

to encounter an issue that would have the most noteworthy effect

[16] The cost of the failure event c(Ei) rely upon the idea of the

application and is controlled by space investigation. In any case, in

this paper seriousness evaluation isn't discussed. So in this tech-

nique the essential undertaking is to discover the reasons that may

make the product down. This has been demonstrated that code

which is more complicated that may lead to more occurrence of

blunders and issues [17]. Cyclomatic Complexity is the method or

an approach used for determining the complexity of the code [18].

Accordingly, constraints are used to forecast project failure by

understanding the defects in the module and then sorting them in

accordance with the complexity. Finally using the complexity

rankings determining the seriousness of the failure event from the

domain and also specifies which module should get highest priori-

ty. Yet, module multifaceted nature is a single variable measure;

furthermore, we can ignore exceptionally code with risk [19].

3.1. Metrics for calculating risk

Further, in this paper some system of measurement were discussed

which were identified by The Software Assurance Technology

Center (SATC) [15] located at NASA and one of the space center

has discovers six metrics.

1) Number of Methods (NOM).

2) Weighted Methods per Class (WMC).

3) Coupling between Objects (CBO).

4) Response for Class (RFC).

5) Combination of RFC/NOM.

6) Number of Children (NOC).

As the metrics are determined, we then need to explain guideline.

When we initially started to apply a portion of the customary

measurements to protest situated program, we observed esteems

by and they are less acclimated with seeing practically composed

program. In light of the early boundaries, the OO program is less

complicated and significantly more measured than the non-OO

inheritance code. However, due to the distinctive way of the OO

framework is constructed, the low numbers were usually ambigu-

ous - overlooking the connections among the class present over

[15].

The metrics have some boundaries values which noted below [15].

1) Number of Methods (NOM) [15] ≤ 20 favored, ≤ 40 ade-

quate per class [15].

2) Weighted Methods per Class (WMC) [15] ≤ 25 favored

≤40 satisfactory [15].

3) Response for Class (RFC) [15] ≤ 50. We have seen many

classes with RFC more than 50. On off chance that the RFC

is higher, it implies the many-sided quality is expanded and

understandability is diminished [15].

If there are more numbers of strategies which are appealed from

the class in the form of message, there is high intricacy of the class

by muddling, debugging and testing. Developing a class with RFC

may lead to some problem due to potential for a progressively

outstretching influence.

4) RFC/NOM [15] is less than 5 in C++, and is less than or

equal to 10 for Java. This is used for shifting the classes that

are indeed of testing extensively. The use of classes in java

for every use is more, this allows more for the use of this

metric [15].

5) Coupling between Objects (CBO) [15] is less than 5. The

classes with more CBO indicate that these are very tough to

reuse, maintain and understand. If the CBO rate is more, it

is very sensitive to change some of the areas like design and

it mays leads to difficulty in maintenance [15]. We can no-

tice easily the class due to low coupling which advances the

encapsulation and its standards [15].

6) Depth in Tree greater [[15]] than 5, this indicates the meas-

ure that the class probability. DIT of 0 means a root. If the

percentage of DIT with 2, 3 is more then there is more

chance of reuse [15].

7) Number of Children (NOC) the more prominent is the quan-

tity of the youngsters, greater the probability of despicable

deliberation of the parent and requirement for extra testing,

however the more prominent the quantity of kids, the more

the reuse since legacy is a type of reuse [15]. Until there is

no "great”, "awful" number for NOC, its esteem ends up no-

ticeably vital when a class is found to have high esteems for

different measurements [15]. OO software measurements

can be utilized as a part of mix to recognize classes that are

well on the way to posture issues for an undertaking. The

SATC has utilized the information gathered from a large

number of question situated classes to decide an arrange-

ment of benchmarks that are successful in recognizing po-

tential issues. At the point when hazardous classes are like-

wise recognized by area specialists as basic leads an

achievement which undertook, testing can be allotted to re-

lieve chance. Hazard-based test may enable engineers to

discover and settle imperative programming issues prior in

the test stage [15].

Until here we examined about all the testing methods based on

risk. Now we are going to examine about the risk assessment

based on source code proposed by Arie van Deursen and Tobias

kuipers [21]. This mainly confers about “primary facts” and “sec-

ondary facts” for software risk estimation. The facts that are ac-

quired by instinctive analysis of source code of the particular sys-

tem are primary facts, whereas secondary facts are the facts that

are acquired from the people that are going with or going on the

system and accessible affirmation. We narrate about both the facts

and how they are resolved and how we are connecting the eluci-

dating gap from the unprocessed facts to a brief risk assessment

that involves endorsement to reduce the risk. This technique was

developed while accomplishing various risk assessments, and is

constantly being improvised. These assessments are claimed in a

way such that the primary and secondary retrievals are claimed as

Secondary Fact Retrieval: One can examine a system by knowing

the data available in the organization. This data is resolved by

conducting meetings with the stakeholders, and by analyzing the

design documents, affirmation, agreements etc.

Primary Fact Retrieval: Here we examine the program of the sys-

tem by itself. The source code written in different languages for

several different subsystems are incorporated relations with one or

other organizations, and resolute definition of the information and

code manipulation [21].

The distance between the two reclamations is connected as the

outcome of source code analysis is associated to the outcome ac-

quired from the interviews. A software stakeholder have dissimilar

perspective of the same system, the outcome that is attained by the

analysis of program helps in evaluating the perspectives also rec-

ognize if risk is deduced is again a risk or not [21].

Here, Arie van Deursen and Tobias Kuipers [21] gave the basis for

the utilization of assessments. Let us discuss some examples that

explains the use of assessments.

i) An organization has purchased a benchmark software pack-

age. This purchased package doesn’t accurately accomplish

the needs of the organization. The software producer has

been suggested to change or rectify the package in order to

accomplish the requirements of the organization. Even the

package which is modified is out. The organization has

faced some problems to implement that method, and sur-

prised that risk is operating along the structure taking into

account that the information of millions of customers is

maintained by this software package [21].

ii) Ten years ago the government has a contract out with a

huge administrative management system. The price of the

contract is too big in the view of the government. To bridge

the service cost of this system to other similar systems a

standard is maintained. An assessment is done for figuring

out the risks in the source code under this standard [21].

International Journal of Engineering & Technology 317

4. Risk assessments techniques

In this paper, we have many more methods of Risk assessments

from 1995. This is collected on the basis of survey which was

done by the authors [26]. These models are based on the input

characteristics of the problem. So, this may help to get aware of

the methods that were existed in the past. This may further help to

implement new assessments methods based on these methods. The

methods were:

1) The first model is Software metrics data collected propose

by Chee at al [26] in 1995, takes the input as the software

metrics it is collected in the different stages of the develop-

ment of the software. The technology used is Probabilistic

and Decision analysis which takes influence diagrams and

kinds of NN [26]. This method works by using the influence

diagrams so that, we can easily regulate the data that is used

in problem solving.

2) In 2002, the technique called An Enhanced Neural Network

Technique for Software Risk Analysis introduce by Neu-

mann. It takes software metric data as input. It used the

analysis of principal component and ANN (artificial neural

network).This method works as the method that is used for

the categorization of risk. This takes the analysis of princi-

pal component for normalization. The risk determina-

tion/classification is done by the neural network [26].

3) The approach on Neural Networks for software risk analy-

sis, which is introduced by the Yong et al in 2006. This

model takes software risk factors that are collected from in-

terviews as input. This method uses information that is tak-

en from the interviews and created factors for software risk.

This method again divided into 4 steps [26].

4) The method called Analyzing Software System Quality Risk

Using Bayesian Belief Network introduced by young et al

[26] in 2007. This uses factors of Project risk with the help

of Delphi method based on early data project in the form of

input. The technology used in this method is Bayesian Be-

lief Network, Delphi method. This Technique works by us-

ing predicts and BBN, this enhances us to change the soft-

ware development risks [26].

5) A Risk Assessment Model for software projects by Noguei-

ra et al [26] in 2000. This method uses Complexity metrics

and personnel along with Requirements as inputs. This

method is the risk assessment that uses different software

metrics as technology. This method gives excellent results

than other models like Putham and COCOMO [26].

A software risk assessment by source code analysis this is intro-

duced by the W. Eric Wong and Kendra Cooper. This is also a risk

assessment technique which is based on source code based. In this

method they introduced two models of risk. They are static model

and dynamic model [27]. In static model they used the information

similar to static structure of code like no.of c-uses and p-uses,

decisions, definitions and function calls [27]. The Dynamic model

makes use of the code’s dynamic test coverage like p-use, c-use

and decision coverage with this they determine the metric value

[27]. The metric can also be selected from the either

1) Summation strategy which is the sum of the chosen metrics.

2) Product strategy which takes the product of the metrics that

were selected [27]. This equation is given as

V * α + F * β + D * ɣ + C * ε +P * Ⲣ

α , β , ɣ , ε, Ⲣ are weighting factors , V- Definitions, number of

function calls- F, number of decisions- D, number of c-uses- C , p-

uses- P [27].

In this model they calculates risk index. Risk index calculation is

not easy for many more number of lines of code. So they devel-

oped a tool called as Risk. Using this tool, they calculated Risk

index. This tool gives the count of c-uses, p-uses, definitions, de-

cisions, and function calls of the block of code that is passed into

this Risk tool. For an example of the fault the classification is

given for both the risk assessments through static model and dy-

namic model as tabulated below [27].

Table 1 describes the number of tests that were failed and occur-

rence of each fault of the program. It consists of data for type of

fault and subtype along with no.of failed tests and located area of

the fault. Table2 describes the Assessment of the risk by static

model. This gives us the comparison of two static models named

ms1 and ms2. This contains the data of percentage of the high risk

functions which is more than faulty function and percentage high

risk blocks. Table3 gives us the data regarding risk assessment

which are based on the dynamic models. Here, two dynamic mod-

els based on the number of test cases that are successful, with the

data from percentage of the functions that are contained with high

risk comparatively higher than functions that are faulty and per-

centage of functions that are with high risk which are higher than

faulty block.

Table 1: Classification of Number of Failed Tests and the Location for Each Fault [27]

Fault Classification

No.of Failed Tests Location of Fault
Fault type subtype

F01 Logic neglected or not correct Condition test was missed. Missing condition test 26 sgramp2n

F02 Logic neglected or not correct Missing condition test 16 sgramp2n
F03 Computational problems Equation insufficient or incorrect 36 mkshex

F04 Logic omitted or incorrect Forgotten cases or steps 35 fixselem

F05 Computational problems Equation insufficient or incorrect 32 seqrothg
F06 Computational problems Equation insufficient or incorrect 32 seqrothg

Table 2: Risk Assessments Based on Static Model [27]

Ms1 Ms2

% of functions

with higher
risk than the

faulty function

% of blocks

with higher
risk than the

faulty block

% of functions

with higher
risk than the

faulty function

% of blocks

with higher
risk than the

faulty block

F01 3.70 1.61 6.67 1.50
F02 4.44 1.61 7.41 1.50

F03 8.15 4.90 4.44 3.85

F04 11.85 48.36 14.07 33.92
F05 14.07 1.92 14.07 2.34

318 International Journal of Engineering & Technology

Table 3: Risk Assessment Based on the Dynamic Model

a) Risk assessment with respect to F02

Expr No.

No. of

successful

test cases

MD1 MD2
% of

functions

with
higher

risk than

the faulty
function

% of

blocks

with
higher

risk than

the faulty
block

% of

functions

with
higher

risk than

the faulty
function

% of

blocks

with
higher

risk than

the faulty
block

1 58 1.48 0.70 2.96 1.08
2 0 4.44 1.61 7.41 1.56

3 11 2.22 0.77 4.44 0.94

4 83 2.96 0.45 2.22 0.63
5 16 2.22 0.87 3.70 1.29

b) Risk assessment with respect to F03

No. of

successful

test cases

MD1 MD2

% of

functions

with
higher

risk than
the faulty

function

% of

blocks

with
higher

risk than
the faulty

block

% of

functions

with
higher

risk than
the faulty

function

% of

blocks

with
higher

risk than
the faulty

block

0 8.15 4.90 4.44 3.085
3 2.96 2.97 2.22 2.45

76 1.48 1.50 2.22 1.4

7 64.44 51.75 57.78 45.45

AVG 37.3 2.07.
0.77 3.48 1.0.

5. Conclusion

This paper gives the survey of different types of techniques which

are explicitly used for the assessment of the software risk that are

present in the software projects. The techniques which are men-

tioned in this project may help to eradicate and minimize the risk.

Not only a correct result gives immense effect to project but also

risk free projects do. Either following these techniques will help

developers or based on these assessments techniques we can find

ways and other refinements to get many more assessment tech-

niques.

Acknowledgement

This study is done with the help of the paper “Source Code-Based

Software Risk Assessing” from ACM Symposium on Applied

Computing by W. Eric Wong†, Yu Qi, and Kendra Cooper De-

partment of Computer Science University of Texas at Dallas

Richardson, TX 75083.

References

[1] Kutay, C. and Babar, M. A. 2005. Teaching three quality assurance

techniques in tandem-lessons learned. In Fifth International Confer-
ence on Quality Software. QSIC’05. IEEE, 307–312

https://doi.org/10.1109/QSIC.2005.62.

[2] B. W. Boehm, “Software Risk management: Principles and Practic-
es,” IEEE Software, vol. 8, no. 1, pp. 32-41, Jan.1991.

https://doi.org/10.1109/52.62930.

[3] B. W. Boehm, Software Risk Management, Tutorial, IEEE CS

Press, 1989.

[4] H. Barki, S.Rivard, and J. Talbot, “Toward an Assessment of

Software Development Risk,” J. Management Information Tech-
nology, vol. 22, no. 2, pp. 359-371, Dec. 1993.

https://doi.org/10.1080/07421222.1993.11518006.

[5] M. Carr, S. Kondra, I. Monarch, F. Ulrich, and C. Walker, “Taxon-
omy-Based Risk Identification,” Technical Report SEI-93-TR-006,

SEI, Pittsburgh, USA, 1993.

[6] S. A. Sherer, “The Three dimensions of Software Risk: Technical,
Organizational, and Environmental,” Proc. 28th Hawaii Interna-

tional Conference on System Sciences, pp. 369-378, 1995.
https://doi.org/10.1109/HICSS.1995.375618.

[7] C. G. Chittister and Y. Y. Haimes, “System Integration via Soft-

ware Risk Management,” IEEE Trans Systems, Man, and Cybernet-
ics, vol. 26, no. 5, pp. 521-532, Sep. 1996.

https://doi.org/10.1109/3468.531900.

[8] J. Ropponen and K. Lyytinen, “Components of Software Develop-
ment Risk: How to Address Them? A Project Manager Survey,”

IEEE Trans. Software Engineering, vol. 26, no. 2, pp. 98-112, Feb-

ruary 2000. https://doi.org/10.1109/32.841112.
[9] M. Keil, P.E. Cule, K. Lyytinen, and R.C. Schmidt, “A Framework

for Identifying Software Project Risks,” Communications of the

ACM, vol. 4, no. 11, pp. 76-83, Nov. 1998.
https://doi.org/10.1145/287831.287843.

[10] L. Wallace and M. Keil, “Software Project Risks and Their Effect

on Outcomes,” Communications of the ACM, vol. 47, no. 4, pp. 68-
73, April 2004. https://doi.org/10.1145/975817.975819.

[11] B. W. Boehm, “A Spiral Model of Software Development and En-
hancement,” IEEE Computer, vol. 21, no. 5, pp. 61-72, May 1988.

https://doi.org/10.1109/2.59.

[12] A. Gemmer, “Risk Management: Moving Beyond Process,” IEEE
Computer, vol. 30, no. 5, pp. 33-41, May, 1997.

https://doi.org/10.1109/2.589908.

[13] H. Hecht, Systems Reliability and Failure Prevention. Artech
House Publishers, 2003.

[14] Aihua Yan,”Risk Management in Software Development: A Con-

tinuous Process” IS 6840 Term Paper, fall 2008; Submitted to Dr.
Vicki Sauter, November 21, 2008.

[15] Greenbelt, MD 20771 Greenbelt, MD 20771 Greenbelt, MD

20771301-286-0087 301-286-0101 301-286-8012.
[16] McMahon, Keith, "Risk Based Testing", ST Labs, WA, 1998.

[17] Pfleeger, S.L. and Palmer, J.D., “Software Estimation for Object

Oriented Systems,”Int’l. Function Point Users Group Fall confer-
ence, San Antonio TX, 1990.

[18] Jingyue LI, Reidar CONRADI, Odd Petter N. SLYNGSTAD,

Marco TORCHIANO, Maurizio MORISIO, Christian BUNSE.

[19] Fundamentals of Risk Management Understanding, evaluating and

implementing effective risk management by Paul Hopkin.

[20] Barki, Henri, Suzanne Rivard, and Jean Talbot. "Toward an As-
sessment of Software Development Risk." Journal of Management

Information Systems, 1993: 203-225.

https://doi.org/10.1080/07421222.1993.11518006.
[21] Iversen, Jakob H., Lars Mathiassen, and Peter Axel Nielsen. "Man-

aging Risk in Software Process Improvement: An Action Research

Approach." MIS Quarterly, 2004: 395-433.
https://doi.org/10.2307/25148645.

https://doi.org/10.1109/QSIC.2005.62
https://doi.org/10.1109/52.62930
https://doi.org/10.1080/07421222.1993.11518006
https://doi.org/10.1109/HICSS.1995.375618
https://doi.org/10.1109/3468.531900
https://doi.org/10.1109/32.841112
https://doi.org/10.1145/287831.287843
https://doi.org/10.1145/975817.975819
https://doi.org/10.1109/2.59
https://doi.org/10.1109/2.589908
https://doi.org/10.1080/07421222.1993.11518006
https://doi.org/10.2307/25148645

